• Aucun résultat trouvé

Reduced-order model for the BGK equation based on POD and optimal transport

N/A
N/A
Protected

Academic year: 2021

Partager "Reduced-order model for the BGK equation based on POD and optimal transport"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02427339

https://hal.inria.fr/hal-02427339

Submitted on 3 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reduced-order model for the BGK equation based on POD and optimal transport

Florian Bernard, Angelo Iollo, Sébastien Riffaud

To cite this version:

Florian Bernard, Angelo Iollo, Sébastien Riffaud. Reduced-order model for the BGK equation based on POD and optimal transport. MOREPAS 2018 - Model Reduction of Parametrized Systems IV, Apr 2018, Nantes, France. �hal-02427339�

(2)

Reduced-order model for the BGK equation based on POD and optimal transport

S. Riffaud 1,2 , F. Bernard 1,2 , A. Iollo 1,2

1

Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33400 Talence, France

2

Memphis team, Inria Bordeaux Sud-Ouest, 33400 Talence, France

Contribution

We present a model describing a gas flow in both hydrodynamic and rarefied regimes. Since the computational cost of the Bhatnagar- Gross-Krook (BGK) equation can be prohibitive, a reduced-order ap- proximation is developed, leading to fast and accurate simulations.

BGK equation

The dynamics of the gas flow is described by the BGK equation:

∂f

∂t (x, ξ, t) + ξ · ∇

x

f (x, ξ, t) = M

f

(x, ξ, t) − f (x, ξ, t)

τ (x, t) (1)

where f is the density distribution function representing the density of gas particles at point x ∈ R

3

, velocity ξ ∈ R

3

and time t ∈ R . The Maxwellian distribution function M

f

is in dimensionless form

M

f

(x, ξ, t) = ρ(x, t)

(2πT (x, t))

32

exp

− kξ − U (x, t)k

2

2T (x, t)

where ρ ∈ R is the density, U ∈ R

3

is the macroscopic velocity, T ∈ R is the temperature and E ∈ R is the total energy of the gas.

Reduced-order approximation

The distribution functions are approximated by f e (x, ξ, t) =

Npod

X

n=1

a

fn

(x, t)Φ

n

(ξ )

and

M f

f

(x, ξ, t) =

Npod

X

n=1

a

Mn

(x, t)Φ

n

(ξ )

where the basis functions Φ

n

are built offline by Proper Orthog- onal Decomposition (POD) and the coefficients a

n

are computed online by the Galerkin method.

References

[1] P. L. Bhatnagar, E. P. Gross and M. Krook. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 1954.

[2] F. Bernard. Efficient asymptotic preserving schemes for BGK and ES-BGK models on cartesian grids. PhD thesis, 2015.

[3] F. Bernard, A. Iollo and S. Riffaud. Reduced-order model for the BGK equation based on POD and optimal transport. Journal of Computational Physics, 2018.

Offline phase

In the offline phase, the BGK equation (1) is sampled to collect infor- mation on the distribution functions that we want to approximate.

High-fidelity simulations provide snapshots of both the density dis- tribution function and of the Maxwellian distribution function:

S

hf

= n

f (x

i

, ξ, t

k

) o

1≤i≤Nx 1≤k≤Nt

[ n M

f

(x

i

, ξ, t

k

) o

1≤i≤Nx 1≤k≤Nt

Then, optimal transport provides addi- tional low-fidelity snapshots by interpolating the snapshots of S

hf

to complete the sampling:

S = S

hf

∪ S

lf

Finally, the basis functions Φ

n

are built by POD to have the best approximation in the least squares sense of the snapshots s

l

∈ S :

 

 

 

 

minimize

Φ1(ξ)...ΦNpod (ξ)

Nsnaps

X

l=1

Z

R3

s

l

(ξ ) − P [s

l

](ξ )

2

subject to

Z

R3

Φ

n

(ξ )Φ

m

(ξ ) dξ = δ

n,m

where P [s

l

] is the projection of s

l

onto the subspace spanned by the basis functions Φ

n

i.e. P [s

l

](ξ ) =

Npod

P

n=1

R

R3

s

l

0

n

0

) dξ

0

Φ

n

(ξ ) .

Online phase

During the online phase, the offline knowledge is used to compute approximations of the distribution functions at low cost. In the Galerkin method, the BGK equation (1) is projected onto the basis functions Φ

n

, leading to an hyperbolic system of partial differen- tial equations:

∂a

f

∂t (x, t)+A ∂a

f

∂x (x, t)+ ˚ A ∂a

f

∂y (x, t)+

?

A ∂a

f

∂z (x, t) = a

M

(x, t) − a

f

(x, t) τ (x, t)

where a = (a

1

, a

2

, . . . , a

Npod

)

T

, A

n,m

= R

R3

ξ

u

Φ

n

(ξ )Φ

m

(ξ ) dξ , A ˚

n,m

= R

R3

ξ

v

Φ

n

(ξ )Φ

m

(ξ ) dξ and A

?n,m

= R

R3

ξ

w

Φ

n

(ξ )Φ

m

(ξ ) dξ . These equations are decoupled by linear changes of variables and are solved by an IMEX Runge-Kutta scheme in time and a finite volume scheme in space. To improve the accuracy of the model, the coefficients a

Mn

are computed by constrained projection:

 

 

 

 

 

 

minimize

aM1 (x,t)...aM

Npod (x,t)

Z

R3

M

f

(x, ξ, t) − M f

f

(x, ξ, t)

2

subject to

Z

R3

M f

f

(x, ξ, t)

1 ξ

kξk2 2

 dξ =

ρ(x, t)

ρ(x, t)U (x, t) E (x, t)

in order to conserve mass, momentum and total energy of the gas.

Results

Kn = 0.0345 Kn = 0.0689

Kn = 0.115 Kn = 0.23

In average with N

pod

= 20 basis functions, the approximation

error is less than 1% and the run time is divided by ap-

proximately 45 with respect to the high-fidelity simulations.

Références

Documents relatifs

Si certains travaux ont abordé le sujet des dermatoses à l’officine sur un plan théorique, aucun n’a concerné, à notre connaissance, les demandes d’avis

Using the Fo¨rster formulation of FRET and combining the PM3 calculations of the dipole moments of the aromatic portions of the chromophores, docking process via BiGGER software,

Later in the clinical course, measurement of newly established indicators of erythropoiesis disclosed in 2 patients with persistent anemia inappropriately low

Households’ livelihood and adaptive capacity in peri- urban interfaces : A case study on the city of Khon Kaen, Thailand.. Architecture,

3 Assez logiquement, cette double caractéristique se retrouve également chez la plupart des hommes peuplant la maison d’arrêt étudiée. 111-113) qu’est la surreprésentation

Et si, d’un côté, nous avons chez Carrier des contes plus construits, plus « littéraires », tendant vers la nouvelle (le titre le dit : jolis deuils. L’auteur fait d’une

la RCP n’est pas forcément utilisée comme elle devrait l’être, c'est-à-dire un lieu de coordination et de concertation mais elle peut être utilisée par certains comme un lieu

The change of sound attenuation at the separation line between the two zones, to- gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion