• Aucun résultat trouvé

THEORY OF A CW SUPERSONIC NITROGEN RECOMBINATION LASER

N/A
N/A
Protected

Academic year: 2021

Partager "THEORY OF A CW SUPERSONIC NITROGEN RECOMBINATION LASER"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00220618

https://hal.archives-ouvertes.fr/jpa-00220618

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

THEORY OF A CW SUPERSONIC NITROGEN

RECOMBINATION LASER

W. Schall

To cite this version:

(2)

JOURNAL DE PHYSIQUE CoZZoque C9, suppZ6ment a u n O l l , Tome 41, novembre 1980, page C9-471

THEORY OF A CW SUPERSONIC NITROGEN RECOMBINATION LASER

W. Schall.

I n s t i t u t fiir T e c h i s c h e P h y s i k , DFVLR, 0-7000 S t u t t g a r t 80, Fed. Rep. Germany.

Abstract.- Quasi-two dimensional model calculations show the possibility to realize a cw atomic ni- trogen laser, pumped by the recombination process in rapidly expanded plasma flows. Sufficient gain for lasing is demonstrated for stagnation conditions of 13 000 ,< To< 24 000 K and 2

<

p o 6 30 kPa. Location and size of the gain regimes in the flow direction depend on the plasma starting condition. At a wavelength of 0.91 um values of small signal gain up to 0.6 m-l can be attained. The model is described and some selected results are presented. The effect of the electron heat conduction is dis cussed.

1 . I n t r o d u c t i o n

The i d e a t o pump a l a s e r by a r a p i d recom- combination o f expanding plasmas, some b i n a t i o n o f e l e c t r o n s i n t o t h e h i g h l y ex- y i e l d i n g v e r y promising r e s u l t s . (A more c i t e d e l e c t r o n i c s t a t e s of a n e u t r a l o r r e c e n t c o m p i l a t i o n may b e found i n Ref. 6 ) . i o n i c s p e c i e s i s r a t h e r o l d . ' Meanwhile t h e Also many e x p e r i m e n t s have been performed mechanism o f many p u l s e d l a s e r s h a s been and t h e e x i s t e n c e o f p o p u l a t i o n i n v e r s i o n s

e x p l a i n e d by t h i s p r o c e s s . The s u g g e s t i o n has been proven r e p e a t e d l y . But o n l y Camp- t o o p e r a t e a r e c o m b i n a t i o n l a s e r by ex-

p l o i t i n g t h e r a p i d c o o l i n g r a t e s , and hence r e c o m b i n a t i o n r a t e s , i n a s u p e r s o n i c plasma expansion flow h a s been made n e a r l y a s l o n g Though b a s i n g on a d i f f e r e n t p h y s i - c a l p r i n c i p l e , i t h a s always been t e m p t i n g t o r e g a r d such a plasmadynamic l a s e r a s t h e n a t u r a l e x t e n s i o n o f t h e powerful i n f r a r e d gasdynamic l a s e r s i n t o t h e v i s i b l e o r even u l t r a v i o l e t wavelength r e g i o n . S i n c e recom- b i n a t i o n i s a g e n e r a l p h y s i c a l mechanism t o p r e f e r e n t i a l l y p o p u l a t e h i g h l y i n g e l e c - t r o n i c l e v e l s , t h e method s h o u l d be a p p l i - c a b l e t o pump l a s e r t r a n s i t i o n s i n a l m o s t any i o n i z a b l e element o r molecule and t h u s open a wide spectrum o f l a s e r wavelengths. Reviews and more d e t a i l e d d i s c u s s i o n s may b e found i n Refs. 4 and 5. Q u i t e a few t h e - o r e t i c a l models have been developed t o d e s - c r i b e t h e p o p u l a t i o n dynamics by t h e r e -

b e l l e t a l .

'

have been a b l e t o a c t u a l l y de- m o n s t r a t e 1 m s l a s e r a c t i o n i n a n a r g p n plasma, expanded from a p u l s e d MPD a r c s o u r c e . However, i n an a t t e q p t by Hoffmann and ~ i i ~ e l ~ t o e x t e n d t h e s e r e s u l t s t o cw o p e r a t i o n a t e q u a l plasma p a r a m e t e r s ab- s o r p t i o n was found i n t h e l a s e r t r a n s i - t i o n s . Today i t i s n o t known which s t e a d y s t a t e p r o c e s s e s p r e v e n t t h e r e c o m b i n a t i o n l a s e r a c t i o n dnd t o what e x t e n t e x i s t i n g models do n o t d e s c r i b e t h e r e a l p h y s i c s a c c u r a t e l y enough. I n t h i s paper a f u r t h e r t h e o r e t i c a l model i s d e s c r i b e d and some c a l c u l a t e d r e s u l t s a r e p r e s e n t e d f o r a n i t r o g e n plasma a s a p o t e n t i a l l a s e r c a n d i d a t e . The model con- s i s t s o f two main p a r t s t o compute t h e r e - combination and e x c i t a t i o n k i n e t i c s simul- t a n e o u s l y w i t h t h e gasdynamics a l o n g t h e

31

(3)

~ 9 - 4 7 2 JOURNAL DE PHYSIQUE

axis of a two-dimensional plane nozzle flow and is qualitatively described in the next sections. The numerical details will be de-

scribed elsewhere. 9

2. Theory

2.1 Gasdynamics

For a maximum recombination rate, an ex- pansion as fast as possible is desired, being inherently more-dimensional. To con- siderably reduce the computational needs for a complete two-dimensional treatment and yet take account for such a geometry within realistically specified boundary conditions, the following compromise has been adopted.

The sharp corner nozzle is known to pro- duce the fastest nozzle expansion possible. Flow parameters, i.e. effective area ratios and Mach numbers can be infered at any point of the flow field for an isentropic expansion by the method of characteristics. A streamline can then be considered as a one-dimensional streamtube with completely defined boundary conditions. To find the effect of the non-isentropic nature of the flow, brought about by the recombination reaction, the full set of one-dimensional flow equations for the macroscopic state variables is then integrated along the streamtube. As a particular and simple streamtube the flow along the axis of the nozzle is chosen for the present calcula- tions. In the method of characteristics the isentropy of the flow is expressed by

the ratio of the specific heats J"= Cp/Cv.

After integrating the full equations a

variable

8

can be assigned to any point of

the flow. With this distribution of local- ly adjusted isentropic coefficients the calculation of the characteristics can be redone to yield a new set of boundary con- ditions. In general, convergence is reached within less than ten iterations.

Following Appleton and

a ray'^

the flow is

represented by a three component, quasi- neutral plasma consisting of neutral par- ticles and of singly-ionized ions and electrons, that can recombine. Maxwellian velocity distributions are assumed. The electrons are allowed to have a tempera- ture different from the heavy particles, but do flow at the same velocity. Hence, the set of conservation equations com- prises an equation for the conservation of momentum, for total energy, electron ener- gy, total mass and number density of the electrons ne, from which velocity w, heavy particle temperature T, electron tempera- ture Te, number density n are calculated. Further conservation equations for atoms in the various excited states can be added as is considered necessary. In particular, equations for the three ground states of the chosen species nitrogen are provided.

(4)

t r i b u t i o n i s needed. Again, i t i s o b t a i n e d t h r e e Zp3 ground s t a t e s t h e t r a n s i t i o n pro- i n t h e s u c c e s s i v e c o u r s e o f i t e r a t i o n s . b a b i l i t i e s a r e t a k e n from Smith, e t . a l . 13 The c a l c u l a t i o n i s s t a r t e d w i t h a s t e a d y The p o p u l a t i o n d e n s i t y ni o f e v e r y e n e r g y s t a t e s o l u t i o n o f a l l c o n s e r v a t i o n equa- l e v e l h i g h e r t h a n t h o s e o f t h e ground t i o n s a t t h e p o i n t of s i n g u l a r i t y , i . e . a t s t a t e s i s computed from t h e a l g e b r a i c s y s - t h e t h r o a t o f t h e n o z z l e . E q u a l i t y o f e l e c - tem o f t h e s t e a d y s t a t e r a t e e q u a t i o n s t r o n - and heavy p a r t i c l e t e m p e r a t u r e i s a s - ( A i = 0). Because of t h e s h o r t c h a r a c t e r - sumed a t t h i s p o i n t , b u t i s n o t mandatory. i s t i c t i m e s o f t h e l e v e l s t o a c q u i r e t h e The c a l c u l a t i o n i s performed up t o an a r - s t e a d y s t a t e v a l u e s t h i s a p p r o x i m a t i o n b i t r a r y Mach number, t y p i c a l l y o f t h e o r d e r p r o v e s t o b e j u s t i f i e d everywhere i n t h e o f 5 t o 6 , w i t h t h e d i s t a n c e from t h e e x p a n s i o n , e x c e p t f o r t h e v e r y f i r s t s t e p s t h r o a t , x , b e i n g t h e i n d e p e n d e n t v a r i a b l e . o f computation. T h i s i s n o t t h e c a s e f o r 2.2 E x c i t a t i o n k i n e t i c s A s t h e e l e m e n t o f i n v e s t i g a t i o n r e p o r t e d h e r e i n a t o m i c n i t r o g e n h a s been chosen, b u t o t h e r e l e m e n t s l i k e c a r b o n , oxygen e t c . have been o r may b e computed a s w e l l . 38 l e v e l s f o r e l e c t r o n i c e x c i t a t i o n a r e con- s i d e r e d i n t h e model, o u t o f which 24 a r e t r e a t e d i n s e p a r a t e e q u a t i o n s . The k i n e t i c of r e c o m b i n a t i o n i s t r e a t e d by t h e c o l l i - s o n a l - r a d i a t i v e decay mechanism, o r i g i n a l l y 11 i n t r o d u c e d by S a t e s e t . a l . : The r a t e e q u a t i o n s a c c o u n t f o r two and t h r e e body r e c o m b i n a t i o n ( i o n i z a t i o n ) i n t o a n a r b i - t r a r y l e v e l i , r a d i a t i v e d e e x c i t a t i o n , and t r a n s i t i o n s induced by e l e c t r o n c o l l i s i o n s . Re-absorption o f r e s o n a n c e r a d i a t i o n i s t h e t h r e e ground s t a t e s w i t h e n e r g i e s of 2 0,eV ( 4 ~ ) , 2.38 eV ( 2 ~ ) and 3.75 eV ( P). The number d e n s i t i e s o f t h e s e l e v e l s n l , n 2 , n3, t o g e t h e r w i t h t h e number d e n s i t y and t e m p e r a t u r e o f t h e e l e c t r o n s , ne and T,, e n t e r t h e s y s t e m o f r a t e e q u a t i o n s a s t h e p r i m a r y , i n d e p e n d e n t v a r i a b l e s . The system c a n b e s o l v e d a s a s e p a r a t e u n i t t o compute r e g i m e s o f p o s s i b l e i n v e r s i o n s i n f u l l g e n e r a l i t y o r , more i n t e r e s t i n g l y , f u l l y c o u p l e d t o t h e i n t e g r a t i o n of t h e f l o w e q u a t i o n s . I n t h e l a t t e r c a s e l e v e l p o p u l a t i o n and p o p u l a t i o n i n v e r s i o n s a t any s t e p of i n t e g r a t i o n a l o n g t h e n o z z l e a x i s c a n be i n f e r e d w i t h r e g a r d t o l o c a - t i o n , s i z e and magnitude o f t h e s m a l l s i g - n a l g a i n . t a k e n i n t o a c c o u n t by m u l t i p l y i n g t h e spon- t a n e o u s t r a n s i t i o n p r o b a b i l i t i e s w i t h an F i g . 1 shows a s e c t i o n o f t h e G r o t r i a n d i - escape p r o b a b i l i t y f a c t o r f o r t h e agram the nitrogen d u b l e t w i t h t r a n s i - c a l c u l a t e d from t h e l o c a l o p t i c a l t h i c k n e s s . tions expected to significant

(5)

JOURNAL DE PHYSIQUE

Fig.1 Section of the electronic level

structure of dublett nitrogen with laser transitions indicated.

3. Numerical results

Calculations were performed for a plane,

sharp-edge nozzle with 1 mm throat height.

The parameter range for the stagnation tem- perature and pressure of the starting con-

ditions were 13 333

"

To" 24 000 K and

2 r4 p o L 30 kPa. This comprises a degree of

ionization from 0 . 0 5 to 0 . 9 9 .

Fig.2 Variation of the quasi-isentropic

coefficient

8

along the flow direc-

tion for various stagnation condi- tions at the starting point.

Fig.2 demonstrates the non-isentropic na- ture of the flow, expressed by the varia- tion of the effective isentropic coeffi- cientf along the flow direction. The local $is recalculated from the actual local Mach number and the heavy particle tempera- ture. It is seen that due to the different heat release from the recombination at var-

ious starting conditions

8

drops rapidly to

values of 1.3 to 1 . 5 after a flow distance

of 1 cm. Fig. 3 shows, how the recombina-

tion of electrons in the strongly non-equi- librium flow tends to freeze the population density of an arbitrary level placed at

1 2 eV compared to its equilibrium density. Differences in the population or depopula- tion mechanisms of two levels, connected by an allowed transition can lead to a tempo- rary inversion of the population densities.

Fig.3 Population density variation of an

arbitrary level placed at 12 eV by a

(6)

d e n s i t y n , , t h a t have t o be a t t a i n e d s i m u l - t a n e o u s l y d u r i n g t h e expansion. Fig.4 shows t h e s e r a n g e s , v a l i d f o r t h e most prominent t r a n s i t i o n s 3sI2D

-

3 p I 2 ~ O a t 918.8 nm and lo" I I I 0 a2 0.4 0.6 a8 10 1.2 1.4 r.6 Te [CV] F i g . 5 Change o f s t a t e of t h e e l e c t r o n s d u r i n g e x p a n s i o n . examples o f t h e e n s u i n g a x i a l g a i n d i s t r i b u - t i o n a l o n g t h e f l o w d i r e c t i o n a r e d i s p l a y e d i n F i g s . 6 and 7. Depending on t h e p r e s s u r e , t h e g a i n t e n d s t o a p p e a r and a t t a i n i t s Fig.4 Ranges o f s m a l l s i g n a l g a i n f o r t h e

3 p ~ - 3 s ~ transition (steady state ap- maximum r a t h e r a b r u p t l y and t h e n t o f a d e p r o x i m a t i o n f o r l e v e l s i > l ) .

away a s t h e g a s t h i n s o u t i n t h e c o n t i n h e d 3 s ' 'D

-

3p1 2 ~ 0 a t 904.8 nm. The c u r v e s i n - expansion. In a practical application

(7)

C9-476 JOURNAL DE PHYSIQUE

though, a f u r t h e r e x p a n s i o n of t h e g a s m a t e l y 0.6 m - I - A s e x p e c t e d , . o t h e r t r a n s i - seems n o t a p p r o p r i a t e a f t e r t h e maximum o f t i o n s e x h i b i t g a i n a s w e l l and w i t h t h e g a i n i s reached. The g a i n r e g i o n i s s h i f t e d same g e n e r a l b e h a v i o r . However, t h e p a r a - downstream a s t h e p r e s s u r e i s r a i s e d , w h i l e meter r a n g e , f o r more t h a n 0 . 1 m-' i s n a r - t h e g a i n maximum r i s e s w i t h i n c r e a s i n g tem- rower and t h e r e g i o n s a r e somewhat s h i f t e d

0 1 I 1 2 16 20 2 L 1 0 4 MKI F i g . 8 V a r i a t i o n o f maximum s m a l l s i g n a l g a i n w i t h t h e s t a r t i n g c o n d i t i o n s . p e r a t u r e . A s r e c o g n i z e d from t h e s e g r a p h s and a l s o from F i g . 8 , where t h e v a r i a t i o n o f t h e g a i n maximum i s p l o t t e d a s a func- t i o n o f t h e s t a r t i n g c o n d i t i o n s , t h i s r a - t h e r g e n e r a l b e h a v i q r i s n o t v a l i d f o r ex- t r e m e l y low s t a r t i n g t e m p e r a t u r e s . The f u r - , t h e r and c o n s i d e r a b l e r i s e o f g a i n a t t h e s e c o n d i t i o n s may be e x p l a i n e d from t h e expan- s i o n c u r v e s i n F i g . 5: t h e a l r e a d y low s t a r t i n g t e m p e r a t u r e and t h e a s s o c i a t e d s m a l l d e g r e e o f i o n i z a t i o n , w i t h t h e s m a l l amount o f a v a i l a b l e i o n i z a t i o n e n e r g y a l - lows t h e e a r l i e r achievement o f a some- what s m a l l e r e l e c t r o n t e m p e r a t u r e a t com- p a r a t i v l y h i g h e r e l e c t r o n d e n s i t i e s , and hence a d e e p e r p e n e t r a t i o n i n t o t h e i n v e r - s i o n regime o c c u r s . The maximum s m a l l s i g n a l g a i n f o r t h i s p a t r t i c u l a r t r a n s i t i o n amounts t o a p p r o x i -

(8)

about 1 % after 2 mm. Since this occurs well before the gain attains its maximum, the effect will be little, if present at all. In fact, because of the reduced re- combination rate at the higher electron temperature the electron state distribution along the flow direction remains very near- ly unchanged.

4. Experiment

An effort has been made to verify the re- sults in an experiment and to achieve laser

oscillation. For this purpose the 5 cathode

arc heater, described in Ref. 15 has been operated with pure nitrogen. The results have been negative. In contrast to earlier findings with a plasma of predominantly ar- gon, the flow became extremely inhomogene- ous in temperature in the optical direc- tion. Small regions with very hot plasma interchanged with broad regions of cold gas.

5. Conclusions

A computer model has been established to

describe the non-equilibrium plasma expan- sion in a two-dimensional nozzle. Suffi- cient small signal gain has been found in the computation of a nitrogen model, that should allow the achievement of cw laser

List of references

1 L.I. Gudzenko, L.A. Shelepin: Sov. Phys.

JETP

18,

998 (1964).

2 L.I. Gudzenko, S.S. Filippov, L.A. She-

lepin: Sov. Phys. JETP

2 ,

745 (1967).

3 W.L. Bohn: 10th Int. Conf. on Phenomena in Ionized Gases, Oxford 1971, Contri- buted Papers, p. 386.

4 L.I. Gudzenko, L.A. Shelepin, S.I.

Yakovlenko: Sov. Phys.-Usp.

17,

848

(1975).

5 W.L. Bohn: Gasdynamic and Chemical La-

sers, Proc. of the Int. Symposium, 1 1 -

15 Oct. 1976, Koln, DFVLR Press, Koln- Porz, Germany, P. 57.

6 M.A. Cacciatore, M. Capitelli: J. Quant.

Spectrosc. Radiat. Transfer 23,83 (1980). 7 E.M. Campbell, R.G. Jahn, W.F. von Jas-

kowsky, K.E. Clark: Appl. Phys. Lett.

30,

575 (1977); J. Appl. Phys.

51,

109 (1980).

8 P. Hoffmann, H. Hiigel: DFVLR-Ergebnisbe- richt 1977, 5-55, unpublished.

9 W. Schall: to be published.

10 J.P. Appleton, K.N.C. Bray: J. Fluid.

Mech. 20, 659 (1964).

1 1 D.R. B z e s , A.E. Kingston, R.W.P. Mc- Whirter: Proc. of the Royal Society Lon-

don, Ser. A,

=,

297 (1962).

12 H. W. Drawin: Euratom Rep. No. EUR-CEA-FC

383 (1966).

13 K. Smith, R.J.W. Henry, P.G. Burke: Phys.

Rev.

157,

51 (1967).

14 J.B. Atkinson, J.H. Sanders: J. Phys. B

1 , 1171 (1968).

15 G-Schall, W. Schock: Gasdynamic and

Chemical Lasers, Proc. of the Int. Sympo- sium, 11-15 Oct. 1976, Koln, DFVLR Press, Koln-Porz, Germany, p. 473.

oscillation even in a smaller device. An experimental test was not successful, be-

cause the plasma source did not produce

a

Références

Documents relatifs

Day-to-Day Changes in TEC We have presented several studies to demonstrate that the integrals of MAVEN ’ s observations of both total ion density from NGIMS and electron density

Effects of the temperature and the incident electron current density on the total electron emission yield (TEEY) of polycrystalline diamond deposited by chemical vapor

This regularity is enough to apply the theory of renormalized solutions of continuity equations with mildly regular coefficients (see the classical paper by DiPerna–Lions, [16];

On the large time behavior of the solutions of a nonlocal ordinary differential equation with mass conservation.. Danielle Hilhorst, Hiroshi Matano, Thanh Nam Nguyen,

This study provides a unique comparison of the estimates of production or potential production in a kelp bed in Tasmania using three different measurement methods: diel oxygen

Origin of the minimum in the total energy curve of diamond using the extended Hückel

The energy of light measured by an observer comoving with a nearby or distant galaxy emitting this light would be N (a rational number) times larger than the energy of galaxy’s

As a corollary of Theorem 2, we shall deduce now sharp upper bounds for the forward scattering amplitude and for the total cross-section. 25) ensures that. Annales