• Aucun résultat trouvé

Heaving force of frozen ground. I. Mainly on the results of field researches

N/A
N/A
Protected

Academic year: 2021

Partager "Heaving force of frozen ground. I. Mainly on the results of field researches"

Copied!
31
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Technical Translation (National Research Council of Canada), 1966

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=e8c1df3c-4aaa-4169-bc8e-d2a5c0e6ca63 https://publications-cnrc.canada.ca/fra/voir/objet/?id=e8c1df3c-4aaa-4169-bc8e-d2a5c0e6ca63

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20359118

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Heaving force of frozen ground. I. Mainly on the results of field

researches

Kinoshita, S.; Ono, T.; National Research Council of Canada. Division of

Building Research

(2)

PREFACE

The D i v i s i o n of B u i l d i n g Research i s c u r r e n t l y i n v e s t i g a t i n g t h e behaviour of a v a r i e t y of s m a l l f o o t i n g s i n f r o s t - s u s c e p t i b l e s o i l s with p a r t i c u l a r r e f e r e n c e t o f r o s t - h e a v i n g p r e s s u r e s developed and t h e r e l a t i v e amounts of heaving. It i s hoped t h a t t h i s pro- gramme w i l l provide a b a s i s f o r developing s u i t a b l e s m a l l f o o t i n g d e s i g n s f o r l i g h t s t r u c t u r e s such a s t r a n s f o r m e r s t a t i o n s and

c o t t a g e s . T h i s r e s e a r c h was a l r e a d y in p r o g r e s s when t h i s p a p e r was published. It was found t o p r o v i d e u s e f u l information and r e s u l t s which w i l l a s s i s t i n e v a l u a t i n g t h e DBR/NRC s t u d i e s .

The D i v i s i o n makes a v a i l a b l e E n g l i s h t r a n s l a t i o n s of s t u d i e s i n i t s own f i e l d s , b u t published i n o t h e r languages, with t h e hope t h a t t h i s w i l l be h e l p f u l i n d i s s e m i n a t i n g u s e f u l s c i e n t i f i c

information. The D i v i s i o n is, t h e r e f o r e , indebted t o D r . Makoto k a b a who t r a n s l a t e d t h i s paper and t o Mr. E. Penner of t h i s D i v i s ion, who checked t h e t r a n s l a t io n .

Ottawa R.F. Legget

(3)

NATIONAL RESEARCH COUNCIL OF CANADA

Technical Translation 1246

T i t l e : Heaving force o f frozen ground. I. Mainly on the r e s u l t s o f f i e l d researchea

Authors : S e i l t i Klnoshita and Taketoshi Ono

Reference : Low Temperature Science (Teion Kagaku), Ser. A, 21 r 117-139,

1963

(4)

I E A V I N G FORCE OF FROZEN GROUND

I. MAINLY ON THE RESULTS OF FELD RESEARCHES*

I. I n t r o d u c t i o n

Ln a g e o g r a p h i c a l a r e a where t h e t e m p e r a t u r e i s low and t h e amount of s n o w f a l l i s s m a l l d u r i n g t h e w i n t e r , t h e ground f r e e z e s . The w a t e r i n t h e u n f r o z e n ground below t h e f r e e z i n g f r o n t i s suclted upwards and f r e e z e s t h e r e .

A s a r e s u l t , t h e f r o z e n ground i n c r e a s e s i t s volume and t h e ground s u r f a c e r i s e s upwards. T h i s phenomenon i s c a l l e d t h e heaving of f r o z e n ground. The heaving of f r o z e n ground, a s might be s u s p e c t e d , i s a complicated phenomenon r e p r e s e n t i n g a combination of v a r i o u s e f f e c t s . The f a c t o r s involved i n t h e heaving o f f r o z e n ground a r e t h e temperature of t h e s o i l , t h e s i z e o f t h e s o i l p a r t i c l e s , t h e i r p h y s i c a l and chemical n a t u r e , t h e amount o f w a t e r i n t h e ground, t h e amount of groundwater, t h e flow v e l o c i t y of t h e w a t e r , e t c . The heaving o f f r o z e n ground h a s been i n v e s t i g a t e d by v a r i o u s workers, b u t t h e r e a r e a number of i m p o r t a n t p o i n t s s t i l l t o be c l a r i f i e d , p a r t i c u l a r l y on t h e f i n e r a s p e c t s o f t h e mechanism of t h e heaving. The p r e s e n t a u t h o r s f e l t t h a t t h e s t r o n g f o r c e t h a t d e s t r o y s v a r i o u s o b j e c t s on t h e ground needs e s p e c i a l l y c a r e f u l and e x t e n s i v e s t u d y . The s t u d y of t h e h e a v i n g f o r c e of f r o z e n ground

i s i m p o r t a n t n o t o n l y f o r e v a l u a t i n g t h e a c t u a l s t a t i s t i c a l d a t a , i n t h e p r a c t i c a l s e n s e , b u t a l s o from an academic s t a n d p o i n t i n e s t a b l i s h i n g a much c l e a r e r mechanism of heaving.

The h e a v i n g f o r c e of f r o z e n ground nay be c o n v e n i e n t l y d i v i d e d i n t o two component f o r c e s . One i s a f o r c e t h a t works a t t h e bottom of an o b j e c t and pushes up t h e o b j e c t ; t h e o t h e r i s a f o r c e which works on t h e f l a n k o f a n o b j e c t , where t h i s f l a n k i s i n c o n t a c t w i t h t h e f r o z e n ground. Oura and K i n o s h i t a have s t u d i e d t h e l a t t e r f o r c e , i . e . t h e heaving f o r c e a g a i n s t t h e s i d e of an o b j e c t , f o r t h e l a s t t h r e e w i n t e r s . They cooperated w i t h t h e

Research S e c t i o n of t h e B u i l d i n g Maintenance Department, E l e c t r i c Communication D i v i s i o n , Hokkaido, and s e t up a f i e l d r e s e a r c h e s t a b l i s h m e n t on a s i d e s t r e e t n e x t t o t h e o f f i c e b u i l d i n g a t Kushiro E l e c t r i c Communication Department.

There t h e y have been c o l l e c t i n g d a t a f o r t h r e e w i n t e r s , 1958-59, 1959-60, and 1960-61. The r e s u l t s have a l r e a d y been p u b l i s h e d (I-)). However, a s t h e f i e l d r e s e a r c h e s t a b l i s h m e n t was r a t h e r c l o s e t o a b u i l d i n g , t h e h e a v i n g of f r o z e n ground was n o t q u i t e a s s t r o n g a s i t had been expected, and t h e y encountered

*

C o n t r i b u t i o n No.635 from Low Temperature S c i e n c e Research I n s t i t u t e , Hokkaido U n i v e r s i t y .

(5)

v a r i o u s o t h e r Inconveniences. I n t h e f o u r t h w i n t e r , 1961-62, t h e r e f o r e , t h e y s e t up a f i e l d r e s e a r c h e s t a b l i s h m e n t on t h e campus of Kitami J u n i o r T e c h n i c a l College, Kitami-shi, where t h e r e i s more freedom in s e l e c t i o n of a s i t e f o r t h e e x p e r i m e n t a l a p p a r a t u s and more f a c i l i t i e s f o r making, d e t e r m i n a t i o n s .

In

Kitami t h e a u t h o r s b u i l t an a p p a r a t u s which enabled them t o determine t h e h e a v i n g f o r c e b o t h a t t h e bottom of an o b j e c t and on i t s f l a n k . The p r e s e n t p a p e r i s based mainly on t h e d a t a o b t a i n e d i n Kitami.

11. The S i g n i f i c a n c e of t h e Heaving Force of Frozen Ground The a u t h o r s d e f i n e t h e h e a v i n g f o r c e of f r o z e n ground a s a f o r c e t o which an o b j e c t on o r i n t h e ground i s s u b j e c t d u r i n g t h e f r e e z i n g o f s o i l , b u t t h i s d e f i n i t i o n does n o t i n c l u d e any q u a n t i t a t i v e a s p e c t of t h e f o r c e

concept. I f we s e e k t o d e f i n e t h e h e a v i n g f o r c e of f r o z e n ground more p r e c i s e l y a s a f o r c e which l i f t s up an o b j e c t on t h e s u r f a c e o f t h e ground, we would r e a c h t o an o b v i o u s l y p a r a d o x i c a l r e s u l t . A s t h e f o r c e which r a i s e s an o b j e c t i s e q u a l t o t h e w e i g h t of t h e o b j e c t , t h e heaving f o r c e would t h e r e - f o r e be p r o p o r t i o n a l t o t h e weight of t h e o b j e c t r a i s e d . I n r e a l i t y , however, t h e amount of heave, 1 . e . t h e h e i g h t of h e a v i n g of an o b j e c t , Is l e s s f o r a h e a v i e r o b j e c t t h a n f o r a l i g h t e r one. For example, it i s w e l l lcnown t h a t i n t h e c a s e of c o n c r e t e - b l o c k b u i l d i n g s one-storey houses o f t e n s u f f e r damage from heavin while two-storey houses, which weigh more, do s o f a r l e s s f r e q u e n t l y ( ' ) . Thus b u i l d e r s a r e encouraged t o p u t up houses of g r e a t e r s t r u c t u r a l weight a s a means of p r o t e c t i n g b u i l d i n g s from t h e h a z a r d s of h e a v i n g on f r o z e n ground.

T h i s would s u g g e s t t h a t t h e amount of h e a v i n g i s less f o r a g r e a t e r

h e a v i n g f o r c e i n t h e f r o z e n ground, s i n c e t h e weight of t h e b u i l d i n g Is l a r g e r . The r e l a t i o n s h i p between t h e h e a v i n g f o r c e and t h e amount of h e a v i n g is shown

In F i g . 1. I n F i g . 1 t h e h e a v i n g f o r c e i s p l o t t e d on t h e o r d i n a t e and t h e amount of heave in t h e a b s c i s s a . P o i n t A i n t h e f i g u r e i n d i c a t e s t h e f o r c e of t h e f r o z e n ground f o r

a

heave o f z e r o , t h a t i s , when t h e s u r f a c e of t h e ground i s s o p r e s s e d down by an o b j e c t s o t h a t t h e r e i s no heave. T h i s f o r c e Is t h e l a r g e s t f o r c e t h a t t h e ground i s c a p a b l e of producing, 1 . e . it i s , under t h e given c o n d i t i o n s , t h e maximum heaving f o r c e . P o i n t B of t h e same f i g u r e shows t h e amount of heave of t h e ground f o r a h e a v i n g f o r c e o f z e r o , 1.e. when t h e r e i s no o b j e c t on t h e s u r f a c e o f t h e ground, o r i n o t h e r words, i t r e p r e s e n t s heave of a f r e e ground s u r f a c e .

A s d e s c r i b e d t h u s f a r , t h e heaving f o r c e cannot be d e f i n e d u n c o n d i t i o n - a l l y ; t h e r e f o r e , t h e a u t h o r s w i l l f u r t h e r d e f i n e t h e h e a v i n g f o r c e a s t h e f o r c e shown a t p o i n t A i n F i g . 1, 1.e. t h e maximum h e a v i n g f o r c e . The h e a v i n g

(6)

f o r c e determined by us i s t h i s value of t h e maximum f o r c e . A knowledge of t h i s f o r c e may be of some u s e i n s o l v i n g c e r t a i n p r a c t i c a l problems. Even a f t e r c l a r i f y i n g t h e heaving f o r c e by t h e above d e f i n i t i o n t h e r e a r e two

a s p e c t s of i t t o be s t i l l d i s c u s s e d . One i s t h e f o r c e which a c t s a g a i n s t t h e bottom of an o b j e c t i n c o n t a c t w i t h t h e ground s u r f a c e and heaves t h e o b j e c t upwards, 1 . e . t h e v e r t i c a l l i f t i n g f o r c e . The a u t h o r s h e r e a f t e r term t h i s t h e b a s a l heaving f o r c e . The o t h e r a s p e c t i s t h e a d f r e e z i n g f o r c e . An o b j e c t sunk In t h e ground, such a s a hydropole, i s e l e v a t e d by t h e s o i l f r o z e n a l o n g s i d e of t h e o b j e c t . T h i s phenomenon i s c a l l e d " a d f r e e z i n g t ' o r " h o i s t -

f r e e zing"

( 5 ) .

The f o r c e which a c t s a g a i n s t t h e s i d e o f such an o b j e c t i s an a d f r e e z i n g f o r c e . The a d f r e e z i n g f o r c e t h a t t h e a u t h o r s d i s c u s s i n t h i s p a p e r i s a g a i n t h e maximum a d f r e e z i n g f o r c e , 1.e. t h e f o r c e needed t o p r e s s t h e o b j e c t dorm s o t h a t t h e o b j e c t i s n o t e l e v a t e d .

A s p r e v i o u s l y d e s c r i b e d , a d f r e e z i n g h a s been s t u d i e d d u r i n g t h e l a s t t h r e e w i n t e r s and t h e r e s u l t s have been r e p o r t e d (

1-3

)

111. Methods of Determination

The a u t h o r s s e t up an a p p a r a t u s t o s t u d y t h e b a s a l h e a v i n g f o r c e and a d f r e e z i n g f o r c e on t h e campus o f Kitami J u n i o r College In t h e f a l l o f 1961. Readings of t h e f o r c e s were t a k e n e v e r y day d u r i n g t h e p e r i o d from December

1961 t o A p r i l 1962. The a u t h o r s a l s o measured t h e ground t e m p e r a t u r e on

thermonleters p l a c e d a t s e v e r a l p o i n t s from 0 t o 120 cm from t h e s u r f a c e of t h e ground. They a l s o s t u d i e d t h e amount of heave on p i p e s of v a r i o u s m a t e r i a l s p l a c e d v e r t i c a l l y i n t h e ground. They a l s o o b t a l n e d a s e t of h o u r l y r e a d i n g s f o r t h r e e c o n s e c u t i v e d a y s i n F e b r u a r y when t h e h e a v i n g phenomenon i s a t i t s

peak. F i n a l l y , t h e y made v i s u a l o b s e r v a t i o n s o f t h e f r o z e n ground by d i g g i n g a v e r t i c a l p r o f i l e .

1. Apparatus

Both b a s a l h e a v i n g f o r c e and a d f r e e z i n g f o r c e a r e e q u a l t o t h e f o r c e needed t o p r e s s down on an o b j e c t in a given p o s i t i o n s o t h a t i s i s n o t

heaved. I n o r d e r t o d e t e r m i n e t h e s e f o r c e s , t h e o b j e c t must be f i x e d a t non- moving, s t a n d a r d p o i n t s d u r h g t h e e n t i r e d e t e r m i n a t i o n p e r i o d . To s a t i s f y t h i s c o n d i t i o n , t h e a u t h o r s c o n s t r u c t e d a s t r o n g f o u n d a t i o n a s a s t a n d a r d p o i n t , and b u r i e d i t d e e p l y enough i n t h e ground s o t h a t t h e s u r r o u n d i n g s o i l doe's n o t f r e e z e d u r i n g t h e d e t e r m i n a t i o n p e r i o d . They t h e n s e t up t h e

a p p a r a t u s shown i n F i g . 2 ( a ) . The maximum depth of t h e f r e e z i n g f r o n t i n t h e Kitami a r e a i s g e n e r a l l y assumed t o b e 1 m. The a u t h o r s dug a h o l e i n t h e ground t o 2 m a t which a p p a r e n t l y t h e r e i s no p o s s i b i l i t y of f r e e z i n g , and f i l l e d t h e bottom of t h e h o l e w i t h c o n c r e t e A of 30 cm t h i c k n e s s . The

(7)

c o n c r e t e l a y e r was 60 cm wide and

5

m long. I n t o t h i s c o n c r e t e base A, s i x p i e c e s o f i r o n b a r s

4

cm i n d i a m e t e r were i n s e r t e d v e r t i c a l l y a t t h e i n t e r v a l s

shown i n t h e f i g u r e . Two o f t h e i r o n b a r s were 2.2 m l o n g and f o u r were 2 m

long. A t h r e a d a p p r o x i n ~ a t e l y 10 cm long was c u t a t t h e lower end o f each i r o n b a r . A n u t of 10 cm d i a m e t e r and 5 cm width was f i t t e d t o i t and t h e threaded b a r was i n s e r t e d i n t h e c o n c r e t e b a s e A a t a depth o f 25 cm. The i r o n b a r r e p r e s e n t s t h e s t a n d a r d a g a i n s t which movement was measured. The c o n c r e t e b a s e was prepared s o f i r m l y t h a t even a 10-ton t r a c t i o n f o r c e a p p l i e d t o e a c h one of t h e i r o n b a r s f a i l e d t o move it. The e s s e n t i a l t h i c k n e s s , l e n g t h , and width o f t h e c o n c r e t e b a s e r e q u i r e d f o r t h e purpose were based on c a l c u l a t i o n s by Oura.

A f t e r t h e i r o n b a r s had been b u r i e d I n t h e c o n c r e t e base, t h e e x c a v a t i o n was f i l l e d w i t h s o i l t o t h e o r i g i n a l ground l e v e l - Before t h e completion o f t h e f i l l i n g , f o u r p i p e s o f d i f f e r e n t m a t e r i a l , a l l 1.1 m long, 1, 2, 3 , 4 of F i g . 2 ( a ) , were f i t t e d o v e r t h e f o u r I r o n b a r s of 2 m l e n g t h s o t h a t t h e p i p e s hold t h e i r o n b a r s a t t h e i r c e n t r e and t h e t o p r i m s o f b o t h t u b e s and b a r s a r e a t t h e same l e v e l . The m a t e r i a l , t h i c k n e s s and weight o f t h e p i p e s a r e shown I n Table I.

The l e n g t h o f t h e p a r t o f t h e i r o n b a r s p r o j e c t i n g o u t o f t h e ground i n t o t h e atmosphere was

5

cm i n t h e c a s e of f o u r b a r s o v e r which p i p e s had been f i t t e d , and 25 cm f o r t h e two b a r s w i t h o u t p i p e s .

( a ) Determination o f b a s a l f r e e z i n g f o r c e . The a p p a r a t u s t o measure t h e b a s a l f r e e z i n g f o r c e was placed between t h e two i r o n b a r s w i t h o u t p i p e s a s shown a t t h e l e f t s i d e o f F i g . 2 ( a ) . The a p p a r a t u s i s shown i n e n l a r g e d s c a l e i n F i g . 2 ( b ) . The d i s t a n c e between t h e c e n t r e s o f t h e two i r o n b a r s BB i s 40 cm. An i r o n d i s k E 2 cm t h i c k and

15

cm i n d i a m e t e r was placed on t h e

s u r f a c e of t h e ground, midway between t h e two i r o n b a r s w i t h a load c e l l having a c a p a c i t y of up t o 5 t o n s . A t h r e a d was c u t a t about

15

cm from t h e t o p of t h e i r o n b a r B, and a n u t F 5 cm wide was f i t t e d t o i t . Next, a n i r o n p l a t e

G, w i t h two h o l e s c o r r e s p o n d i n g t o b a r s B and a channel, was p l a c e d o v e r n u t s FF on t h e i r o n b a r s . P l a t e G is 1 cm t h i c k , 60 cm l o n g and 12 cm wide; t h e c h a n n e l i s 60 cm long, 12 cm wide and 8 cm deep. The n u t s FF were a d j u s t e d s o t h a t t h e c e n t r e of t h e c h a n n e l was o v e r t h e load c e l l , i n a n e x a c t l y h o r i z o n t a l p o s i t i o n . The n u t s

HH were t i g h t e n e d on t h e i r o n b a r s , and t h e c h a n n e l was

f i x e d i n i t s p o s i t i o n . During t h e p r o c e s s e s , t h e n u t s F and H were screwed r a t h e r t i g h t e r t h a n normally needed s o t h a t the l o a d c e l l was s u b j e c t t o t h e f o r c e o f a p p r o x i m a t e l y some t e n s of kg. T h i s was done f o r f e a r t h e l e a d c e l l might s i n k and disengage from t h e c h a n n e l b e f o r e h e a v i n g s t a r t e d , s i n c e t h e

ground base had n o t c o m p l e t e l y s e t t l e d when t h e a p p a r a t u s was s e t up. The a p p l i e d f o r c e was a p p r o x i m a t e l y z e r o by t h e 1 0 t h o f December, when f r o s t heaving was j u s t s t a r t i n g .

(8)

When h e a v i n g o c c u r s , t h e d i s k E placed on t h e ground s u r f a c e i s moved upwards, b u t i t i s l i n k e d t o b a r B and t h e channel 1;hroum t h e load c e l l .

T h e r e f o r e t h e d i s k E cannot move b u t pushes a g a i n s t t h e load c e l l w i t h a f o r c e c o r r e s p o n d i n g t o t h a t shown by t h e load c e l l . The a c t u a l displacement of t h e load c e l l i s very s l i g h t . The i r o n b a r B can s t r e t c h e l a s t i c a l l y , b u t t h e amount; o f t h e e x t e n s i o n 1s n e g l i g i b l e . The f o r c e shown on t h e load c e l l i s t h e b a s a l heaving f o r c e . The s i d e of t h e load c e l l was covered with "homo- s t y r e n e 1 ' + , s o t h a t i t would n o t be s u b j e c t t o sudden change of t e m p e r a t u r e .

A v i n y l c o v e r was placed o v e r t h e channel t o p r o t e c t i t from r a i n .

( b ) Determination of a d f r e e z i n g f o r c e . The a p p a r a t u s f o r t h e determina- t i o n of t h e a d f r e e z i n g f o r c e i s seen a t D i n F i g . 2 ( a ) , and d e t a i l s a r e shown i n F i g . 3. The i r o n b a r B was threaded a t t h e t o p and a ~ n e t a l l i c n u t H of H-shaped c r o s s - s e c t i o n was f i t t e d t o i t a s shown i n F i g .

3 .

One end o f t h e p r e s s u r e gauge A was f i t t e d t o t h e t o p of t h e n u t H, and secured by t h e p i n

D. The t o p of t h e p r e s s u r e gauge A was connected t o c y l i n d e r E with a t e r r a c e by p i n F. A metal washer G was placed on t h e d e t e r m i n a t i o n tube and an i r o n c o n n e c t i n g p i p e 20 cm l o n g was p l a c e d o v e r i t . T h r u s t b e a r i n g s and m e t a l washers J, were assembled above p i p e I ( 9 cm i n d i a m e t e r , 4 rnrn t h i c k ) and a n u t was used t o s e c u r e washers J. The p r e s s u r e gauge i s placed wider t r a c t i o n when t h e n u t i s t i g h t e n e d . The t i g h t e n i n g of t h e n u t was d i s c o n t i n u e d a t a t r a c t i o n f o r c e of s e v e r a l t e n s of kg. By t h e 1 0 t h o f December, when t h e f r e e z i n g was about t o occur, t h e t r a c t i o n f o r c e was n e a r l y z e r o .

When t h e ground heaves and t h e measuring p i p e i s r a i s e d , t h e narrow p a r t of p r e s s u r e gauge A i s extended s l i g h t l y . The amount o f t h i s e x t e n s i o n ,

measured by a s t r a i n gauge f i t t e d t o i t , i s a measure of t h e a d f r e e z i n g f o r c e . S i n c e t h e lower p a r t of t h e p r e s s u r e gauge i s secured t o t h e s t a t i o n a r y i r o n b a r , o n l y a t r a c t i o n f o r c e i s a p p l i e d t o t h e pre3sur-e gauge.

h he

maximum e x t e n s i o n of t h e p r e s s u r e gauge i s v e r y s m a l l , b e i n g o n l y 0.02 mm a t a t r a c - t i o n f o r c e o f

3

t o n s . )

The weight o f t h e measuring p i p e i s approximately

18

kg f o r t h e two c o n c r e t e p i p e s , about 1 0 kg f o r t h e i r o n p i p e and about

5

k g f o r t h e v i n y l p i p e , I n c l u d i n g t h e i r o n p i p e I, and washers (3 and J. The a p p a r a t u s was covered w i t h a homo-styrene box, a s shown i n Fig. 2 ( a ) , t o p r o t e c t t h e p r e s - s u r e gauge from sudden changes o f t e m p e r a t u r e .

( c ) S o i l . The s o i l a t t h e t e s t s i t e c o n s i s t e d o f c l a y from t h e s u r f a c e t o a d e p t h of 140 cm, and sand below t h a t , a s shovm a t t h e r i & t o f F i g . 2 ( a ) . A f t e r l a y i n g t h e c o n c r e t e base a t a depth of 170 t o 200 cm underground, t h e

(9)

s o i l was r e p l a c e d around t h e a p p a r a t u s i n such a way a s t o make t h e ground s t r u c t u r e i d e n t i c a l w i t h t h e o r i g i n a l . The c l a y i n t h e o r i g i n a l s o i l was t h e one which had been e s t i m a t e d t o be most r e a d i l y s u s c e p t i b l e t o heaving i n t h e Kitami a r e a . The c l a y was analysed and t h e d i s t r i b u t i o n o f t h e p a r t i c l e s i z e s

i s shown i n F i g . 4. It c o n s i s t e d of

35%

c l a y ( i n c l u d i n g c o l l o i d ) w i t h p a r t l - c l e d i a m e t e r s s m a l l e r t h a n 0.005 mm, 51$ s i l t w i t h d i a m e t e r s between 0.005 and 0.05, and 14% of sand w i t h d i a m e t e r s between 0.05 and 2 mrn. Thus, a l t h o u g h i t was c l a y , i t may be more p r o p e r l y c a l l e d s i l t c l a y o r loamy s i l t c l a y ( c l a y loam c l o s e r t o s i l t i n i t s n a t u r e ) . In t h e Kitami a r e a , t h e c l a y i s u s u a l l y c a l l e d heavy c l a y .

It i s n o t e a s y t o e s t a b l i s h a c r i t e r i o n of s u s c e p t i b i l i t y t o f r o s t heav- i n g , b u t i t i s g e n e r a l l y t h o u g h t t h a t s o i l s c o n t a i n i n g a l a r e r p r o p o r t i o n of f i n e s have a g r e a t e r tendency t o heave on f r e e z i n g . Beskow

('I

s t u d i e d t h e r e l a t i o n s h i p between t h e s i z e o f t h e s o i l p a r t i c l e s and t h e h e a v i n g tendency o f t h e s o i l , and found t h a t h e a v i n g s t a r t e d w i t h s o i l s with p a r t i c l e s i z e s of 0.05 t o 0.1 mm; s o i l s with p a r t i c l e s i z e s of 0.005 t o 0.002 mm were most sub- j e c t t o f r o s t heaving, and t h e s m a l l e r t h e p a r t i c l e s i z e t h e more i n t e n s e t h e heaving w i l l be. The c l a y s t u d i e d by t h e p r e s e n t a u t h o r s , t h e r e f o r e , belongs t o t h e group of s o i l s of g r e a t e r f r o s t heaving tendency.

Below 140 cm t h e ground c o n s i s t e d of sand and t h e amount of w a t e r r e t a i n e d i n t h i s l a y e r was v e r y s m a l l . Since t h e heaving is caused by t h e f r e e z i n g of t h e w a t e r c o n t a i n e d i n t h e s o i l , t h e h e a v i n g t h a t t h e a u t h o r s s t u d i e d occurred o n l y i n t h e c l a y l a y e r . Such h e a v i n g i s u s u a l l y c a l l e d 11 c l o s e d system heaving".

The p l a c e on t h e campus of Kitami J u n i o r C o l l e g e where t h e a p p a r a t u s was s e t up, was f i r s t p r e p a r e d by smoothing o u t h i l l o c k s w i t h t h e aforementioned ground s t r u c t u r e (and upper c l a y l a y e r and a lower sand l a y e r ) s o a s t o make i t uniformly f l a t . A s a r e s u l t , t h e h e a v i n g occurred where t h e s u r f a c e con- s i s t e d of c l a y , w h i l e t h e p a r t where t h e sand l a y e r r i s e s t o t h e s u r f a c e d i d n o t show any heaving.

2. Determination of t h e Heaving Force

The load c e l l used t o determine t h e b a s a l h e a v i n g f o r c e i s a p r e s s u r e gauge combined w i t h a s t r a i n gauge and h a v i n g a maximum c a p a c i t y of

5

t o n s .

A c a b l e extended t o t h e i n s i d e of a b u i l d i n g n e a r t h e a p p a r a t u s , and was connected t o a s t a t i c d i s t o r t i o n i n d i c a t o r . The f o r c e could be c a l c u l a t e d from t h e r e a d i n g s o f t h i s gauge.

The p r e s s u r e gauge used f o r d e t e r m i n i n g t h e a d f r e e z i n g f o r c e i s shown a t t h e r i g h t of F i g . 3 . The m a t e r i a l is s t a i n l e s s s t e e l and t h e p i e r c e d b l o c k s a t b o t h ends measure 3 x

3

x 3 cm. The h o l e s a r e 1 . 2 cm i n d i a m e t e r and

(10)

a r e s e t a t r i g h t a n g l e s t o each o t h e r . The c r o s u - s e c t i o n of t h e t h i n n e r p a r t of t h e c e n t r e i s 1 x

3

cm w i t h a l e n g t h of

5

cm. On each of t h e wider s i d e s

( 3

x 5 cm), two s t r a i n gauge elements were mounted. One of t h e two e l e m e n t s on e a c h s i d e i s mounted i n t h e d i r e c t i o n o f t h e e x t e n s i o n of t h e p r e s s u r e gauge (T i n t h e f i g u r e ) , while t h e o t h e r i s p l a c e d a t right a n g l e s ( C i n t h e f i g u r e ) t o i t . When a t r a c t i o n f o r c e a c t s on t h e p r e s s u r e gauge, t h e element a t T i s s t r e t c h e d while t h e one a t C c o n t r a c t s . The f o u r s t r a l n - g a u g e

elements a r e connected t o a b r i d g e c i r c u i t i n t h e o r d e r TCTC. A c a b l e l e a d i n g t o t h e l a b o r a t o r y i s connected t o a s t a t i c d i s t o r t i o n i n d i c a t o r . When a

t r a c t i o n f o r c e a c t s on t h e p r e s s u r e gauge, t h e e l e c t r i c r e s i s t a n c e of t h e f o u r e l e m e n t s TCTC changes and a c o r r e s p o n d i n g i n d i c a t i o n i s given on t h e s t a t i c d i s t o r t i o n i n d i c a t o r . Plhen we know t h e r e l a t i o n s h i p between t h e f o r c e a c t i n g on t h e p r e s s u r e gauge and t h e r e a d i n g on t h e i n d i c a t o r , we can c a l c u l a t e t h e heaving f o r c e from t h e r e a d i n g . The r e a d i n g v a r i e d on t h e f o u r p r e s s u r e

gauges, b u t a f o r c e of 1 t o n showed t h e r e a d i n g s approximately between 445 and 460. A s f o r a s t a t i c d i s t o r t i o n I n d i c a t o r , t h e a u t h o r s used one w i t h a

c a r r i e r wave a t 165 c y c l e s , and t h e r e a d i n g s were t a k e n once o r t w i c e a day.

I n t h e middle of February, r e a d i n g s were t a k e n e v e r y hour f o r t h r e e c o n s e c u t i v e days.

3 .

Other D e t e r m i n a t i o n s

( a ) The amount of heaving. B e s i d e s t h e p i p e s f o r a d f r e e z i n g determina- t i o n , f i v e p i p e s of d i f f e r e n t m a t e r i a l were b u r i e d a t t h e s i t e . These

m a t e r i a l s were wood, wood coated w i t h v i n y l a c e t a t e p a i n t , i r o n , i r o n coated with v i n y l a c e t a t e p a i n t , and hard v i n y l . These were n o t p r e s s e d down b u t were allowed t o r i s e w i t h t h e heaving, and t h e e x t e n t o f t h e i r r i s i n g was determined. Although t h e y were f r e e t o r i s e , t h e h e a v i n g f o r c e , n e c e s s a r y t o move t h e p i p e i s i d e n t i c a l w i t h t h e weight of t h e p i p e , a s t h e a u t h o r s have

shown i n S e c t i o n 11, S i g n i f i c a n c e o f t h e Heaving Force of Frozen Ground. T h e r e f o r e , t h e e x t e n t of heaving determined by t h i s procedure i s f o r a

c o n s t a n t heaving f o r c e . A l l t h e p i p e s (and b a r s * ) were 1 m long, and t h e y were b u r i e d v e r t i c a l l y i n t h e ground s o t h a t t h e t o p of t h e p i p e was f l u s h w i t h t h e s u r f a c e . T h e l r d i a m e t e r s , t h i c k n e s s e s and weights a r e shown i n Table 11.

The d e t e r m i n a t i o n s were c a r r i e d o u t a s f o l l o w s : t h e t o p end of t h e i r o n b a r a t t a c h e d t o t h e c o n c r e t e base i n t h e ground was t a k e n as t h e s t a n d a r d f o r no movement, and t h e h e i g h t of t h e t i p s o f e a c h p i p e was measured w i t h a

s u r v e y o r ' s l e v e l a t t h e b e g i n n i n g of t h e w i n t e r . Subsequently, t h e

(11)

d e t e r m i n a t i o n was taken d u r i n g t h e season of heaving, and t h e d i f f e r e n c e between t h e two l e v e l s i s t h e e x t e n t of heaving o f each p i p e .

The e x t e n t of heaving of t h e p o u n d s u r f a c e was a l s o determined by p l a c i n g a s m a l l I r o n p l a t e on t h e ground and d e t e r m i n i n g t h e h e i g h t of t h e p l a t e . The q u a n t i t y i s t h e h e a v i n g f o r z e r o heaving f o r c e and corresponds t o p o i n t B i n F i g . 1.

( b ) Temperature a t t h e ground s u r f a c e and below. The t e m p e r a t u r e was taken w i t h s i x Carlson t h e r n ~ o m e t e r s xihich were p l a c e d h o r i z o n t a l l y on t h e ground and underground a t d e p t h s of 12 cm, 22 cm, 50 cm, 82 cm and 120 cm. The r e a d i n g s from e a c h thermometer were o b t a i n e d w i t h t h e C a r l s o n i n d i c a t o r

s p e c i f l e d f o r t h e thermometer.

( c ) Depth of f r e e z i n g f r o n t . Deternilnation of t h e t e m p e r a t u r e g i v e s a s e t of t e m p e r a t u r e d i s t r i b u t i o n c u r v e s a t v a r i o u s d e p t h s underground. The c u r v e s enabled t h e a u t h o r s t o e s t i m a t e t h e d e p t h a t which t h e temperature i s

o°CJ and t h u s t h e d e p t h of t h e f r e e z i n g f r o n t .

( d ) A i r t e m p e r a t u r e . The t e m p e r a t u r e which a f f e c t s t h e heaving d i r e c t l y

i s t h e ground t e m p e r a t u r e , b u t t h e d a i l y maximum and minimum atmospheric t e m p e r a t u r e s , a s w e l l a s t h e mean d a i l y t e m p e r a t u r e of t h e a i r , a l s o had t o be t a k e n i n t o a c c o u n t . The d a t a were s u p p l i e d by t h e Kitami Weather S t a t i o n , which was l o c a t e d n e a r t h e e x p e r i m e n t a l s i t e .

IV. R e s u l t s of t h e Determinations 1. O u t l i n e

F i g u r e

5

shows a l l t h e ground and a i r t e m p e r a t u r e v a l u e s o b t a i n e d ( b o t h i n t h e upper g r a p h ) , t h e f r e e z i n g f r o n t , t h e t e m p e r a t u r e g r a d i e n t i n t h e ground ( i n t h e middle g r a p h ) , and t h e h e a v i n g f o r c e s ( l o w e r g r a p h ) . Readings were t a k e n once o r twice a day from t h e b e g i n n i n g of December t o about t h e 1 0 t h of A p r i l . The t e m p e r a t u r e s a t d e p t h s of 50 cm, 82 cm, and 120 cm v a r i e d a l m o s t r e c t i l i n e a r l y from t h e b e g i n n i n g of t h e w i n t e r u n t i l e a r l y i n t h e s p r i n g , b u t a t 22 cm i t shows c o n s i d e r a b l e d i s c o n t i n u i t y . A t 1 2 cm d e p t h t h e degree of t h e d i s c o n t i n u i t y i s even more marked and a t t h e s u r f a c e (broken l i n e ) i t i s s t i l l more s o . The f l u c t u a t i o n s a r e more o r l e s s p a r a l l e l t o t h e mean d a i l y a i r t e m p e r a t u r e (broken and d o t t e d l i n e ) .

The broken l i n e i n t h e middle graph shows how t h e f r e e z i n g f r o n t advances i n t o t h e ground. The ground s u r f a c e f r o z e on Dec.

16,

a f t e r which t h e f r o s t p e n e t r a t e d p r o g r e s s i v e l y d e e p e r i n t o t h e ground u n t i l t h e f a r t h e s t advance of t h e f r e e z i n g f r o n t was reached on March 10, when i t was 57 cm. During t h i s p e r i o d t h e r e was some v a r i a t i o n i n t h e r a t e of advance of t h e f r e e z i n g f r o n t . N e v e r t h e l e s s , t h e f r e e z i n g f r o n t d i d go c o n t i n u o u s l y d e e p e r i n t h e ground.

(12)

A f t e r March 10, t h e i c e began m e l t i n g from t h e bottom up, and a f t e r A p r i l 2, i t s t a r t e d t o m e l t from t h e ground s u r f a c e a l s o . When t h e equipment was recovered on A p r i l 30, t h e r e was o n l y a s m a l l f r o z e n l a y e r o f approximately

1 cm t h i c k n e s s a t 52 cm d e p t h . The s o l i d l i n e and t h e broken and d o t t e d l i n e of t h e middle graph show t h e t e m p e r a t u r e g r a d i e n t s o f t h e f r o z e n s o i l and of unfrozen s o i l s , r e s p e c t i v e l y , n e a r t h e f r e e z i n ~ f r o n t . The v a l u e s were o b t a i n e d from t h e v e r t i c a l d i s t r i b u t i o n of t h e underground t e m p e r a t u r e . A s

seen i n t h e f i g u r e , t h e t e m p e r a t u r e g r a d i e n t d e c r e a s e s r e c t i l i n e a r l y f o r t h e lower l a y e r o f unfrozen ground, and t h e r e i s f a i r l y l a r g e f l u c t u a t i o n i n t h e upper l a y e r o f f r o z e n ground.

The lower graph o f F i g . 5 shows t h e v a r i o u s h e a v i n g f o r c e s . The c u r v e s

1

of t h e h e a v i n g f o r c e s a r e remarkably i r r e g u l a r and a r e i n s t r i k i n g c o n t r a s t t o t h e curve o f t h e f r e e z i n g f r o n t , which i s very smooth. The v a l u e s o f t h e peaks a r e s e v e r a l t i m e s g r e a t e r t h a n t h o s e i n t h e t r o u g h s . There a r e f i v e such peaks ( ~ e c . 22 t o 25, Jan.

19,

Jan. 29, Feb. 10, March 1) and f o u r t r o u g h s

a an.

1, Jan. 22, Feb. 3, Feb. 1 4 ) i n t h i s curve. I n f r o n t o f e a c h t r o u g h t h e r e i s a maximum o r minimum* i n t h e t e m p e r a t u r e curve of t h e upper graph, two o r t h r e e days p r i o r t o t h e d a t e o f t h e t r o u g h i n t h e lower graph. The same tendency can be s e e n i n t h e curve o f b a s a l f r e e z i n g f o r c e and t h e f o u r a d f r e e z i n g f o r c e s . The r e a s o n f o r t h i s f l u c t u a t i o n and p a r a l l e l i s m w i l l be d i s c u s s e d i n a l a t e r s e c t i o n .

Throughout t h e e n t i r e t e s t p e r i o d t h e l a r g e s t f r e e z i n g f o r c e s o b t a i n e d were t h e b a s a l f r e e z i n g f o r c e s f o r t h e i r o n , v i n y l , c o n c r e t e and c o a t e d c o n c r e t e t u b e s , i n t h a t o r d e r . These were determined from t h e a d f r e e z i n g f o r c e s . S i n c e t h e t u b e s were of d i f f e r e n t t h i c k n e s s t h e a u t h o r s cannot com- p a r e t h e dependence of t h e a d f r e e z i n g f o r c e s on t h e m a t e r i a l s of t h e t u b e ; t h e v a l u e s i n t h e f i w r e a r e a c t u a l observed v a l u e s . However, t h e v a l u e s o b t a i n e d f o r t h e two c o n c r e t e t u b e s were v e r y d i f f e r e n t , and t h e f o r c e shown f o r t h e coated t u b e was f a r s m a l l e r t h a n t h e one shown f o r uncoated t u b e . The former was 70 t o 5C$ o f t h e l a t t e r .

The l a r g e s t v a l u e s o f h e a v i n g a r e shown i n T a b l e 111.

The u n i t a d f r e e z i n g f o r c e , 1.e. t h e f o r c e p e r u n i t a r e a , was o b t a i n e d by d i v i d i n g t h e h e a v i n g f o r c e b t h e s i d e a r e a o f t h e t u b e t h a t s t a y s in t h e f r o z e n ground. The v a l u e s ( 3 f o f a d f r e e z i n g f o r c e f o r t h e c o n c r e t e tube, t h e i r o n t u b e , and t h e v i n y l t u b e o b t a i n e d i n Kushiro ( a l l

90

mrn t h i c k ) showed a c o n s t a n t s t r e n g t h r a t i o o f 1 0 : 6 :

3

throughout t h e w i n t e r . The maximum

v a l u e s were 1970 kg o r 2 . 1 k@;/cm2 f o r t h e c o n c r e t e tube, 1280 kg o r 1.37 k@;/cm2

(13)

f o r t h e i r o n t u b e , and 600 kg o r 0.64 ke;/cm2 f o r t h e v i n y l t u b e . On t h e o t h e r hand, t h e a u t h o r s 1 p r e s e n t d e t e r m i n a t i o n s gave l a r g e r v a l u e s f o r i r o n and

v i n y l t u b e s t h a n t h a t f o r t h e c o n c r e t e t u b e s . The r e a s o n s f o r t h i s d i s -

crepancy may be found i n t h e f a c t t h a t t h e c o n c r e t e t u b e had a f a i r l y smooth s i d e s u r f a c e , t h a t t h e c o n t a c t between t h e s o i l and t h e t u b e s were n o t q u i t e e q u a l i n each c a s e and s u f f i c i e n t time was n o t allowed between t h e s e t t i n g up of t h e t u b e i n t h e ground and t h e s t a r t of measurements. These a r e , however, t e n t a t i v e e x p l a n a t i o n s , and t h e a u t h o r s p l a n t o conduct more d e t e r m i n a t i o n s i n t h e n e x t and f o l l o w i n g w i n t e r s when t h e s o i l w i l l have s e t t l e d s t e a d i l y .

Oura ( 7 ) and K i n o s h i t a conducted a s e t o f experiments t o determine t h e s t r e n g t h of f r e e z i q g by p u l l i n g a b a r , which had been b u r i e d v e r t i c a l l y and f r o z e n i n moistened s o i l , o u t of t h e f r o z e n ground. The determined s t r e n g t h o f f r e e z i n g v a r i e d more o r l e s s depending on t h e n a t u r e o f t h e s o i l , t h e t e m p e r a t u r e and t h e v e l o c i t y o f e x t e n s i o n o f t h e b a r . The s t r e n g t h was

a p p r o x i m a t e l y 9 kg/cm2 a t -2OC f o r an i r o n b a r . T h i s s t r e n g t h of f r e e z i n g i 8

v e r y much g r e a t e r t h a n t h e maximum f o r c e s shown i n Table 11. T h i s f a c t

s u g g e s t s t h a t t h e heaving f o r c e determined a t t h e s i t e of t h e f i e l d experiment does n o t i n c l u d e t h e f o r c e t h a t i s needed t o break t h e s u r f a c e o f f r e e z i n g . 2. Continuous D e t e r m i n a t i o n s

There i s a f a i r l y l a r g e f l u c t u a t i o n a t a few p o i n t s a l o n g t h e curve o f t h e h e a v i n g f o r c e . Each o f t h e peaks and t r o u g h s i s d i v i d e d i n t u r n w i t h s m a l l e r f l u c t u a t i o n s . The s m a l l e r f l u c t u a t i o n s a r e m o s t l y due t o t h e d i f f e r - e n t r e a d i n g s t a k e n a t two d i f f e r e n t t i m e s o f day, 9:00 AM and 5:00 PM. F o r example, t h e h e a v i n g f o r c e c u r v e of t h e i r o n b a r shows small i n c r e a s e and

d e c r e a s e of t h e f o r c e , such a s 2460 k g a t 9 AM, Feb. 25; 230 k g a t 5 PM on t h e same day; 2400 kg a t 9 AM, Feb. 28; 2350 k g a t 5 PM of t h e same day. In o r d e r t o determine t h e amplitude o f t h e v a r i a t i o n of t h e f o r c e f o r a one-day p e r i o d , t h e a u t h o r s took r e a d i n g s e v e r y h o u r f o r about t h r e e days from 6 PM, Feb. 15 t o 12 AM, Feb. 18. The r e s u l t s a r e shown i n F i g . 6. A s i t was l e a r n e d

s u b s e q u e n t l y , t h e h e a v i n g f o r c e was a t t h a t time e x p e r i e n c i n g a r a p i d l n c r e a a e t o a peak; t h e r e f o r e t h e f l u c t u a t i o n s i n a s i n g l e day were n o t v e r y g r e a t .

The b a s a l h e a v i n g f o r c e d u r i n g t h i s p e r i o d was doubled from 1450 kg t o 2900 kg. The a d f r e e z i n g f o r c e a l s o i n c r e a s e d , from 1320 kg t o 2200 k g on t h e i r o n t u b e , from 980 kg t o 1600 k g on t h e v i n y l p i p e , from 635 k g t o 1080 kg on t h e c o n c r e t e p i p e , and from 440 k g t o 670 k g on t h e c o a t e d c o n c r e t e p i p e . No s e v e r e f l u c t u a t i o n was observed of t h e s e d e t e r m i n a t i o n v a l u e s , d u r i n g t h e t e s t p e r i o d f o r e i t h e r t h e b a s a l h e a v i n g f o r c e o r t h e a d f r e e z i n g f o r c e s , e x c e p t f o r t h e sudden i n c r e a s e s of t h e b a s a l h e a v i n g f o r c e a t 1 PM, Feb. 1 6 and a t 12 AM, Feb. 17, which were o t h e r w i s e f a i r l y c o n s t a n t b e f o r e . A l l

(14)

f o u r a d f r e e z i n g f o r c e s decreased s l i g h t l y d u r i n g t h e p e r i o d between 12 AM and

5

PM on Feb.

17.

The t e m p e r a t u r e a t t h e ground s u r f a c e v a r i e d s i n u s o i d a l l y . Correspond- i n g l y t h e t e m p e r a t u r e s a t 12 cm and 22 cm underground d e p t h v a r i e d more o r l e s s s i n u s o i d a l l y . However, t h e peak and t r o u g h v a l u e s showed a l a g in

r e l a t i o n t o t h e maximum and minimum ground s u r f a c e t e m p e r a t u r e s , and a l s o t h e amplitude of t h e d a i l y v a r i a t i o n of t h e underground t e m p e r a t u r e s was s m a l l e r t h a n t h a t of t h e ground s u r f a c e t e m p e r a t u r e . There was p r a c t i c a l l y no change of t e m p e r a t u r e a t d e p t h s of 50 cm and 120 cm

a able

IV).

According t o t h e h e a t conduction t h e o r y , when t h e ground s u r f a c e 27L

t e m p e r a t u r e uo changes a c c o r d i n g t o uo = A s i n

-

t , t h e t e m p e r a t u r e u a t T

underground d e p t h x changes a c c o r d i n g t o t h e e x p r e s s i o n

Here, T i s t h e amplitude and x i s t h e t e m p e r a t u r e d i f f u s i o n r a t e of t h e s o i l . The v a l u e of x was c a l c u l a t e d from t h e d a t a of Table 111 and was found t o be 0.035 t o 0.06 ( c . G . S . u n i t s ) . T h i s v a l u e i s s m a l l e r t h a n t h e x v a l u e of 0.07 of common s o i l .

3.

Observation of V e r t i c a l S e c t i o n

A photograph was t a k e n on Feb. 16 of a v e r t i c a l s e c t i o n a l o n g a h o l e dug n e a r t h e s i t e of t h e e s t a b l i s h m e n t . The photograph i s shown i n F i g .

7.

There a r e innumerable t h i n l o n g Ace l a y e r s l y i n g s i d e by s i d e h o r i z o n t a l l y , g i v i n g t h e Impression of f r o s t columns. G e n e r a l l y whenever t h e c l a y l a y e r heaves, t h e same frost-column f r e e z i n g i s observed i n t h e ground(8). The i c e l a y e r s a r e g e n e r a l l y t h i c k e r a t t h e t o p , some of them b e i n g a s t h i c k a s 1 0 mm. A t

t h e bottom, t h i n i c e l a y e r s of 1 mm t h i c k n e s s and 1

-

4 cm l e n g t h a r e a l i g n e d s i d e by s i d e . The r e l a t i o n between t h e advance of t h e f r o s t f r o n t and t h e f o r m a t i o n of i c e l a y e r s was i n v e s t i g a t e d , b u t t h e a u t h o r s were unable t o o b t a i n a d e f i n a t e c o r r e l a t i o n between them.

The f r o z e n ground was e x t r e m e l y h a r d , and i t had a n impact compression s t r e n g t h of a b o u t 200

-

300 kg/cm2; t h e r e f o r e , i t was n o t e a s y t o c u t t h e

v e r t i c a l s e c t i o n . However, a few c a v i t i e s were found i n s i d e t h e f r o z e n ground, and o c c a s i o n a l l y a clod of f r o z e n s o i l of t h e s i z e of a f i s t chipped o f f

e a s i l y . It i s known t h a t some c a v i t i e s a r e formed i n f r o z e n ground(8), b u t t h e c a v i t i e s found In t h i s t e s t p l o t might have been formed when t h e s o i l f i l l i n g t h e empty s p a c e d r i e d o u t b e f o r e f r e e z i n g i n w i n t e r . The u n u s u a l l y small h e a t d i f f u s i o n c o e f f i c i e n t v a l u e may be due t o t h e s e c a v i t i e s .

(15)

4. The Amount of Heaving

The v a l u e o f t h e h e a v i n g of t h e t u b e s used f o r t h i s d e t e r m i n a t i o n s t a r t i n g Nov. 23, i s shown i n F i g . 8. The d e t e r m i n a t i o n had t o be d i s c o n - t i n u e d from J a n . 24 t o A p r i l 30 because of t h e f a i l u r e of a l e v e l . The amount of h e a v i n g of t h e ground s u r f a c e ( N O .

6

o f t h e f i g u r e ) i s based o n l y on two d e t e r m i n a t i o n s , b u t t h e amount was e s s e n t i a l l y t h e same a s t h a t observed i n o t h e r t u b e s f o r t h e same p e r i o d . The amount of h e a v i n g was g r e a t e s t f o r t h e wooden b a r ( c o a t e d ) , followed by t h e v i n y l p i p e , wooden b a r and i r o n t u b e s

( b o t h c o a t e d and uncoated p i p e s show n e a r l y i d e n t i c a l v a l u e s ) i n t h a t o r d e r . The h e a v i n g f o r c e s under t h e s e c o n d i t i o n s a r e i d e n t i c a l w i t h t h e weight of t h e p i p e s . T h e r e f o r e , t h e h e a v i n g f o r c e i s g r e a t e s t on t h e i r o n p i p e s and de-

c r e a s e s i n t h e o r d e r of wood b a r s and v i n y l p i p e s a s shown i n T a b l e 11.

Except f o r t h e c o a t e d wooden b a r , t h e t u b e s t h a t showed g r e a t e s t h e a v i n g f o r c e showed t h e l e a s t heaving. T h i s r e l a t i o n s h i p c o r r e s p o n d s w e l l w i t h t h e r e s u l t s i n F i g . 1. The a u t h o r s p l a n t o s t u d y t h e r e l a t i o n s h i p more c a r e f u l l y , u s i n g p i p e s made of t h e same m a t e r i a l b u t h a v i n g d i f f e r e n t w e i g h t s .

S i n c e t h e a u t h o r s d i d n o t o b t a i n s u f f i c i e n t t e s t v a l u e s f o r h e a v i n g under a c o n s t a n t h e a v i n g f o r c e , t h e y were u n a b l e t o i n v e s t i g a t e t h e s m a l l f l u c t u a t i o n s o f t h e (maximum) h e a v i n g f o r c e due t o t h e amount o f h e a v i n g when i t was z e r o , a s d e s c r i b e d i n t h e p r e v i o u s s e c t i o n . However, a l t h o u g h t h e (maximum) h e a v i n g f o r c e d e c r e a s e d ( l o w e r c u r v e of F i g . 5 ) i n t h e p e r i o d o f Jan.

19

and 24, t h e amount o f h e a v i n g c o n t i n u o u s l y i n c r e a s e d , a s i t had i n t h e p r e v i o u s p e r i o d (shown i n F i g .

8 ) .

When t h e a p p a r a t u s was r e c o v e r e d on A p r i l 30, t h e c o a t e d wooden b a r

showed t h e most h e a v i n g w i t h 14 cm. The v i n y l p i p e , i r o n p i p e and c o a t e d i r o n p i p e showed 9.6 cm,

5.8

cm and 4.9 cm, r e s p e c t i v e l y . A l l t h e s e p i p e s had

t h e i r top-end f a c e s o r i g i n a l l y b u r i e d l e v e l w i t h ground s u r f a c e , b u t a l l t h r e e top-ends were above t h e ground s u r f a c e when t h e y were r e c o v e r e d . There were c a v i t i e s between t h e bottoms o f t h e p i p e s and t h e s o i l b e n e a t h t h e p i p e and o n l y a s l i g h t p r e s s u r e a t t h e t o p of t h e p i p e was r e q u i r e d t o cause i t t o drop t h r o u g h t h e empty s p a c e between t h e p i p e and t h e s o i l .

V. R e l i e f of t h e Heaving Force

A s p r e v i o u s l y d e s c r i b e d , f r e e z i n g o f t h e ground p r o c e e d s downwards b u t t h e h e a v i n g f o r c e i n c r e a s e s and d e c r e a s e s c o n t i n u o u s l y . F i g u r e

5

shows t h a t b o t h a i r t e m p e r a t u r e and ground t e m p e r a t u r e a r e h i g h e r when t h e curve o f h e a v i n g f o r c e i s i n i t s t r o u g h . During t h i s p e r i o d , t h e downward movement o f

f r e e z i n g s t o p s o r p r o c e e d s e x t r e m e l y s l o w l y . On t h e o t h e r hand, i t i s a l s o known from e x p e r i m e n t s i n a low t e m p e r a t u r e l a b o r a t o r y , t h a t t h e f r e e z i n g

(16)

f o r c e i s r e l i e v e d d u r i n g t h e p e r i o d when heaving s t o p s . T h e r e f o r e t h e

a u t h o r s concluded t h a t t h e d e c r e a s e of heaving f o r c e i s due t o t h e phenomenon of r e l i e f .

1. Low Temperature Laboratory Experiment

The a u t h o r s conducted model experiments on b a s a l heaving f o r c e and a d f r e e z i n g f o r c e .

Wet s o i l i n a wooden box of 10 cm x 10 cm x 5 cm s i z e was brought i n t o a

low t e m p e r a t u r e l a b o r a t o r y cooled t o a c e r t a i n teniperatur~e, and f r o z e n . A

s m a l l i r o n p i p e of 1 . 6 cm d i a m e t e r was i n s e r t e d a t t h e c e n t r e o f t h e s u r f a c e o f t h e f r o z e n s o i l and was p r e s s e d downwards a t t h e t o p a t a c o n s t a n t

v e l o c i t y . The f o r c e g e n e r a t e d was r e c o r d e d , through a load c e l l and s t r a i n gauge, w i t h an e l e c t r o n t u b e a u t o m a t i c r e c o r d e r . In t h i s experiment t h e p i p e

i s b u r i e d i n t h e s o i l s o t h a t t h e s o i l n o t coming i n t o c o n t a c t w i t h t h e p i p e does n o t move. However, i n t h e f i e l d experiment t o determine t h e b a s a l heav- i n g f o r c e , t h e i r o n p l a t e on t h e s u r f a c e o f t h e ground remained i n p l a c e and t h e s o i l , on e i t h e r s i d e of t h e p l a t e , moved upwards due t o heaving. In t h e experiment t h e p i p e was p r e s s e d downwards a t a speed of 1.3 mm/mln. The compression curve i s shown i n F i g . 9 . The curve moves upwards almost r e c t i - l i n e a r l y from t h e p o i n t A, where t h e compression s t a r t e d . I f t h e p r e s s u r e i s d i s c o n t i n u e d a t p o i n t B, t h e f o r c e d r o p s a c c o r d i n g t o a n e x p o n e n t i a l f u n c t i o n a s t h e s o i l c o n t i n u e s t o be compressed w i t h t h e compression s t r a i n a t t h e

p o i n t B. A f t e r 26 h o u r s , t h e f o r c e d e c r e a s e d t o 40 kg from t h e i n i t i a l 140 kg.

T h i s phenomenon o f t h e f o r c e , d e c r e a s i n g while t h e compression s t r a i n remains c o n s t a n t , i s t h e phenomenon o f r e l i e f . It i s known t h a t t h e h i g h e r t h e

t e m p e r a t u r e t h e f a s t e r t h e r e l i e f . The r e s u l t s o b t a i n e d by model e x p e r i m e n t s on t h e r e l i e f of t h e b a s a l f r e e z i n g f o r c e a r e shown a s c u r v e s B, D, F i n t h e l o g a r i t h m i c graph, F i g . 10. The f o r c e t h a t was shown a t t h e beginning o f r e l i e f i s t a k e n a s

lo&.

The example o f F i g . 9 , i s r e p e a t e d a s t h e curve F

of F i g . 10.

A box of t h e same s i z e a s t h e one used f o r t h e above experiments was f i l l e d w i t h wet s o i l b u t w i t h a h o l e o f 2 cm d i a m e t e r i n t h e middle o f t h e bottom o f t h e box. Through t h e c e n t r e h o l e , an i r o n rod o f 1 . 6 cm d i a m e t e r , was passed. The s o i l was f r o z e n i n t h e same way and p r e s s u r e was a p p l i e d t o t h e t o p of t h e b a r s o a s t o move i t downwards a t a c o n s t a n t v e l o c i t y . In t h i s c a s e , t h e b a r moves downwards and t h e f r o z e n s o i l a d h e r i n g t o i t py f r e e z i n g a l s o moves downwards with t h e b a r , b u t t h e s o i l n o t i n c o n t a c t with t h e b a r does n o t move. In t h e f i e l d experiment, i t w i l l be r e c a l l e d t h a t t h e b a r remained s t a t i o n a r y w h i l e t h e s o i l t h a t was f a r enough away from i t moved

(17)

upwards. The r e l i e f curve o b t a i n e d by t h i s model experiment o f a d f r e e z i n g f o r c e d e t e r m i n a t i o n i s shown by t h e d o t t e d c u r v e s A , C , E of t h e l o g a r i t h m i c graph, F i g . 10.

The s o i l used i n t h i s s e t of experiments i s clay-loam from Hakuro- N i s h i k i o k a and comprises 23% c l a y ( i n c l u d i n g c o l l o i d s ) , 33% s i l t , 44% sand. The m o i s t u r e c o n t e n t was a d j u s t e d t o 17$.

Curves A, B, C, D, E, F a r e almost r e c t i l i n e a r . The s l o p e is s h a r p e r f o r t h e h i g h e r t e m p e r a t u r e , 1 . e . r e l i e f i s f a s t e r . The p o i n t s E 1 and B' a t t h e lower r i g h t of F i g . 10 a r e t h e c o n t i n u a t i o n o f t h e E and B, b u t a r e q u i t e f a r away from t h e r e c t i l i n e a r e x t e n s i o n s o f E and B. T h i s i s because t h e tempera- t u r e was r a i s e d r a p i d l y a f t e r t h e f i n a l d e t e r m i n a t i o n s o f E and B. The temper- a t u r e was r a i s e d from -4OC t o -1°C f o r E 1 and from -23°C t o - 3 O C f o r B f . It

i s a l s o shown in t h e f i g u r e t h a t t h e b a s a l heaving f o r c e i s r e l i e v e d more slowly t h a n t h e a d f r e e z i n g f o r c e .

According t o Wakahama ( l o ) , r e l i e f of s t r e s s i n p o l y c r y s t a l l i n e i c e i s much f a s t e r t h a n i n f r o z e n s o i l . For i c e a t

-8"C,

t h e f o r c e 10 minutes a f t e r t h e t e r m i n a t i o n o f compression i s o n l y 6* o f t h a t 1 minute a f t e r t h e termina- t i o n , and 30$ of t h a t a f t e r 5 minutes. I f we assume t h a t t h e s i d e of a b a r and t h e f r o z e n s o i l a r e joined o n l y by i c e , t h e r a t e of r e l i e f should be i d e n t i c a l w i t h t h a t of i c e . The curve D o f t h e r e l i e f a t -8OC i n F i g . 10,

however, shows t h a t t h e r e l i e f of t h e f r o z e n so11 1s v e r y much s l o w e r t h a n t h a t o f i c e . T h e r e f o r e t h e f r e e z i n g which i n v o l v e s t h e f r o z e n s o i l does n o t seem t o depend o n l y on t h e amount of i c e i n t h e s o i l .

For m a t e r i a l s i n which i h e compression f o r c e i s r e l i e v e d while a c o n s t a n t compression s t r a i n remains c o n s t a n t , t h e e l a s t i c compression f o r c e , which i s p r o p o r t i o n a l t o t h e s t r a i n , i s n o t t h e o n l y f o r c e a c t i n g on t h e m a t e r i a l d u r i n g t h e p e r i o d o f i n c r e a s i n g compressive s t r a i n . The f o r c e which i s c o n t i n u o u s l y r e l i e v e d i n t h e course o f compression must a l s o be c o n s i d e r e d p a r t of t h e a c t i n g f o r c e s . Such m a t e r i a l s a r e termed v i s c o u s e l a s t i c . The s t r a i n F of a v i s c o u s e l a s t i c body a t a compressive s t r a i n h can be shown a s

Here, C i s a p r o p o r t i o n a l c o n s t a n t and f a c o n s t a n t f u n c t i o n . The f i r s t term on t h e r i g h t r e p r e s e n t s t h e e l a s t i c p a r t of t h e f o r c e and t h e second term t h e r e l i e f . The curve ~ ( t ) when t h e s t r a i n h ( t ) t a k e s a c o n s t a n t v a l u e H i n formula ( 1 ) i s t h e curve o f t h e r e l i e v i n g f o r c e .

The f o r c e ~ ( t ) d e c r e a s e s a l o n g t h e c u r v e s i n Fig. 10, i n v a r i o u s c a s e s o f r e l i e f of heaving f o r c e s . The r e l i e v i n g f o r c e curve i s almost r e c t i l i n e a r

(18)

a f t e r 0.1 min, on a l o g a r i t h m i c graph. In t h i s case, within t h e l i m i t of t > E ( E x 0 ) , s e t t i n g upper l i m i t of i n t e g r a t i o n of t h e formula ( 1 ) a s t

-

E ,

and t h e f u n c t i o n f ( z ) a s f ( z ) = ( a i s a c o n s t a n t ) , t h e formula conforms t o t h e a c t u a l f a c t s . That i s t o say formula ( 1 ) becomes

When h ( t ) = constant), t h e f o r c e d e c r e a s e s according t o t h e formula

The r e l i e v i n g f o r c e curve of Fig. 10 i s expressed by

( 3 ) .

The c o n s t a n t a of formula ( 3 ) shows t h e s l o p e of t h e curve of Fig. 10, and when a i s l a r g e r t h e

-

s l o p e i s s t e e p e r , which s i g n i f i e s f a s t e r r e l i e f o r t h e r e l i e f a t a h i g h e r temperature.

If t h e heaving occurs a t a c o n s t a n t v e l o c i t y , 1 . e . h ( t ) = b t ( b i s a c o n s t a n t ), formula ( 2 ) becomes

t

~ ( t ) = C b t

+

aCb(t

-

E )

-

aCbt loge ( 4 )

and

Since t h e value of t h e expression w i t h i n t h e b r a c k e t o f ( 3 ) i s between 1 and 0,

Therefore, equation

( 5 )

givea Cb >

-

> 0. That l a t o say, although F

d t

i n c r e a s e s , t h e r a t e of i n c r e a s e i s always s m a l l e r than t h e r a t e Cb of t h e i n c r e a s e due t o t h e e l a s t i c f o r c e only, and t h i s r a t e of i n c r e a s e of F

becomes s m a l l e r and s m a l l e r i n t h e course of time.

Although t h e s t r e s s d e c r e a s e s while t h e s t r a i n remains c o n s t a n t , t h e s t r a i n i t s e l f I s a c t u a l l y reduced I n s i d e of t h e m a t e r i a l . Even a f t e r t h e movement of t h e i r o n p i p e t h a t p r e s s e s a g a i n s t t h e s o i l c e a s e s , t h e movement of t h e s o i l p a r t i c l e s c o n t i n u e s and t h e s t r a i n i s reduced s o . t h a t t h e f o r c e decreases, and I n t h e f r e e z i n g experiments t h e f r e e z i n g of t h e s o i l t o t h e b a r g r a d u a l l y d e c r e a s e s and t h e f o r c e d e c r e a s e s . Thus r e l i e f of t h e s t r e s s is due t o f r e e z i n g and s t r a i n deformation.

The f u r t h e r t h e r e l i e f of s t r e s s , t h e l a r g e r t h e value of t h e c o n s t a n t a , and, a t t h e same time, i f heaving t a k e s p l a c e a t a c o n s t a n t r a t e , t h e I n c r e a s e of heaving f o r c e i s l a r g e r , a s shown by formulae ( 4 ) and

( 5 ) .

In

(19)

on t h e d i f f e r e n c e s of m a t e r i a l . The d i f f e r e n c e s a r e due t o t h e d i f f e r e n c e s i n t h e value of a . I n o t h e r words, a s m a l l e r heaving f o r c e r e s u l t s i n a f a s t e r r e l i e f of t h e s t r e s s and hence a f a s t e r r a t e of strain-deformation r e l i e f . The s m a l l e r heaving f o r c e of t h e coated concrete pipe compared with t h e uncoated one can be explained by t h e f a c t t h a t t h e r e l i e f of s t r a i n defornlation a t t h e frozen s u r f a c e i s f a s t e r f o r a coated s u r f a c e causing f a s t e r s l i d i n g of t h e p a r t i c l e s around t h e f r o z e n s u r f a c e .

In t h e low- t e n ~ p e r a t u r e la b o r a t o r y experiment, t h e a u t h o r s used s o i l which was d i f f e r e n t from t h a t of t h e f i e l d experiment. The i n c r e a s e of t h e heaving f o r c e , shown i n t h e case where 1 rnm of t h e f r e e s u r f a c e i s heaved upwards a t t h e f i e l d experimental s i t e , was estimated a s u s i n g t h e value of t h e compression f o r c e which was used t o depress t h e s u r f a c e 1 mm i n t h e low-

temperature l a b o r a t o r y experiment. The estimated values a r e shown i n Table V.

Although t h e estimated values a r e n o t n e c e s s a r i l y c o r r e c t , e s p e c i a l l y s i n c e t h e r a t e s a r e d i f f e r e n t , and t h e two phenomena a r e n o t t h e same f o r t h e f i e l d experiment and f o r low-temperature l a b o r a t o r y experiment, i t i s c l e a r l y shown t h a t t h e r e i s a l a r g e i n c r e a s e of t h e heaving f o r c e by heaving of t h e f r e e s u r f a c e by o n l y a s much a s 1 mm upwards. However, i f heaving s t o p s , t h e heaving f o r c e d e c r e a s e s t o l e s s than h a l f a f t e r one day, i f t h e temperature i s high. A c t u a l l y t h e ground temperature a t t h e a i t e of t h e f i e l d experiment was h i g h e r than - 5 O C , except f o r t h e p a r t of t h e ground n e a r t h e s u r f a c e .

2 . Discussion of t h e R e s u l t s of t h e Determination

It was found t h a t t h e (maximum) heaving f o r c e decreases when t h e heaving

of t h e f r e e ground s u r f a c e s t o p s . Unfortunately t h e a u t h o r s a r e unable t o i n v e s t i g a t e t h e r e l a t i o n s h i p between t h e amount of heaving h and t h e (maximum)

heaving f o r c e a t t h i s moment, a s they d i d n o t conduct continuous determinations

of t h e amount of heaving h of t h e f r e e ground s u r f a c e . However, i t i s known t h a t t h e amount of heaving h i s not p r o p o r t i o n a l t o t h e f r e e z i n g f r o n t depth

.

It i s a l s o lmown t h a t t h e amount of i c e i n t h e l a y e r a t t h e f r e e z i n g f r o n t i n c r e a s e s when t h e depth of t h e f r e e z i n g f r o n t

C

remains c o n s t a n t ( 1 1 ) .

However, t h e g e n e r a l tendency i s t h a t t h e g r e a t e r t h e depth of f r e e z i n g t h e g r e a t e r t h e amount of heaving. Therefore, i t i s important t o s t u d y t h e r a t e

of i n c r e a s e of t h e depth of t h e f r e e z i n g f r o n t E . d t

Figure 11 shows a t y p i c a l example of temperature d i s t r i b u t i o n i n t h e ground. The temperature g r a d i e n t n e a r t h e f r e e z i n g f r o n t i s s t e e p e r above t h e f r o n t ( f r o z e n l a y e r ) than below i t (unfrozen l a y e r ) , and t h e f r e e z i n g f r o n t i t s e l f i s t h e p o i n t of d i s c o n t i n u a t i o n . This i s due t o r e l e a s e of l a t e n t h e a t of water in t h e ground f r e e z i n g a t t h e f r e e z i n g f r o n t . The r a t e of i n c r e a s e

Figure

Diagram  of  r e l a t i o n s h i p   between  t h e   heaving  f o r c e   and  t h e   amount
Diagram  o f   d l s t r l b u t l o n   o f   underground  t e m p e r a t u r e

Références

Documents relatifs

Los gestores directos eran en su mayoría actores locales, empresas y la sociedad civil, mientras que los gestores indirectos eran a menudo organizaciones de alcance nacional y

A ce titre et compte tenu de l’importance de l’investissement dans le monde moderne, les pays développés et ceux en voie de développement tendent à promouvoir le volume

We first consider the information gathering problem, and plot peak and average age for all the proposed trajectories of the mobile agent: the Metropolis-Hastings randomized trajectory

These include: better integration among housing market sub-models, such as predictors of residential mobility becoming determinants of choice set formation; explicit modeling of

Dans bien des cas d'après les enquêtés, les produits de terroir se distinguent par leur qualité organoleptique : ainsi le litchi Thieu de Thanh Ha est réputé "plus sucré, et

ficus‐ indica seeds, in this study cakes resulting from the pressing were macerated in ethanol and then a Supercritical Antisolvent Fractionation (SAF) technique was used for

( دﺎﺼﻴ يذﻝا ئرﺎﻘﻝﺎﻓ نّﻜﻤﺘﻴ ﻻ لﺎﺜﻤﻝا لﻴﺒﺴ ﻰﻠﻋ ﺔﺘوﺤﻨﻤﻝا تﺎﻤﻠﻜﻝا ﻩذﻫ ف ﺎّﻤﻤ ،ﺎﻬظﻔﻝ نﻤ ﺎﻫﺎﻨﻌﻤ كاردإ ﻪﻴﻠﻋ رّذﻌﺘﻴ ﻲﻝﺎﺘﻝﺎﺒو ،ﺎﻬﻨﻤ تذﺨُأ ﻲﺘﻝا ﺎﻬﻝوﺼأ ﺔﻓرﻌﻤ نﻤ

This study examines the international climate policy process and overlapping national policy processes in the United States, Japan, and the Netherlands through the lens