• Aucun résultat trouvé

Abstract method and motivation

N/A
N/A
Protected

Academic year: 2022

Partager "Abstract method and motivation"

Copied!
70
0
0

Texte intégral

(1)

Jean Dolbeault

http://www.ceremade.dauphine.fr/∼dolbeaul Ceremade, Université Paris-Dauphine

November 6, 2019 FLACAM 2019 – PDE session French Latin - American Conference on New Trends in Applied Mathematics

5 - 8 November 2019, Santiago, Chile

(2)

Outline

Abstract method and motivation BAbstract statement in a Hilbert space BDiffusion limit, toy model

The compact case BStrong confinement

BMode-by-mode decomposition BApplication to the torus BFurther results

The non-compact case

BWithout confinement: Nash inequality

BWith very weak confinement: Caffarelli-Kohn-Nirenberg inequality

BWith sub-exponential equilibria: weighted Poincaré inequality The Vlasov-Poisson-Fokker-Planck system

BLinearized system and hypocoercivity

BResults in the diffusion limit and in the non-linear case

(3)

Vlasov-Poisson-Fokker-Planck

Abstract method and motivation

BAbstract statement BDiffusion limit BA toy model

Collaboration with C. Mouhot and C. Schmeiser

J. Dolbeault Hypocoercivity and functional inequalities

(4)

An abstract evolution equation

Let us consider the equation dF

dt +TF =LF

In the framework of kinetic equations,TandLare respectively the transport and the collision operators

We assume thatTandL are respectively anti-Hermitian and Hermitian operators defined on the complex Hilbert space (H,h·,·i)

A:= 1 + (TΠ)−1

(TΠ)

denotes the adjoint with respect toh·,·i

Π is the orthogonal projection onto the null space ofL

(5)

Vlasov-Poisson-Fokker-Planck

The assumptions

λm,λM, andCM are positive constants such that, for anyF∈H Bmicroscopic coercivity:

− hLF, Fi ≥λmk(1−Π)Fk2 (H1) Bmacroscopic coercivity:

kTΠFk2λMkΠFk2 (H2) Bparabolic macroscopic dynamics:

ΠTΠF = 0 (H3)

Bbounded auxiliary operators:

kAT(1−Π)Fk+kALFk ≤CMk(1−Π)Fk (H4) The estimate

1 2

d

dtkFk2=hLF, Fi ≤ −λmk(1−Π)Fk2 is not enough to conclude thatkF(t,·)k2 decays exponentially

J. Dolbeault Hypocoercivity and functional inequalities

(6)

Equivalence and entropy decay

For someδ >0 to be determined later, the L2 entropy / Lyapunov functional is defined by

H[F] := 12kFk2+δRehAF, Fi so thathATΠF, Fi ∼ kΠFk2 and

d

dtH[F] = :D[F]

= − hLF, Fi+δhATΠF, Fi

δRehTAF, Fi+δRehAT(1−Π)F, Fi −δRehALF, Fi

Bentropy decay rate: for anyδ >0 small enough andλ=λ(δ) λH[F]≤D[F]

Bnorm equivalenceofH[F] andkFk2 2−δ

4 kFk2≤H[F]≤2 +δ 4 kFk2

(7)

Vlasov-Poisson-Fokker-Planck

Exponential decay of the entropy

λ= 3 (1+λλM

M)minn

1, λm,(1+λλmλM

M)CM2

o

,δ=12 min

1, λm,(1+λλmλM

M)CM2

h1(δ, λ) := (δ CM)2−4

λmδ−2 +δ

4 λ δ λM

1 +λM

−2 +δ 4 λ

Theorem

LetL andTbe closed linear operators (respectively Hermitian and anti-Hermitian) onH. Under (H1)–(H4), for any t≥0

H[F(t,·)]≤H[F0]e−λ(δ)t whereδ∈(0,2) andλ(δ)is characterized by

λ(δ) := sup

λ >0 : h1(δ, λ) = 0, λmδ14(2 +δ)λ >0

J. Dolbeault Hypocoercivity and functional inequalities

(8)

Sketch of the proof

SinceATΠ = 1 + (TΠ)−1

(TΠ)TΠ, from (H1) and (H2)

− hLF, Fi+δhATΠF, Fi ≥λmk(1−Π)Fk2+ δ λM

1 +λM kΠFk2 By (H4), we know that

|RehAT(1−Π)F, Fi+ RehALF, Fi| ≤CMkΠFk k(1−Π)Fk The equationG=AF is equivalent to (TΠ)F =G+ (TΠ)G hTAF, Fi=hG,(TΠ)Fi=kGk2+kTΠGk2=kAFk2+kTAFk2 hG,(TΠ)Fi ≤ kTAFk k(1−Π)Fk ≤ 1

2µkTAFk2+µ

2k(1−Π)Fk2 kAFk ≤ 1

2k(1−Π)Fk, kTAFk ≤ k(1−Π)Fk, |hTAF, Fi| ≤ k(1−Π)Fk2 WithX :=k(1−Π)Fk andY :=kΠFk

D[F]−λH[F]≥(λmδ)X2+ δ λM 1 +λM

Y2δ CMX Y−2 +δ

4 λ(X2+Y2)

(9)

Vlasov-Poisson-Fokker-Planck

Hypocoercivity

Corollary

For anyδ∈(0,2), ifλ(δ)is the largest positive root ofh1(δ, λ) = 0for whichλmδ14(2 +δ)λ >0, then for any solutionF of the evolution equation

kF(t)k2≤ 2 +δ

2− δe−λ(δ)tkF(0)k2t≥0 From the norm equivalence ofH[F] andkFk2

2−δ

4 kFk2≤H[F]≤2 +δ 4 kFk2

J. Dolbeault Hypocoercivity and functional inequalities

(10)

Formal macroscopic (diffusion) limit

Scaled evolution equation εdF

dt +TF = 1 εLF

on the Hilbert spaceH. Fε=F0+ε F1+ε2F2+O(ε3) asε→0+ ε−1: LF0= 0,

ε0: TF0=LF1, ε1: dFdt0 +TF1=LF2

The first equation reads asu=F0= ΠF0

The second equation is simply solved byF1=−(TΠ)F0

After projection, the third equation is

d

dt(ΠF0)−ΠT(TΠ)F0= ΠLF2= 0

tu+ (TΠ)(TΠ)u= 0 is such that dtdkuk2=−2k(TΠ)uk2≤ −2λMkuk2

(11)

Vlasov-Poisson-Fokker-Planck

A toy problem

du

dt = (L−T)u , L=

0 0 0 −1

, T=

0 −k

k 0

, k2≥Λ>0 Non-monotone decay, a well known picture:

see for instance(Filbet, Mouhot, Pareschi, 2006) H-theorem: dtd|u|2=dtd u21+u22

=−2u22 macroscopic/diffusion limit: dudt1 =−k2u1

generalized entropy: H(u) =|u|21+kδ k2 u1u2

dH

dt = −

2− δ k2 1 +k2

u22δ k2

1 +k2u21+ δ k 1 +k2u1u2

≤ −(2−δ)u22δΛ

1 + Λu21+δ 2u1u2

J. Dolbeault Hypocoercivity and functional inequalities

(12)

Plots for the toy problem

1 2 3 4 5 6

0.2 0.4 0.6 0.8 1.0 u12

1 2 3 4 5 6

0.2 0.4 0.6 0.8 1.0 u12, u12+u22

1 2 3 4 5 6

0.2 0.4 0.6 0.8 1.0 H

1 2 3 4 5 6

0.2 0.4 0.6 0.8 1.0 1.2 D

(13)

Vlasov-Poisson-Fokker-Planck

Some references

C. Mouhot and L. Neumann. Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus.

Nonlinearity, 19(4):969-998, 2006

F. Hérau. Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation. Asymptot.

Anal., 46(3-4):349-359, 2006

J. Dolbeault, P. Markowich, D. Oelz, and C. Schmeiser. Non linear diffusions as limit of kinetic equations with relaxation collision kernels. Arch. Ration. Mech. Anal., 186(1):133-158, 2007.

J. Dolbeault, C. Mouhot, and C. Schmeiser. Hypocoercivity for kinetic equations with linear relaxation terms. Comptes Rendus Mathématique, 347(9-10):511 - 516, 2009

J. Dolbeault, C. Mouhot, and C. Schmeiser. Hypocoercivity for linear kinetic equations conserving mass. Transactions of the American Mathematical Society, 367(6):3807-3828, 2015

J. Dolbeault Hypocoercivity and functional inequalities

(14)

The compact case

Fokker-Planck equation and scattering collision operators BA mode-by-mode (Fourier) hypocoercivity result

BEnlargement of the space by factorization

BApplication to the torus and numerical improvements Further results: Euclidean space with strong confinement

Collaboration with E. Bouin, S. Mischler, C. Mouhot, C. Schmeiser

(15)

Vlasov-Poisson-Fokker-Planck

Fokker-Planck and scattering collision operators

Two basic examples:

LinearFokker-Planckcollision operator Lf = ∆vf+∇v·(v f)

Linear relaxation operator (linear BGK) Lf =ρ(2π)−d/2 exp(−|v|2/2)f withρ=R

f dv

J. Dolbeault Hypocoercivity and functional inequalities

(16)

Fokker-Planck equation with general equilibria

We consider the Cauchy problem

tf+v· ∇xf =Lf , f(0, x, v) =f0(x, v)

for a distribution functionf(t, x, v), withpositionvariablex∈Rd or x∈Td the flat d-dimensional torus

Fokker-Planckcollision operator with a general equilibriumM Lf =∇v·h

Mv M−1fi

Notation and assumptions: anadmissible local equilibriumM is positive, radially symmetric and

Z

Rd

M(v)dv= 1, =γ(v)dv:= dv M(v) γis anexponential weightif (loose definition)

lim

|v|→∞

|v|k

γ(v) = lim

|v|→∞M(v)|v|k= 0 ∀k∈(d,∞)

(17)

Vlasov-Poisson-Fokker-Planck

Definitions

Θ = 1 d

Z

Rd

|v|2M(v)dv= Z

Rd

(v·e)2M(v)dv for an arbitrarye∈Sd−1

Z

Rd

vv M(v)dv= Θ Id Then

θ= 1

d k∇vMk2L2(dγ)=4 d

Z

Rd

|∇v

M

2dv <∞ IfM(v) = e

1 2|v|2

(2π)d/2, then Θ = 1 andθ= 1 σ:= 1

2 pθ/Θ

Microscopic coercivity property(Poincaré inequality): for all u=M−1F ∈H1(M dv)

Z

Rd

|∇u|2M dvλm

Z

Rd

u

Z

Rd

u M dv 2

M dv

J. Dolbeault Hypocoercivity and functional inequalities

(18)

Scattering collision operators

Scatteringcollision operator Lf =

Z

Rd

σ(·, v0) f(v0)M(·)−f(·)M(v0) dv0

Main assumption on thescattering rateσ: for some positive, finiteσ 1≤σ(v, v0)≤σv, v0∈Rd

Example: linear BGK operator

Lf =M ρff , ρf(t, x) = Z

Rd

f(t, x, v)dv

Local mass conservation Z

Rd

Lf dv= 0 and we have

Z

Rd

|Lf|2≤4σ2 Z

Rd

|M ρff|2

(19)

Vlasov-Poisson-Fokker-Planck

(Technicalities !) the symmetry condition Z

Rd

σ(v, v0)−σ(v0, v)

M(v0)dv0 = 0 ∀v∈Rd implies thelocal mass conservationR

RdLf dv= 0

Micro-reversibility,i.e., the symmetry ofσ, is not required The null space ofLis spanned by the local equilibriumM Lonly acts on the velocity variable

Microscopic coercivity property: for someλm>0 1

2 Z Z

Rd×Rd

σ(v, v0)M(v)M(v0) u(v)u(v0)2 dv0dv

λm Z

Rd

(u−ρu M)2M dv holds according to Proposition 2.2 of(Degond, Goudon, Poupaud, 2000)for allu=M−1F ∈L2(M dv). Ifσ≡1, thenλm= 1

J. Dolbeault Hypocoercivity and functional inequalities

(20)

Euclidean space, confinement, Poincaré inequality

(H1) Regularity & Normalization: VWloc2,∞(Rd),R

Rde−Vdx= 1 (H2) Spectral gap condition (macroscopic Poincaré inequality): for

some Λ>0,∀uH1(e−Vdx) such thatR

Rdu e−Vdx= 0 R

Rd|u|2e−Vdx≤ΛR

Rd|∇xu|2e−Vdx (H3) Pointwise conditions:

there existsc0>0,c1>0 andθ∈(0,1) s.t.

∆V ≤ θ2|∇xV(x)|2+c0, |∇2xV(x)| ≤c1(1 +|∇xV(x)|)∀x∈Rd (H4) Growth condition: R

Rd|∇xV|2e−Vdx <∞ Theorem (D., Mouhot, Schmeiser)

LetL be either a Fokker-Planck operator or a linear relaxation operator with a local equilibriumF(v) = (2π)−d/2exp(−|v|2/2). Iff solves

tf+v· ∇xf− ∇xV · ∇vf =Lf then

t≥0, kf(t)−Fk2≤(1 +η)kf0Fk2e−λt

(21)

Vlasov-Poisson-Fokker-Planck

Mode-by-mode decomposition

BSpectral decomposition (Hermite functions): linear Fokker-Planck operator

Lf = ∆vf+∇v·(v f) or the linear relaxation operator (linear BGK)

Lf =ρ(2π)−d/2 exp(−|v|2/2)f , withρ=R

f dv: (Arnold, Erb),(Achleitner, Arnold, Stürzer), (Achleitner, Arnold, Carlen),(Arnold, Einav, Wöhrer) BDecomposition inFourier modes

J. Dolbeault Hypocoercivity and functional inequalities

(22)

Fourier modes

In order to perform amode-by-mode hypocoercivityanalysis, we introduce the Fourier representation with respect tox,

f(t, x, v) = Z

Rd

fˆ(t, ξ, v)e−i x·ξdµ(ξ)

dµ(ξ) = (2π)−d and is the Lesbesgue measure ifx∈Rd dµ(ξ) = (2π)−d P

z∈Zdδ(ξz) is discrete forx∈Td

Parseval’s identity ifξ∈Zd and Plancherel’s formula ifx∈Rd read kf(t,·, v)kL2(dx)=

fˆ(t,·, v)

L2(dµ(ξ)) The Cauchy problem is now decoupled in theξ-direction

tfˆ+Tfˆ=Lf ,ˆ fˆ(0, ξ, v) = ˆf0(ξ, v) Tfˆ=i(v·ξ) ˆf

(23)

Vlasov-Poisson-Fokker-Planck

For any fixedξ∈Rd, let us apply the abstract result with H= L2(dγ), kFk2=

Z

Rd

|F|2dγ , ΠF =M Z

Rd

F dv=M ρF andTfˆ=i(v·ξ) ˆf,TΠF=i(v·ξ)ρFM,

kTΠFk2=|ρF|2 Z

Rd

|v·ξ|2M(v)dv = Θ|ξ|2F|2= Θ|ξ|2kΠFk2 (H2)Macroscopic coercivitykTΠFk2λMkΠFk2: λM = Θ|ξ|2 (H3)R

Rdv M(v)dv= 0 The operatorAis given by

AF = −i ξ·R

Rdv0F(v0)dv0 1 + Θ|ξ|2 M

J. Dolbeault Hypocoercivity and functional inequalities

(24)

A mode-by-mode hypocoercivity result

kAFk=kA(1−Π)Fk ≤ 1 1 + Θ|ξ|2

Z

Rd

|(1−Π)F|

M |v·ξ|M dv

≤ 1

1 + Θ|ξ|2k(1−Π)Fk Z

Rd

(v·ξ)2M dv 1/2

=

√ Θ|ξ|

1 + Θ|ξ|2k(1−Π)Fk Scattering operatorkLFk2≤4σ2k(1−Π)Fk2

Fokker-Planck (FP) operator kALFk ≤ 2

1 + Θ|ξ|2 Z

Rd

|(1−Π)F|

M |ξ·∇v

M|dv

θ|ξ|

1 + Θ|ξ|2k(1−Π)Fk In both cases withκ=√

θ(FP) orκ= 2σ

Θ we obtain kALFk ≤ κ|ξ|

1 + Θ|ξ|2k(1−Π)Fk

(25)

Vlasov-Poisson-Fokker-Planck

TAF(v) =−(v·ξ)M 1 + Θ|ξ|2

Z

Rd

(v0·ξ) (1−Π)F(v0)dv0 is estimated by

kTAFk ≤ Θ|ξ|2

1 + Θ|ξ|2k(1−Π)Fk (H4) holds withCM = κ1+Θ|ξ|+Θ|ξ||ξ|22

The two “good” terms

− hLF, Fi ≥λmk(1−Π)Fk2 hATΠF, Fi=AF = Θ|ξ|2

1 + Θ|ξ|2kΠFk2 Two elementary estimates

Θ|ξ|2

1 + Θ|ξ|2 ≥ Θ max{1,Θ}

|ξ|2

1 +|ξ|2, λM

(1 +λM)CM2 = Θ 1 + Θ|ξ|2

(κ+ Θ|ξ|)2 ≥ Θ κ2+ Θ

J. Dolbeault Hypocoercivity and functional inequalities

(26)

Mode-by-mode hypocoercivity with exponential weights

Theorem

Let us consider an admissibleM and a collision operatorL satisfying the assumptions, and takeξ∈Rd. Iffˆis a solution such that fˆ0(ξ,·)∈L2(dγ), then for any t≥0, we have

fˆ(t, ξ,·)

2 L2(dγ)

≤3eµξt

fˆ0(ξ,·)

2 L2(dγ)

where

µξ := Λ|ξ|2

1 +|ξ|2 and Λ = Θ

3 max{1,Θ} min

1, λmΘ κ2+ Θ

withκ= 2σ

Θfor scattering operators andκ=√

θfor (FP) operators

(27)

Vlasov-Poisson-Fokker-Planck

Exponential convergence to equilibrium in T

d

The unique global equilibrium in the casex∈Td is given by f(x, v) =ρM(v) with ρ= 1

|Td| Z Z

Td×Rd

f0dx dv

Theorem

Assume thatγ has an exponential growth. We consider an

admissibleM, a collision operatorLsatisfying the assumptions. There exists a positive constantC such that the solutionf of the Cauchy problem onTd×Rd with initial datumf0∈L2(dx dγ)satisfies

kf(t,·,·)−fkL2(dx dγ)C kf0fkL2(dx dγ) e14Λtt≥0

J. Dolbeault Hypocoercivity and functional inequalities

(28)

Exponential convergence to equilibrium in T

d

The unique global equilibrium in the casex∈Td is given by f(x, v) =ρM(v) with ρ= 1

|Td| Z Z

Td×Rd

f0dx dv

Theorem

Assume thatM is admissible,k∈(d,∞]and k:=γk(v)dv where γk(v) = 1 +|v|2k/2

and k > d

There exists a positive constantCk such that the solutionf(t,·,·)on Td×Rd with initial datumf0∈L2(dx dγk)satisfies

kf(t,·,·)−fkL2(dx dγk)Ck kf0fkL2(dx dγk) e14Λtt≥0 Tool: Enlargement of the space by thefactorization method

of(Gualdani, Mischler, Mouhot)

(29)

Vlasov-Poisson-Fokker-Planck

Further references

Exponential rates in kinetic equations: (Talay 2001),(Wu 2001) In presence of a strongly confining potential(Hérau 2006 & 2007), (Mouhot, Neumann, 2006)

Hypo-elliptic methods(Hérau, Nier 2004),(Eckmann, Hairer, 2003),(Hörmander, 1967),(Kolmogorov, 1934),(Il’in, Has’min’ski, 1964)with applications to the Vlasov-Poisson-Fokker-Planck equation: (Victory, O’Dwyer, 1990),(Bouchut, 1993)

Related topics:

BH1-hypocoercivity(Gallay),(Villani...)...(Monmarché),(Evans) BDiffusion limits(Degond, Poupaud, Schmeiser, Goudon,...) BPoincaré inequalities and Lyapunov functions

BHarris type methods, use of coupling

J. Dolbeault Hypocoercivity and functional inequalities

(30)

The non-compact case

The global picture:

Bby what can we replace themacroscopicPoincaré inequality ? Nash’s inequalityand a decay rate whenV = 0

Very weak confinement: Caffarelli-Kohn-Nirenberg inequalities and moments

With sub-exponential equilibria: weighted Poincaré inequalityor Hardy-Poincaré inequality

(31)

Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

A result based on Nash’s inequality

tf+v· ∇xf =Lf , (t, x, v)∈R+×Rd×Rd D[f]=−d

dtH[f]≥a

k(1−Π)fk2+ 2hATΠf, fi We observe that

Af =TΠ 1 + (TΠ)−1

f

=T 1 + (TΠ)−1

Πf =MTuf =v M· ∇xuf

ifuf is the solution in H1(dx) ofuf−Θ ∆xuf =ρf, and kuf(t,·)kL1(dx)=kρf(t,·)kL1(dx)=kf0kL1(dx dv)

k∇xufk2L2(dx)≤ 1

ΘhATΠf, fi kΠfk2≤ kufk2L2(dx)+ 2hATΠf, fi

J. Dolbeault Hypocoercivity and functional inequalities

(32)

Nash’s inequality kuk2L2(dx)≤CNashkuk

4 d+2

L1(dx)k∇uk

2d d+2

L2(dx)u∈L1∩H1(Rd) UsekΠfk2≤Φ−1 2hATΠf, fi

with Φ−1(y) :=y+ ycd+2d to get k(1−Π)fk2+ 2hATΠf, fi≥Φ(kfk2)≥Φ 1+δ2 H[f]

D[f]=−d

dtH[f]≥aΦ 1+δ2 H[f]

(33)

Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

Algebraic decay rates in R

d

On the whole Euclidean space, we can define the entropy H[f] := 12kfk2L2(dx dγk)+δhAf, fidx dγk

Replacing themacroscopic coercivitycondition byNash’s inequality kuk2L2(dx)≤CNashkuk

4 d+2

L1(dx)k∇uk

2d d+2

L2(dx)

proves that

H[f]≤C

H[f0] +kf0k2L1(dx dv)

(1 +t)d2 Theorem

Assume thatγk has an exponential growth (k=∞) or a polynomial growth of orderk > d

There exists a constantC >0such that, for any t≥0 kf(t,·,·)k2L2(dx dγk)C

kf0k2L2(dx dγk)+kf0k2L2(dγk; L1(dx))

(1 +t)d2

J. Dolbeault Hypocoercivity and functional inequalities

(34)

The rate of decay of the heat equation

Ifρis a solution of the heat equation

∂ρ

∂t = ∆ρ with initial datumρ0, then

kρ(t,·)kL1(dx)=kρ0kL1(dx)

d

dtkρ(t,·)k2L2(dx)=− k∇ρ(t,·)k2L2(dx)≤ −Ckρ(t,·)k2+L2(dx)4d

by Nash’s inequality, and so

kρ(t,·)k2L2(dx)=C0k2L2(dx)(1 +t)d2

(35)

Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

The global picture

Depending on the local equilibria and on the external potential (H1) and (H2) (which are Poincaré type inequalities) can be replaced by other functional inequalities:

Bmicroscopic coercivity (H1)

− hLF, Fi ≥λmk(1−Π)Fk2

=⇒weak Poincaré inequalitiesor Hardy-Poincaré inequalities Bmacroscopic coercivity (H2)

kTΠFk2λMkΠFk2

=⇒Nash inequality,weighted Nashor Caffarelli-Kohn-Nirenberg inequalities This can be done at the level of the diffusion equation

(homogeneous case) or at the level of thekinetic equation (non-homogeneous case)

J. Dolbeault Hypocoercivity and functional inequalities

(36)

Diffusion (Fokker-Planck) equations

Potential

V

= 0

V

(x) = log

|x|

< d

V

(x) =

|x|

↵2

(0, 1)

V

(x) =

|x|

1

Inequality Nash Ca↵arelli-Kohn -Nirenberg

Weak Poincar´e or Weighted Poincar´e

Poincar´e

Asymptotic behavior

t d/2

decay

t (d )/2

decay

t µ

or

t 2 (1k↵)

convergence

e t

convergence

Table 1:

@tu

=

u

+

r ·

(n

rV

)

Potential

V

= 0

V

(x) = log

|x|

< d

V

(x) =

|x|

↵2

(0, 1)

V

(x) =

|x|

1

Inequality Nash Ca↵arelli-Kohn -Nirenberg

Weak Poincar´e or Weighted Poincar´e

Poincar´e

Asymptotic behavior

t d/2

decay

t (d )/2

decay

t µ

or

t 2 (1k↵)

convergence

e t

convergence

Table 2:

@tu

=

u

+

r ·

(n

rV

)

1

J. Dolbeault Hypocoercivity and functional inequalities

(37)

Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

Kinetic Fokker-Planck equations

B = Bouin, L = Lafleche, M = Mouhot, MM = Mischler, Mouhot S = Schmeiser

Potential V= 0 V(x) = log|x|

< d

V(x) =|x|

2(0,1)

V(x) =|x|

1, orTd Macro Poincar´e

Micro Poincar´e F(v) =e hvi, 1

BDMMS:

t d/2 decay

BDS:t (d )/2 decay

Cao:e tb, b <1, = 2 convergence

DMS, Mischler-

Mouhot e t convergence

F(v) =e hvi, 2(0,1)

BDLS:t ,

= min d2,k}

decay

F(v) =hvi d

BDLS, fractional in progress

Table 1:@tf+v· rxf=Frv F 1rvf . Notation:hvi=p 1 +|v|2

1

J. Dolbeault Hypocoercivity and functional inequalities

(38)

Further references

Weak Poincaré inequality: (Röckner & Wang, 2001),(Kavian, Mischler),(Cao, PhD thesis), (Hu, Wang, 2019)+(Ben-Artzi, Einav) for recent spectral considerations

Weighted Nash inequalities: (Bakry, Bolley, Gentil, Maheux, 2012), (Wang, 2000, 2002, 2010)

Related topics:

Bfractional diffusion(Cattiaux, Puel, Fournier, Tardif,...) +(Bouin, D., Lafleche, Schmeiser): work in progress

(39)

Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

Very weak confinement: Caffarelli-Kohn-Nirenberg

In collaboration with Emeric Bouin and Christian Schmeiser

J. Dolbeault Hypocoercivity and functional inequalities

(40)

The macroscopic Fokker-Planck equation

∂u

∂t = ∆xu+∇x·(∇xV u) =x e−Vx eV u Herex∈Rd, d≥3, andV is a potential such thate−V 6∈L1(Rd) corresponding to avery weak confinement

Two examples

V1(x) =γlog|x| and V2(x) =γ loghxi withγ < dandhxi:=p

1 +|x|2for anyx∈Rd

(41)

Abstract method and motivation The compact case The non-compact case Vlasov-Poisson-Fokker-Planck

Without confinement: Nash inequality The global picture

Very weak confinement: Caffarelli-Kohn-Nirenberg With sub-exponential local equilibria

V

= 0

< d ↵2

(0, 1)

1

Inequality Nash Ca↵arelli-Kohn -Nirenberg

Weak Poincar´e or Weighted Poincar´e

Poincar´e

Asymptotic behavior

t d/2

decay

t (d )/2

decay

t µ

or

t 2 (1k↵)

convergence

e t

convergence

Table 1:

@tu

=

u

+

r ·

(n

rV

)

Potential

V

= 0

V

(x) = log

|x|

< d

V

(x) =

|x|

↵2

(0, 1)

V

(x) =

|x|

1

Inequality Nash Ca↵arelli-Kohn -Nirenberg

Weak Poincar´e or Weighted Poincar´e

Poincar´e

Asymptotic behavior

t d/2

decay

t (d )/2

decay

t µ

or

t 2 (1k↵)

convergence

e t

convergence

Table 2:

@tu

=

u

+

r ·

(n

rV

)

1

J. Dolbeault Hypocoercivity and functional inequalities

(42)

A first decay result

Theorem

Assume thatd≥3,γ <(d−2)/2 andV =V1 orV =V2

F any solutionuwith initial datumu0∈L1+∩L2(Rd), ku(t,·)k22≤ ku0k22

(1 +c t)d2 with c:= 4 d minn

1,1−d−22γ o

C−1Nashku0k4/d2 ku0k4/d1 HereCNash denotes the optimal constant in Nash’s inequality

kuk2+2 4d ≤CNash kuk14dk∇uk22u∈L1∩H1(Rd)

(43)

Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

An extended range of exponents: with moments

Theorem

Letd≥1,0< γ < d,V =V1 orV =V2, andu0∈L1+∩L2 eV

with

|x|ku0

1<for somek≥max{2, γ/2}

t≥0, ku(t,·)k2L2(eVdx)≤ ku0k2L2(eVdx) (1 +c t)d−γ2 for somecdepending ond,γ,k,ku0kL2(eVdx),ku0k1, and

|x|ku0

1

J. Dolbeault Hypocoercivity and functional inequalities

(44)

An extended range of exponents: in self-similar variables

u?(t, x) = c?

(1 + 2t)d−γ2 |x|−γexp

− |x|2 2 (1 + 2t)

Here the initial data need have a sufficient decay...

c? is chosen such thatku?k1=ku0k1

Theorem

Letd≥1,γ∈(0, d),V =V1 assume that

x∈Rd, 0≤u0(x)≤K u?(0, x) for some constantK >1

t≥0, ku(t,·)−u?(t,·)kpK c1−

1

? pku0k

1 p

1

e 2|γ|

γ2 1−1 p

(1+2t)−ζp for anyp∈[1,+∞), whereζp:= d2 1−1p

+21p min 2,d−γd

(45)

Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

Proofs: basic case

d dt

Z

Rd

u2dx=−2 Z

Rd

|∇u|2dx+ Z

Rd

∆V |u|2dx with eitherV =V1or V =V2 and

∆V1(x) =γd−2

|x|2 and ∆V2(x) =γ d−2

1 +|x|2 + 2γ (1 +|x|2)2 Forγ≤0: apply Nash’s inequality

d

dtkuk22≤ −2k∇uk22≤ − 2 CNash

ku0k−4/d1 kuk2+4/d2 For 0< γ <(d−2)/2: Hardy-Nash inequalities

Lemma

Letd≥3 andδ <(d−2)2/4 kuk2+2 4d ≤Cδ

k∇uk22δ Z

Rd

u2

|x|2dx

kuk14du∈L1∩ H1(Rd) withCδ =CNash/

1−(d−2)4δ 2

J. Dolbeault Hypocoercivity and functional inequalities

(46)

Proofs: moments

Growth of the moment

Mk(t) :=

Z

Rd

|x|ku dx From the equation

Mk0 =k d+k−2−γ Z

Rd

u|x|k−2dxk d+k−2−γ

M02kMk1−2k

then use the Caffarelli-Kohn-Nirenberg inequality Z

Rd

|x|γu2dx≤CZ

Rd

|x|−γ |∇(|x|γu)|2dx aZ

Rd

|x|k|u|dx 2(1−a)

(47)

Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

Proofs: self-similar solutions

The proof relies onuniform decay estimates+ Poincaré inequality in self-similar variables

Proposition

Letγ∈(0, d)and assume that 0≤u(0, x)c? σ+|x|2−γ/2

exp

−|x|2 2

x∈Rd withσ= 0 ifV =V1 andσ= 1 ifV =V2. Then

0≤u(t, x)c?

(1 + 2t)d−γ2

σ+|x|2−γ/2

exp

− |x|2 2 (1 + 2t)

for anyx∈Rd andt≥0

J. Dolbeault Hypocoercivity and functional inequalities

(48)

The kinetic Fokker-Planck equation

Let us consider the kinetic equation

tf+v· ∇xf− ∇xV · ∇vf =Lf whereLf is one of the two following collision operators

(a) a Fokker-Planck operator Lf =∇v·

Mv M−1f (b) a scattering collision operator

Lf = Z

Rd

σ(·, v0) f(v0)M(·)−f(·)M(v0) dv0

(49)

Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

Potential V= 0 V(x) = log|x|

< d

V(x) =|x|

2(0,1)

V(x) =|x|

1, orTd Macro Poincar´e

Micro Poincar´e F(v) =e hvi , 1

BDMMS:

t d/2 decay

BDS:t (d )/2 decay

Cao:e tb, b <1, = 2 convergence

DMS, Mischler-

Mouhot e t convergence

F(v) =e hvi , 2(0,1)

BDLS:t ,

= min d2,k}

decay

F(v) =hvi d

BDLS, fractional in progress

Table 2:@tf+v· rxf=Frv F 1rvf . Notation:hvi=p 1 +|v|2

2

J. Dolbeault Hypocoercivity and functional inequalities

(50)

Decay rates

∀(x, v)∈Rd×Rd, M(x, v) =M(v)e−V(x), M(v) = (2π)d2 e12|v|2 (H1) 1≤σ(v, v0)≤σ ,v , v0∈Rd, for some σ≥1 (H2)

Z

Rd

σ(v, v0)−σ(v0, v)

M(v0)dv0 = 0 ∀v∈Rd Theorem

Letd≥1,V =V2 with γ∈[0, d),k >max{2, γ/2} and f0∈L2(M−1dx dv)such that

RR

Rd×Rdhxikf0dx dv+RR

Rd×Rd|v|kf0dx dv <+∞

If(H1)–(H2) hold, then there existsC >0such that

t≥0, kf(t,·,·)k2L2(M−1dx dv)C(1 + t)

d−γ 2

(51)

Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

With sub-exponential equilibria

BThe homogeneous Fokker-Planck equation with sub-exponential equilibriaF(v) =Cαe−hviα,α∈(0,1)

– decay rates based on the weak Poincaré inequality(Kavian, Mischler)

– decay rates based on a weighted Poincaré / Hardy-Poincaré inequality

BThe kinetic Fokker-Planck equation with sub-exponential local equilibria andno confinement, the equation with linear scattering

In collaboration with Emeric Bouin, Laurent Lafleche and Christian Schmeiser

J. Dolbeault Hypocoercivity and functional inequalities

(52)

Fokker-Planck with sub-exponential equilibria

We consider thehomogeneous Fokker-Planck equation

tg=∇v·

Fv F−1g associated withsub-exponential equilibria

F(v) =Cαe−hviα, α∈(0,1)

The corresponding Ornstein-Uhlenbeck equation forh=g/F is

th=F−1v·

Fvh

(53)

Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

Potential V = 0 V(x) = log|x|

< d

V(x) =|x|

↵2(0,1)

V(x) =|x|

↵ 1

Inequality Nash Ca↵arelli-Kohn -Nirenberg

Weak Poincar´e or Weighted Poincar´e

Poincar´e

Asymptotic behavior

t d/2 decay

t (d )/2 decay

t µort 2 (1k↵) convergence

e t convergence Table 3:@tu= u+r ·(nrV)

2

J. Dolbeault Hypocoercivity and functional inequalities

(54)

Weak Poincaré inequality

Z

Rd

h−eh

2

dξ≤Cα,τ

Z

Rd

|∇h|21+ττ

h−eh

2 1+τ

L(Rd)

for some explicit positive constantCα,τ,eh:=R

Rdhdξ. Using d

dt Z

Rd

h(t,·)−eh

2

dξ=−2 Z

Rd

|∇vh|2dξ whereh=g/F and dξ=Fdv + Hölder’s inequality R

Rd

h−eh

2

dξ≤

R

Rd

h−eh

2

hvi−βτ+1τ

R

Rd

h−eh

2 L(Rd)

hviβ τ1+τ1

with (τ+ 1)/τ =β/η, then for with M= sups∈(0,t)

h(s,·)−eh

2/τ L(Rd)

Z

Rd

h(t,·)−eh

2

dξ≤ Z

Rd

h(0,·)−eh

2

τ1

+ 2τ−1 C1+1/τα,τ Mt

!−τ

(55)

Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

Weighted Poincaré inequality

There exists a constantC>0 such that Z

Rd

|∇h|2Fdv≥CZ

Rd

h−eh

2

hvi−βFdv withβ= 2 (1−α),eh:=R

Rdh Fdv andF(v) =Cαe−hviα and α∈(0,1)

Written in terms ofg=h F, the inequality becomes Z

Rd

v F−1g

2 F2dµ≥CZ

Rd

|g−g|2 hvi−2 (1−α)dµ where dµ=Fdv

J. Dolbeault Hypocoercivity and functional inequalities

Références

Documents relatifs

Numerical study of dynamic relaxation with kinetic damping applied to inflatable fabric structures with extensions for 3D solid element and non-linear behavior.. Javier

– We prove global stability results of DiPerna-Lions renormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence

For simplicity, we restrict our study to the notion of linear stability (or L 2 -stability). Note that other notions of stability such as entropic one is briefly discussed in [5].

Such operators, which must satisfy some physical constraints such as mass conservation, can be defined in several ways (this illustrates the fact that there is not a unique solution

Duke Math. Compactness in Boltzmann’s equation via Fourier integral operators and applications. From the Boltzmann equation to the Stokes-Fourier system in a bounded domain. On

Cl´ ement Mouhot and Lukas Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity 19 (2006), no. Ammon

Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro-macro decomposition based

While almost all the schemes mentioned before are based on very similar ideas, the approach proposed in [23] has been shown to be very general, since it applies to kinetic equations