• Aucun résultat trouvé

Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian

N/A
N/A
Protected

Academic year: 2022

Partager "Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian"

Copied!
6
0
0

Texte intégral

(1)

Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian

Manuel DEL PINOa, Jean DOLBEAULTb

a D.I.M. & C.M.M. (UMR CNRS no. 2071), F.C.F.M., Univ. de Chile, Casilla 170 Correo 3, Santiago, Chile E-mail: delpino@dim.uchile.cl

b Ceremade (UMR CNRS no. 7534), Univ. Paris IX-Dauphine, Pl. de Lattre de Tassigny, 75775 Paris C´edex 16, France

E-mail: dolbeaul@ceremade.dauphine.fr

Abstract. We study the asymptotic behaviour of nonnegative solutions to: ut = ∆pum using an entropy estimate based on a sub-family of the Gagliardo-Nirenberg inequalities – or, in the limit casem= (p−1)−1, on a logarithmic Sobolev inequality inW1,p– for which optimal functions are known.

Diffusions nonlin´eaires et constantes optimales dans des in´egalit´es de type Sobo- lev : comportement asymptotique d’´equations faisant intervenir lep-Laplacien R ´esum ´e. Nous ´etudions le comportement asymptotique des solutions positives ou nulles de :ut =

pum`a l’aide d’une estimation d’entropie qui repose sur l’utilisation d’une sous-famille des in´egalit´es de Gagliardo-Nirenberg – ou, dans le cas limitem = (p−1)−1, d’une in´egalit´e de Sobolev logarithmique dansW1,p – pour laquelle on connait des fonctions optimales.

Version franc¸aise abr ´eg ´ee

Nous consid´erons dansIRddes solutions positives ou nulles de

ut= ∆pum, (0)

o`u∆pd´esigne lep-Laplacien. Le premier r´esultat de cette note concerne le casm= 1.

THEOR´ EME` 0.1. – Supposons quem= 1,d≥2,2d+1d+1 ≤p < d. Soituune solution de (0) avec donn´ee initialeu0dansL1∩Ltelle queuq0∈L1, o `uq= 2p−3p−1 (sip <2) etR

|x|pp1u0dx <+∞. Alors pour touts >1, il existe une constanteK >0telle que, pour toutt >0,

ku(t,·)−u(t,·)ks≤K R−(α2 qs+d(1−1s)) sip≥2, s≥q , kuq(t,·)−uq(t,·)ks≤K R−(2qsα +d(q−1s)) sip≤2, s≥ 1q ,

o `uα= (1−1p(p−1)p−1p )p−1p ,R=R(t) = (1 +γ t)1/γ,γ= (d+ 1)p−2d,u(t, x) =R1dv(logR,Rx) avec, pour toutx∈IRd,v(x) = (C−p−2p |x|pp1)1/(q−1)+ si p6= 2etv(x) =C e−|x|2/2sip= 2.

(2)

Ici on notekvkc = R

|v|cdx1/c

pour toutc >0. La preuve consiste `a montrer que la fonctionvd´efinie par u(t, x) = R−dv(logR,Rx), o`uR est donn´e dans le Th´eor`eme 0.1, est telle que sonentropie Σ = R [σ(v)−σ(v)−σ(v)(v−v)] dxavecσ(s) = sq−1q−1 siq 6= 1,σ(s) =slogssiq= 1(p= 2), a une d´ecroissance exponentielle. Dans le casp= 2, il suffit d’utiliser l’in´egalit´e logarithmique de Sobolev : voir par exemple [13]. Dans les autres cas, on utilise une sous-famille des in´egalit´es de Gagliardo-Nirenberg avec constantes optimales (voir [6]).

THEOR´ EME` 0.2. – Soit1 < p < d,1 < a ≤ p(d−1)d−p ,b = pa−1p−1. Il existe une constante strictement positiveStelle que pour toute fonctionw∈Wloc1,pv´erifiantkwka+kwkb<+∞,

( kwkb≤ S k∇wkθpkwk1−θa avecθ= (a−1)(dp−(d−p)a)(a−p)d sia > p kwka≤ S k∇wkθpkwk1−θb avecθ=a(d(p−a)+p(a−1))(p−a)d sia < p

avec, `a une translation pr`es, ´egalit´e pour toute fonction de la formew(x) = A(1 +B|x|pp1)

p1 a−p

+ , o `u (A, B)∈IR2est tel queBa le mˆeme signe quea−p.

On en d´eduit, par un argument de changement d’´echelle, une in´egalit´e inhomog`ene :F[v] ≥ F[v], o`u F[v] =R

vp−11 |∇v|p dx−1q (1−κd p+p−2p )R

vq dx, avecκp =p1(p−1)pp1, qui montre qu’on a, pour toutt >0,Σ(t)≤e−α tΣ(0). La fin de la preuve repose sur une in´egalit´e de type Csisz´ar-Kullback selon laquelle,sif etgsont deux fonctions deLq avecq∈(1,2], positives ou nulles, alors

Z [σ(f

g)−σ(1)(f

g −1)]gqdx≥ q

2 min kfkq−2q ,kgkq−2q

kf−gk2q.

On s’int´eresse ensuite au casm6= 1, d’un point de vue formel, car `a part pourp= 2[9] ou pourm= 1 [10], il n’y a apparemment pas de r´esultat de convergence dans L, ni mˆeme d’existence globale. Soit q= 1 +m−p−11 . Selon queqest plus grand ou plus petit que1, on retrouve encore deux r´egimes diff´erents avec un cas limite correspondant `aq= 1(m= (p−1)−1) que l’on traite grˆace `a une g´en´eralisation `aW1,p de l’in´egalit´e logarithmique de Sobolev : voir le Th´eor`eme 0.4 ci-dessous. On supposera donc que

(H) uest une solution de donn´ee initialeu0∈L1∩Ltelle queuq0∈L1(sim <p−11 ) etR |x|pp1u0dx <

+∞, qui est bien d´efinie pour toutt >0, appartient `aC0(IR+;L1(IRd,(1 +|x|p−1p )dx)∩L(IR+×IRd), et telle queuq ett7→R

up−11 |∇u|pdxappartiennent respectivement `aC0(IR+;L1(IRd)et `aL1loc(IR+). THEOR´ EME` 0.3. – Supposons qued≥2,1< p < d,d−(p−1)d(p−1) ≤m≤p−1p etq= 1 +m−p−11 . Soitu une solution de (0) v´erifiant (H). Alors il existe une constanteK >0telle que, pour toutt >0,

ku(t,·)−u(t,·)kq ≤K R−(α2+d(1−1q)) si p−11 ≤m≤ p−1p , kuq(t,·)−uq(t,·)k1/q≤K Rα2 si d−(p−1)d(p−1) ≤m≤ p−11 ,

o `uα= (1−1p(p−1)pp1)p−1p etR=R(t) = (1 +γ t)1/γ,γ= (md+ 1)(p−1)−(d−1),u(t, x) =

1

Rdv(logR,Rx)avec, pour toutx∈IRd,v(x) = (C−p−1mp (q−1)|x|p−1p )1/(q−1)+ sim6= (p−1)−1 etv(x) =C e−(p−1)2|x|p/(p1)/psim= (p−1)−1.

La preuve est similaire `a celle du casm= 1, `a l’exception du casq= 1(qui correspond `am= (p−1)−1), et pour lequel on utilise l’in´egalit´e logarithmique de Sobolev dansW1,psuivante (voir [6] pour une preuve dans le cas de la forme invariante par changement d’´echelle) :

THEOR´ EME` 0.4. – Soit1< p < d. Pour toute fonctionw∈W1,p,w6= 0, on a Z

|w|plog |w|

kwkp

dx+ d p2kwkpp

1−logLp−log( d p2λ)

≤λk∇wkpp

(3)

avecLp = pd p−1e p−1 πp2h

Γ(d2 + 1)/Γ(dp−1p + 1)ipd

. Pourλ = (p−1)pp−1, cette in´egalit´e est de plus optimale avec ´egalit´e si et seulement siw=v1/pest ´egale, `a une translation et `a une multiplication par une constante pr`es, `av1/p.

Une preuve d´etaill´ee du Th´eor`eme 0.1 sera donn´ee dans [7].

1. Introduction and main result

The long time behaviour of solutions to nonlinear diffusion equations has been extensively studied, but most of the results are concerned with nonlinearities involving the function itself rather than its derivatives, like in the case of the porous medium equation. Although it is well known that equations involving thep- Laplacian have similar properties and can be studied using the same type of tools [10], much less is known for such type of diffusions.

Recently, an approach based on anentropy-entropy production method [1, 3, 11, 2] has been developed, but it has apparently not been sufficient to catch theintermediate asymptotics, i.e.to determine in an appro- priateLsnorm the decay rate of the difference of the solution with the Barenblatt-Prattle type self-similar solution, in the case of thep-Laplacian (which is already known for a long time, by different methods, for s=∞: see [9]). Independently of theentropy-entropy production method,the rate of decay of the entropy functionals in connection with optimal constants in Sobolev type inequalities has been investigated in [4, 5]

forp= 2, and new optimal constants were found in [6] (see Theorem 2.2 for results on Gagliardo-Nirenberg inequalities and Theorem 3.2 for a new and optimal logarithmic Sobolev inequality inW1,p). These results are a consequence of a recent uniqueness result by Serrin & Tang [12] for ground states involving thep- Laplacian. The main purpose of this note is to present the application of these optimality results to the asymptotic behaviour of evolution equations involving thep-Laplacian.

THEOREM1.1. – Assume thatd≥2, 2d+1d+1 ≤p < dand letube a solution inIRdto

ut= ∆pu (1)

corresponding to a nonnegative initial datau0inL1∩L such thatuq0 ∈ L1 withq = 2p−3p−1 (in case p <2) andR

|x|p−1p u0dx <+∞. For anys >1, there exists a constantK >0such that, for anyt >0, ku(t,·)−u(t,·)ks≤K R−(α2 qs+d(1−1s)) ifp≥2, s≥q ,

kuq(t,·)−uq(t,·)ks≤K R−(2qsα +d(q−1s)) ifp≤2, s≥1q ,

whereα= (1−1p(p−1)pp1)p−1p ,R=R(t) = (1 +γ t)1/γ,γ= (d+1)p−2d,u(t, x) =R1dv(logR,Rx) with, for anyx∈IRd,v(x) = (C−p−2p |x|p−1p )1/(q−1)+ if p6= 2andv(x) =C e−|x|2/2ifp= 2.

Here∆p is thep-Laplace operator orp-Laplacian, for somep > 1: ∆pw = ∇ ·(|∇w|p−2∇w). All integrals are taken overIRd and we shall use the notationkvkc = R

|v|cdx1/c

for anyc > 0. Unless it is explicitely specified, functions spaces are concerned with functions defined onIRdand the measure is Lebesgue’s measure.

The rest of this note is devoted to a sketch of the main steps of the proof of this result (Section 2.) and to a natural extension (Theorem 3.1) to more general diffusion, but only at a formal level (Section 3.) since uniform convergence for large time or even existence results are apparently not available in the literature.

For standard results on nonlinear diffusions, we refer to [8]. A detailed proof will be given in a forthcoming paper [7].

(4)

2. Entropy and optimal constants in Sobolev type inequalities

In this section we are giving a sketch of the proof of Theorem 1.1. Let v be such that u(t, x) = R−dv(logR,Rx). Ifuis a solution of (1),vis a solution of

vt= ∆pv+∇ ·(x v), (2)

with initial datau0, andvis a stationary, nonnegative radial and nonincreasing solution of (2). Notice that the constantCis uniquely determined by the conditionM =kvk1and can be explicitely computed with the help of theΓfunction. Forq >0, define theentropyby

Σ = Σ[v] = Z

[σ(v)−σ(v)−σ(v)(v−v)] dx

where σ is defined on (0,+∞) byσ(s) = sq−1q−1 if q 6= 1, σ(s) = slogs if q = 1(p = 2). Then

dt =−q(I1+I2+I3+I4)where I1=R

vp−11 |∇v|pdx I2=R

|x|pp1v dx

I3=−dqR vq dx I4=R

|∇v|p−2∇v· |x|p−11 −1x dx

The discussion for the heat equationp= 2relies on the logarithmic Sobolev inequality: see for instance [13]. From now on, we assumep6= 2. Using H¨older’s inequality, we can estimateI4in terms ofI1andI2: LEMMA2.1. – Letκp=p1(p−1)pp1. With the above notations and under the assumptions of Theorem 1.1, any solutionvof (2) with initial datau0satisfies: 1qdt ≤ −(1−κp)(I1+I2)−I3.

Next, consider a subfamily of the Gagliardo-Nirenberg inequalities for which the optimal constants and optimal functions are known. We refer to [6] for a proof.

THEOREM2.2. – Let1 < p < d,1 < a≤ p(d−1)d−p , andb =pa−1p−1. There exists a positive constantS such that for any functionw∈Wloc1,pwithkwka+kwkb<+∞,

( kwkb≤ S k∇wkθpkwk1−θa withθ= (a−1)(dp−(d−p)a)(a−p)d ifa > p kwka≤ S k∇wkθpkwk1−θb withθ=a(d(p−a)+p(a−1))(p−a)d ifa < p

and equality holds for any function taking, up to a translation, the formw(x) =A(1 +B|x|pp1)

p−1 ap

+ for

some(A, B)∈IR2, whereBhas the sign ofa−p.

With the special choiceb= pp2(p−1)−p−1,a=b q, we can rephrase Theorem 2.2 into a single non homogeneous inequality forv=wb. Forp6= 2, letF[v] =R

vp−11 |∇v|pdx−1q(1−κdp+p−2p )R

vq dx, withκpdefined as in Lemma 2.1.

COROLLARY2.3. – Letd≥2be an integer and assume that 2d+1d+1 ≤p < d. Then for any nonnegative measurable functionvfor which all integrals involved in the definition ofFare well defined,F[v]≥ F[v] wherevis defined as in Theorem 1.1 in order thatkvkL1=kvkL1.

Proof . – Notice first that 1−κdp+p−2p is positive forp >2and negative forp <2. One can perform a scaling leavingkvk1invariant in the first case,kvkqin the second case. This reduces the inequality forvto one of the cases of Theorem 2.2. The result follows by identification of a minimizer. 2 As a straightforward consequence,Σ≤ 1−κq p p−1p [(1−κp)(I1+I2) +I3], which shows the exponential decay of the entropy. Notice that this inequality is autonomous (the moment in|x|p−1p is the same on both sides of the inequality).

COROLLARY2.4. – Ifvis a solution of (2) corresponding to an initial data satisfying the conditions of Theorem 1.1, then, withα= (1−κp)p−1p , for anyt >0,Σ(t)≤e−α tΣ(0).

(5)

The conclusion of the proof of Theorem 1.1 then holds with the help of the following lemma which is one of the variants of the Csisz´ar-Kullback inequality: see [7] for more details. In order to treat the caseq <1 (p <2), one has to notice first thatsq−1q−1q−1q (s−1)can be written as(1q −1)−1[(sq)1q −1−1q((sq)−1)]

for anys >0.

LEMMA2.5. – Letfandgbe two nonnegative functions inLq(Ω)for a given domainΩinIRd. Assume thatq∈(1,2]. ThenR

[σ(fg)−σ(1)(fg −1)]gq dx≥ q2 min(kfkq−2Lq(Ω),kgkq−2Lq(Ω))kf−gk2Lq(Ω). 3. Extension to other nonlinear diffusions involving thep-Laplacian

This section is devoted to the extension of the above results to the equation

ut= ∆pum (3)

for some positive exponentm. The result stated below is formal in the sense that apparently a complete existence theory for such an equation is not yet available, except in the special cases p = 2orm = 1 [9, 10, 8]. Letq = 1 +m−(p−1)−1. Whetherqis bigger or smaller than1determines two different regimes like form = 1(depending ifpis bigger or smaller than2). The caseq= 1(m= (p−1)−1) is a limiting case, which involves a generalized logarithmic Sobolev inequality: see Theorem 3.2. We shall assume that:

(H) the solutionucorresponding to a given nonnegative initial datau0inL1∩L, such thatuq0∈L1(in casem < p−11 ) andR |x|pp1u0dx <+∞, is well defined for anyt >0, belongs toC0(IR+;L1(IRd,(1 +

|x|pp1)dx)∩L(IR+×IRd), such thatuq andt 7→ R

up11|∇u|p dxbelong toC0(IR+;L1(IRd)and L1loc(IR+)respectively.

THEOREM3.1. – Assume thatd≥2,1< p < d, d−(p−1)d(p−1) ≤m≤ p−1p andq= 1 +m−p−11 . Letu be a solution of (3) satisfying (H). Then there exists a constantK >0such that for anyt >0,

ku(t,·)−u(t,·)kq ≤K R−(α2+d(1−1q)) if p−11 ≤m≤ p−1p , kuq(t,·)−uq(t,·)k1/q≤K Rα2 if d−(p−1)d(p−1) ≤m≤ p−11 ,

whereα = (1− 1p(p−1)pp1)p−1p andR = R(t) = (1 +γ t)1/γ,γ = (md+ 1)(p−1)−(d−1), u(t, x) = R1dv(logR,Rx)with, for anyx∈ IRd,v(x) = (C−p−1mp (q−1)|x|p−1p )1/(q−1)+ ifm 6=

(p−1)−1andv(x) =C e−(p−1)2|x|p/(p1)/pifm= (p−1)−1.

The rescaled functionvdefined as in Section 2., withRnow given as above, satisfies the rescaled equa- tion vt = ∆pvm+∇ ·(x v). The main steps of the proof are the same as in the case m = 1, if q 6= 1. With the same definition of Σas in Section 2., Lemma 2.1 applies without modification. With w=v(mp+q−(m+1))/p=v1/banda=b q=pm(p−1)+p−2mp(p−1)−1 , Theorem 2.2 also applies and provides a non homogeneous inequality like the one of Corollary 2.3, thus giving the same result as in Corollary 2.4.

The caseq = 1 (which corresponds tom = (p−1)−1) is a limiting case, for which we can use the generalization toW1,pof the logarithmic Sobolev inequality.

THEOREM3.2. – Let1< p < d. Then for anyw∈W1,p,w6= 0, Z

|w|plog |w|

kwkp

dx+ d p2kwkpp

1−logLp−log( d p2λ)

≤λk∇wkpp

with Lp = pd p−1e p−1 πp2h

Γ(d2+ 1)/Γ(dp−1p + 1)ipd

. For λ = (p−1)pp−1, Inequality (3.2) is morevover optimal with equality if and only ifw = v1/p is equal, up to a translation and a multiplica- tion by a constant, tov1/p.

(6)

For convenience one uses here a non invariant under scaling inequality, which is equivalent to the following optimal form (see [6]):R

|w|plog|w|dx≤ pd2log

Lpk∇w|pp

for anyw∈W1,p(IRd)such thatkwkp= 1.

As a conclusion, notice that the convergence inLsfor anys∈[q,+∞)or[1/q,+∞), depending whether q ≥1orq≤1, would hold as soon as a uniform convergence result ofvtovis true. This is apparently known only in the casem= 1[10] orp= 2[9].

Acknowledgements.This research has been supported by ECOS-Conicyt under contract C98E03. The first and the second author have been partially supported respectively by Grants FONDAP and Fondecyt Lineas Complementarias 8000010, and by European TMR-Network ERBFMRXCT970157 and the C.M.M. (UMR CNRS no. 2071), Universi- dad de Chile.

References

[1] A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations,Comm. Partial Differential Equations26no. 1-2 (2001), 43–100.

[2] J.A. Carrillo, A. J¨ungel, P.A. Markowich, G. Toscani, A. Unterrreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,preprint TMR “Asympt. Methods in Kinetic Theory”

119(1999), 1–91.

[3] J.A. Carrillo, G. Toscani, AsymptoticL1-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math.49(2000), 113–141.

[4] M. Del Pino, J. Dolbeault, Generalized Sobolev inequalities and asymptotic behaviour in fast diffusion and porous media problems,Preprint Ceremade no. 9905 (1999), 1–45.

[5] M. Del Pino, J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and application to nonlinear diffu- sions,Preprint Ceremade no. 0119 (2001), 1–25, to appear in J. Math. Pures Appl.

[6] M. Del Pino, J. Dolbeault, General logarithmic and Gagliardo-Nirenberg inequalities with best constants,Preprint Ceremade no. 0120 (2001), 1–12 / Preprint CMM-B-01/06-38 (2001), 1–11.

[7] M. Del Pino, J. Dolbeault, Asymptotic behaviour of nonlinear diffusions, in preparation.

[8] E. Di Benedetto, Degenerate parabolic equations, Springer Verlag, New York (1993).

[9] A. Friedmann, S. Kamin, The asymptotic behaviour of gas in an-dimensional porous medium, Trans. Amer.

Math. Soc.262no. 2 (1980) 551–563.

[10] S. Kamin, J.L. V´azquez, Fundamental solutions and asymptotic behaviour for thep-Laplacian equation,Rev. Mat.

Iberoamericana4no. 2 (1988), 339–354.

[11] F. Otto, The geometry of dissipative evolution equations: the porous medium equation,Comm. Partial Differential Equations26no. 1-2 (2001), 101–174.

[12] J. Serrin, M. Tang, Uniqueness for ground states of quasilinear elliptic equations,Indiana Univ. Math. J.49no. 3 (2000), 897–923.

[13] G. Toscani, Sur l’in´egalit´e logarithmique de Sobolev,C. R. Acad. Sci. Paris, S´er. I Math.324(1997), 689–694.

Références

Documents relatifs

In particular we present an asymptotic functional equa- tion for potential asymptotic behaviour, and a theorem stating sufficient conditions for the existence of an actual solution

—On Some Nonlinear Partial Differential Equations Involving The 1-Laplacian and Critical Sobolev exponent, ESAIM: Control, Optimisation and Calculus of Variations, 4, p.

Toute utilisation commerciale ou impression sys- tématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention

Konotop, Nonlinear modes in a generalized PT -symmetric discrete nonlinear Schr¨ odinger equations, J.. For each line the first plot stands for the initial condition, the second

Finally, the first solution in Theorem 1.1 is just the same as in [11], while the second one is obtained as the limit of the solutions of the perturbed problem; since we need

Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent.. Annales

WEISSLER, Existence and Non-Existence of Global Solutions for a Semi-Linear Heat Equation, Israël J. WEISSLER, Rapidly Decaying Solutions of an

The monotone bounded solution u 0 of the Peierls-Nabarro problem (1.12) in R is explicit.. To prove this existence result, we will use the following non-sharp energy es- timate for