• Aucun résultat trouvé

(1)Gravimetric sensors “Quartz Crystal Microbalance&rdquo

N/A
N/A
Protected

Academic year: 2022

Partager "(1)Gravimetric sensors “Quartz Crystal Microbalance&rdquo"

Copied!
29
0
0

Texte intégral

(1)Gravimetric sensors “Quartz Crystal Microbalance” (QCM) J.-M Friedt FEMTO-ST/Time & Frequency department jmfriedt@femto-st.fr slides and references at jmfriedt.free.fr. October 14, 2021. 1 / 29.

(2) Direct detection (bio)sensors I I I I. No sample preparation: continuous monitoring + time resolution (kinetic) Surface immobilization of receptor molecules: multiple measurement steps are possible Sensitivity defined by mass to physical measurement conversion efficiency Selectivity defined by affinity of the surface functionalization to the targeted compound, rejecting unwanted interference (antibody) I Improved signal to noise ratio by using evanescent wave (rejects bulk noise and keep only close-to-surface signal) I Detection limit determined by system noise level (detection limit=noise/sensitivity) = complete system (electronics, fluidics ...). detection layer (organic, bio) organic interface (metallic interface) inorganic transducer (glass, quartz) 2 / 29.

(3) Quartz crystal resonator basics Examples of direction detection sensors: Surface Plasmon Resonance, (optical) waveguide sensors, vibrating cantilever, electrochemical enzyme sensors. I Quartz crystal resonator: piezoelectric substrate confining an acoustic wave I Boundary conditions: half-wavelength confined between parallel (plano-plano) or curved (plano-convex) sides of a quartz plate I Odd overtones are confined in the same boundary conditions. A. I Resonance frequency determined by plate thickness and shear wave velocity: 3340 m/s in AT-cut quartz (temperature compensated) I Application: f = 5 MHz requires t = λ/2 = c/(2f ) = 334 µm. t N=1,. 3,. 5 3 / 29.

(4) Quartz crystal resonator basics Examples of direction detection sensors: Surface Plasmon Resonance, (optical) waveguide sensors, vibrating cantilever, electrochemical enzyme sensors. I Quartz crystal resonator: piezoelectric substrate confining an acoustic wave I Boundary conditions: half-wavelength confined between parallel (plano-plano) or curved (plano-convex) sides of a quartz plate I Odd overtones are confined in the same boundary conditions I Resonance frequency determined by plate thickness and shear wave velocity: 3340 m/s in AT-cut quartz (temperature compensated) I Application: f = 5 MHz requires t = λ/2 = c/(2f ) = 334 µm 4 / 29.

(5) Butterworth-Van Dyke electromechanical model I Butterworth-VanDyke model 1 2 3 : RLC series branch represents damped spring-mass (“motional branch”) I Electrodes separated by a dielectric define a parallel capacitance Mechanical M ẍ + hẋ + kx = F h (damping) M (mass) k (stiffness) x (displacement) ẋ (velocity) √ Q = h1 kM q k ω0 = M. Electrical L1 q̈ + R1 q̇ + q/C1 = U R1 (resistance) L1 (inductance) 1/C1 (capacitance) q (electrical charge) i = dq/dt q (current) Q=. 1 R. L C. R1 L1 C1. k C0 M h. ω0 = √ 1. L1 C1. 1 S.. Butterworth, On electrically-maintained vibrations, Proc. Phys. Soc. (London), 27 410–424 (1914) Van Dyke The electric network equivalent of a piezoelectric resonator, Phys. Rev 25 (6) 895 (1925) 3 D.W. Dye, The piezo-electric quartz resonator and its equivalent electrical circuit, Proc. Phys. Soc. (London) 38 (1) 399 (1925) 2 K.S.. 5 / 29.

(6) Butterworth-Van Dyke electromechanical model I Butterworth-VanDyke model 1 2 3 : RLC series branch represents damped spring-mass (“motional branch”) I Electrodes separated by a dielectric define a parallel capacitance Mechanical M ẍ + hẋ + kx = F h (damping) M (mass) k (stiffness) x (displacement) ẋ (velocity) √ Q = h1 kM q k ω0 = M. Electrical L1 q̈ + R1 q̇ + q/C1 = U R1 (resistance) L1 (inductance) 1/C1 (capacitance) q (electrical charge) i = dq/dt q (current) Q=. L C. 1 R. ω0 = √ 1. L1 C1. 1 S.. Butterworth, On electrically-maintained vibrations, Proc. Phys. Soc. (London), 27 410–424 (1914) Van Dyke The electric network equivalent of a piezoelectric resonator, Phys. Rev 25 (6) 895 (1925) 3 D.W. Dye, The piezo-electric quartz resonator and its equivalent electrical circuit, Proc. Phys. Soc. (London) 38 (1) 399 (1925) 2 K.S.. 6 / 29.

(7) Butterworth-Van Dyke electromechanical model I Butterworth-VanDyke model 1 2 3 : RLC series branch represents damped spring-mass (“motional branch”) I Electrodes separated by a dielectric define a parallel capacitance 12/ 3/ 2016 8:45:34 AM 1311.6010K42- 103899-La. Trc1. Y11 Real 10 mS/ Ref 30 mS Cal Off. Mem4[Trc1]. Y11 Real 10 mS/ Ref 30 mS. 0.08 0.07 0.06. C1 R1. M1. 0.05. L1. C0. 0.04 0.03 30 mS. 1 M1 M2 M3 M1 M2 M3. 9.996900 MHz 9.996562 MHz 9.997233 MHz 9.996900 MHz 9.996739 MHz 9.997069 MHz. 20.081 mS 10.004 mS 10.005 mS 50.356 mS 19.987 mS 19.948 mS. M M 2 M 13. 0.02. M2M3. 0.01 0 -0.01 -0.02. Ch1 Start 9.99 MHz Trc3. Pwr -10 dBm Bw 100 Hz. Y11 Phase 50°/ Ref 0° Cal Off. Mem5[Trc3]. Stop 10.02 MHz. Y11 Phase 50°/ Ref 0°. 250. 2. Antiresonance: new concept introduced by the parallel capacitance. M1 10.014586 MHz 29.84 °. 200 150 100. M1. 50. 0°0 -50 -100 -150 -200 -250. Ch1 Start 9.99 MHz. Pwr -10 dBm Bw 100 Hz. Stop 10.02 MHz. 7 / 29.

(8) QCM sensitivity. 4. dt I QCM is claimed to detect “mass” bound to the sensor surface A I Definition of the sensitivity: S = dff · dm 0 I Allows for comparing a wide range of acoustic transducers, from kHz to GHz and nanometric to macroscopic df A df f 1 I Sauerbrey (1959) : dtt = dff = dλ λ ⇒ S = f · Aρdt = f ρdf ·t = ρ·t. t. t: QCM thickness, ρ = 2.643 g.cm−3 : quartz density, dm = A · ρ · dt: adsorbed mass over area A Assumption: perturbation (dt  t) of a layer with same properties than quartz (ρL = ρ) Numerical application: 5 MHz QCM exhibits S = 11 cm2 /g 4 G.. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Zeitschrift für Physik A Hadrons and Nuclei, 155 (2), 206–222 (1959) 8 / 29.

(9) Detection limit I I I I I. the smallest quantity that can be detected using the sensor e.g. 3σ with σ the measurement fluctuation (noise) includes all sources of noise: electronics, fluidics, digitization detection limit=noise/sensitivity long term drift=low noise correlated noise: baseline stabilization prior to running a measurement (double layer stabilization, temperature stabilization) I Typical resolution: 1 Hz at 5 MHz=0.2 ppm ⇒ dm = 18 ng/cm2 A I Protein film: ρprotein = 1.4 g/cm3 and 5 nm thick ⇒ 700 ng/cm2 I ⇒2.5% surface coverage by proteins can be detected with QCM. I. J.-M Friedt, K. H. Choi, L. Francis and A. Campitelli, Simultaneous Atomic Force Microscope and Quartz Crystal Microbalance measurements: interactions and displacement field of a QCM, Japanese J. Appl. Phys., 41 (6A), 2002, 3974-3977. 9 / 29.

(10) Displacement and acceleration I F~ = m · ~a I static displacement: A0 = C × V = 2 pm/V since C = 1.4 · 10−12 m/V I dynamic displacement5 if Q = 1000 : A = A0 × Q = 2 nm/V I x = A sin(ωt) ⇒ v = A · ω(ωt) ⇒ |~a| ≤ A · ω 2 I f = 5 MHz: |a| = 2 · 10−9 × (2π × 5 · 106 ) = 2 · 106 m/s2. Excellent gravimetric sensitivity linked to the huge acceleration on the sensor surface. 5 J.-M Friedt, K. H. Choi, L. Francis, A. Campitelli, Simultaneous Atomic Force Microscope and Quartz Crystal Microbalance measurements: interactions and displacement field of a QCM, Jap. J. of Appl. Phys. 41 (6A) pp.3974-3977 (2002) 10 / 29.

(11) Dissipation measurement (QCM-D) I I I I. Frequency related to “mass” (acoustic wave confinement boundary condition variation) Dissipation = Q −1 related to viscous losses Viscous losses related to the conformation of the molecules B. Kasemo in Göteborg: creation of Q-Sense 6 (using aliasing !). R. Richter & al, Pathways of Lipid Vesicle Deposition on Solid Surfaces: A Combined QCM-D and AFM Study, Bio. J. 85 3035–3047 (2003). 6 M. Rodahl, F. Höök, A. Krozer, P. Brzezinski, B. Kasemo, Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments, Rev. Sci. Instrum. 66 (7) 3924–3930 (1995). 11 / 29.

(12) Shear wave penetration depth I I I I. Newtonian fluid: constant stress-strain relation defines the viscosity Fluids characterized by dynamic (shear) viscosity η: dragged by the shear wave 7 Exponentially decaying displacement q with depth (6= propagative pressure wave) η A(z) = A(0) exp(−z/δ) with δ = ρω. I Considering the dynamic viscosity of water η = 1 cP, and ρ = 1 g.cm−3 , then r z 10−2 δ= cm = 180 nm 2π × 5 · 106. A vibrating surface. 7 K.K Kanazawa & J.G. Gordon, The oscillation frequency of a quartz resonator in contact with liquid, Analytica Chimica Acta 175 99–105 (1985). 12 / 29.

(13) Measurement examples: electrochemical deposition I Reversible thin film deposition controlled electrically I Examples: Cu ↔ Cu 2+ + 2e − or Ag ↔ Ag + + e −. Ag. Cu Rigid layer ⇒ ∆fn /n ∝ √ ∆mlayer (low damping) Viscous layer ⇒ ∆fn / n ∝ {∆mliquid , ∆mlayer } (high damping) 13 / 29.

(14) Measurement examples: globular proteins I I I I. surface chemistry: hydrophobic thiol on gold S-layer protein forms a crystal on a hydrophobic surface (reversible) little/no variation of the quality factory (damping) simultaneous optical measurement: thickness and density of the layer. Globular proteins ∼ thin rigid film: valid approximations for both acoustic (mass effect) and optics ⇒ conditions applied during BIAcore’s radiolabelling calibration 8 8 J.-M Friedt, L. Francis, G. Reekmans, R. De Palma, A. Campitelli and U.B. Sleytr, Simultaneous surface acoustic wave and surface plasmon resonance measurements: electrodeposition and biological interactions monitoring, J. of Appl. Phys., 95 (4), 2004, 1677-1680. 14 / 29.

(15) Measurement examples: fibrillar proteins I Globular proteins (S-layer, IgG, IgE, BSA ...) are short and spread on the surface (5-10 nm) as a rigid layer I Fibrillar proteins (collagen, fibrinogen) extend deep in the buffer solution, equivalent to a thick layer full of solvent ⇒ strong contribution of viscosity. I rigid interaction: ∆fN ∝ N √ I viscous interaction: ∆fN ∝ N I Large damping variation and √ ∆fN /N scaling as N as opposed to constant: signatures of viscous interactions. 30 µg/ml collagen. 15 / 29.

(16) Measurement conclusions ⇒ optics underestimates the adsorbed mass (lower optical index than expected). Analyte (bulk concentration, µg/ml). collagen (30µg/ml) collagen (300µg/ml) fibrinogen (46µg/ml) fibrinogen (460µg/ml). √ ∆fn / n (Hz) QCM. 2 − 12. ?. ?-1000. NO. 50. 4.7 ± 0.7 1.0 ± 0.1. 75 ± 15 100. NO NO. 45=900 8=160. 3-5 0.2-0.5. ± ± ± ±. 1000 1200 110±5 NO. NO NO 55±5' 1110 100=1700. 100 >120 4-10 8-10. d (nm) SAW/SPR. 560±20 135±15 1750±150 2100±200 750±100 1500±500. 16.0 ± 3.0 19.0 ± 3.0 6.0 ± 1.5 13.0 ± 2.0. 25 35 50 50. Cu S-layer CTAB. x (%) SAW/SPR. surface density (ng/cm2 ). 15 10 10 10. ∆fn /n (Hz) QCM. ∆D (×10−6 ) QCM. 16 / 29.

(17) Measurement conclusions ⇒ acoustics overestimates the adsorbed mass (bound solvent to the organic layer). Analyte (bulk concentration, µg/ml). collagen (30µg/ml) collagen (300µg/ml) fibrinogen (46µg/ml) fibrinogen (460µg/ml). √ ∆fn / n (Hz) QCM. 2 − 12. ?. ?-1000. NO. 50. 4.7 ± 0.7 1.0 ± 0.1. 75 ± 15 100. NO NO. 45=900 8=160. 3-5 0.2-0.5. ± ± ± ±. 1000 1200 110±5 NO. NO NO 55±5' 1110 100=1700. 100 >120 4-10 8-10. d (nm) SAW/SPR. 560±20 135±15 1750±150 2100±200 750±100 1500±500. 16.0 ± 3.0 19.0 ± 3.0 6.0 ± 1.5 13.0 ± 2.0. 25 35 50 50. Cu S-layer CTAB. x (%) SAW/SPR. surface density (ng/cm2 ). 15 10 10 10. ∆fn /n (Hz) QCM. ∆D (×10−6 ) QCM. 17 / 29.

(18) Sensitivity mapping & packaging Scanning Electrochemical Microscope mapping of a QCM gravimetric sensitivity. 9. I strongest sensitivity at center of electrode I sensitivity vanishes on the surrounding of the resonator I the higher the overtone, the better the energy confinement over the electrode I O-ring around the sensor will not impact the acoustic wave. 9 A.C. Hillier & M.D Ward, Scanning electrochemical mass sensitivity mapping of the quartz crystal microbalance in liquid media, Anal. Chem. 64 (21) 2539–2554 (1992). 18 / 29.

(19) Beyond the bulk acoustic resonator: FBAR A 1 dm I S = dff · dm = ρ·t ⇒ dff = ρ·A·t = dm m with m the mass of the resonator I increasing S requires shrinking m and hence t I thin Film Bulk Acoustic Resonator: replace bulk acoustic resonator with piezoelectric film on a membrane I but rising S associated with rising f0 .... I ... and oscillator noise rises with f0 , degrading the detection limit I ⇒ is the detection limit improved on a FBAR architecture ?. Challenge of generating shear wave on a thin piezoelectric film deposited using a vapor method (C-axis normal to the growth plane). 19 / 29.

(20) Beyond the bulk acoustic resonator: SAW. I Another strategy for reducing the mass of the vibrating element: confine the acoustic wave to the surface I SAW: Surface Acoustic Wave devices I Rayleigh wave boundary conditions only met at the free surface ... I ... but Rayleigh waves exhibit out-of-plane component radiating as pressure waves in fluids. I Shear wave can be confined on a surface if a slow guiding layer is deposited on the surface (cf optical fiber) I Love-mode SAW devices exhibit high sensitivity and compatibility with liquid media I Love mode SAW sensors extensively used as bio-sensors. Example: N-isopropyl acrylamide (N-IPAAM) is a polymer whose conformation (hydrophilic v.s hydrophobic) changes with temperature 20 / 29.

(21) Beyond the bulk acoustic resonator: SAW I Another strategy for reducing the mass of the vibrating element: confine the acoustic wave to the surface I SAW: Surface Acoustic Wave devices I Rayleigh wave boundary conditions only met at the free surface ... I ... but Rayleigh waves exhibit out-of-plane component radiating as pressure waves in fluids. I Shear wave can be confined on a surface if a slow guiding layer is deposited on the surface (cf optical fiber) I Love-mode SAW devices exhibit high sensitivity and compatibility with liquid media I Love mode SAW sensors extensively used as bio-sensors. Example: N-isopropyl acrylamide (N-IPAAM) is a polymer whose conformation (hydrophilic v.s hydrophobic) changes with temperature 21 / 29.

(22) Measurement example I From SAW: phase and magnitude measurements I From SPR: optical thickness → exploit the viscous dissipation of the propagating acoustic wave SAW A (dB). −21. NIPAAM (N-isopropyl acrylamide) Thermocouple. x. LASER 670 nm. 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1. 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1. 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1. 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1. 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1. 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1. 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1. 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1. 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1. Liquid cell. Notice this is very difficult to reproGuiding layers duce with QCM Piezoelectric substrate (bottom side of sensor in contact Coupling prism with prism). Output IDT. SAWΔ φ (◦ ). Input IDT. 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1. −22 −22.5 −23 20. SPR Δ θ (m◦ ). z. 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1. −21.5. 25. 30. 35. 40. 45. −30 20. 25. 30. 35. 40. 45. 1200 1000 800 600 400 200 0 −200 20. 25. 30. 35. 40. 0 −10 −20. Temperature (◦ C). 45 22 / 29.

(23) Measurement example I From SAW: phase and magnitude measurements I From SPR: optical thickness → exploit the viscous dissipation of the propagating acoustic wave. 38.9. 34.7. 28.2. Cycle 3 (23.9 °C − 40.4 °C − 23.5 °C). 0 22.9. 900. 4. 600. 3. 300. 2 23.9. 32.5. 39.6. 35.2. 28.8. 0 23.5. 300. 6. 31.2. 41. 36.2. 29.4. Cycle 4 (23.5 °C − 43.4 °C − 26.1 °C). 0 23.9. 1200. 5. 900. 4. 600. 3. 300. 2 23.5. 34. 42.8. 38.8. 31.7. 0 26.1. L. Francis, J.-M. Friedt, C. Zhou, P. Bertrand In situ evaluation of density, viscosity and thickness of adsorbed soft layers by combined surface acoustic wave and surface plasmon resonance, Anal. Chem. 2006; 78 (12) (2006), pp. 4200-4209. PNIPAAm layer content (%). 3. °. 600. 2 22.9. 1200. 5. 900. 4. 10. 2. 34.9 °C ↓. 681. 501. 5. ° 30.8 C ↓ 146. 25 °C. 0. 20. 146. 25. 30. 35. 40. 45. Layer thickness (nm). 50. 55. 60. 4. 34.9 °C ↓ 3.5. 3. Viscosity (cP). 6. 30.5. 5. SPR Δθ (m ). 300. 1200. °. 3. Cycle 2 (22.9 °C − 41.2 °C − 23.9 °C). SPR Δθ (m ). 600. SPR Δθ (m°) SAW ΔA/Δφ (dB/rad). 900. 4. 6. SPR Δθ (m°) SAW ΔA/Δφ (dB/rad). SAW ΔA/Δφ (dB/rad). 5. 2 22.4. SAW ΔA/Δφ (dB/rad). 1200. 90. 1. Cycle 1 (22.4 °C − 39.1 °C − 22.9 °C). 35.1 °C ↑. 50. 6. 15. 2.5. 35.1 °C ↑. 2. 30.8 °C ↓. 1.5. 1 20. 25 °C 25. 30. 35. 40. 45. Layer thickness (nm). 50. 55. 60. 23 / 29.

(24) Device characterization I I I I I. Typical frequency: 150 MHz Acoustic wave velocity: shear wave on quartz 5060 m/s λ = c/f = 33 µm two-electrodes separated by a 50% gap: 8 µm-wide electodes fluidic confinement challenge: water over the electrodes induces a capacitive short circuit ⇒ wall with wavelength width over the acoustic path to confine the liquid. 24 / 29.

(25) -20. Electronics. I Two approaches: oscillator and frequency counter (closed loop), or frequency sweep and phase/magnitude measurement (open loop). Amplitude (dB). I Detection limit determined by sensitivity and reader electronics noise. D. Rabus, J.-M. Friedt & al., A high sensitivity open loop electronics for gravimetric acoustic wave-based sensors, IEEE Trans. UFFC 60 (6), 1219–1226 (2013). -40 -45 -50. 154 156 158 Frequency (MHz). 160. device device device device. 150. (D: distance between. I observe ϕ at fixed frequency and variations of v induces variation τ and hence ϕ. -35. 200. Phase (degree). =. 2π Dv. -30. 152. I Network analyzer will always provide some characteristics, if only of a failing sensor dϕ df. 1 2 3 4. -55. I Oscillator Barkhausen conditions are difficult to meet in strongy varying environments (losses). I ϕ = 2π · f · τ = 2π · f · D/v ⇒ IDTs). device device device device. -25. 100. 1 2 3 4. 50 0 -50. -100 -150 -200. 154. 156 158 Frequency (MHz). 160 25 / 29.

(26) Electronics. 10. Magnitude. I Detection limit determined by sensitivity and reader electronics noise. Phase. I Two approaches: oscillator and frequency counter (closed loop), or frequency sweep and phase/magnitude measurement (open loop). AD9954. I ϕ = 2π · f · τ = 2π · f · D/v ⇒ IDTs). dϕ df. = 2π Dv (D: distance between. I observe ϕ at fixed frequency and variations of v induces variation τ and hence ϕ. 1 0 1 0. AD8367. Gain controller. SYPD−2. Magnitude Phase. AD9954. Source. I Oscillator Barkhausen conditions are difficult to meet in strongy varying environments (losses) I Network analyzer will always provide some characteristics, if only of a failing sensor. ADuC7026 A A D Controller D C C SPI. SAW sensors. AD8367. phase detector. SYPD−2. low noise amplifier. low noise amplifier. 1 0 1 0. 10 P.. Durdaut, M. Höft, J.-M. Friedt, E. Rubiola, Equivalence of Open-Loop and Closed-Loop Operation of SAW Resonators and Delay Lines, MDPI Sensors (2019) 26 / 29.

(27) Ongoing project Replace passive glass slides in optical systems with active SAW transducers. 11. Replace the low permittivity quartz with high permittivity, strongly coupled lithium tantalate ⇒ solve the fluidic handling by solving the capacitive short circuit issue ? 11 J.-M. Friedt, L. Francis, Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layers, Sensing and Bio-sensing Research, 2016 27 / 29.

(28) Ongoing project Lithium tantalate substrate: high permittivity (εr ' 40) substrate propagating a shear wave ⇒ no need for fluidic confinement ! 5 lar1 echo3-echo1 lar2 echo3-echo1. 0. lar1 echo2-echo1. phase difference (deg). lar2 echo2-echo1. -5 -10 -15 -20 -25 -30 -35. 0. 500. 1000. 1500. 2000. time (s). Non-specific binding of proteins from powder milk (' 500 µg/ml). 28 / 29.

(29) Conclusion I The quartz crystal resonator: much more than a “microbalance” I direct detection system for probing thin film properties, including mass (density× thickness) and viscosity I Readily accessible substrates (cf. electronics quartz resonators) for experimenting I Opportunity to use radiofrequency electronics design skills I Ability to measure sub-100 ng.cm−2 masses: even used on satellites to assess outgassing Applicability to practical point of care biosensors? 14. 12 13. !. TODO I Experiment by yourself15 : jmfriedt.free.fr/QCM_BUP.pdf I Tuning fork for gas sensing: QEPAS (Quartz Enhanced Photo-Acoustic Spectroscopy) 12 R. Naumann, W. Moore, D. Nisen, W. Russell & P. Tashbar, Quartz crystal microbalance contamination monitors on Skylab: A quick look analysis (1973) 13 B.E. Wood & al., Review of Midcourse Space Experiment (MSX) satellite quartz crystal microbalance contamination results after 7 years in space, Proc. 9th Intl Symp. on Materials in a Space Environment (2003) 14 T. Leı̈chlé, L. Nicu & T. Alava, MEMS Biosensors and COVID-19: Missed Opportunity 15 J.-M. Friedt, Introduction à la microbalance à quartz : aspects théoriques et expérimentaux, Bulletin de l’Union des Physiciens n.852 (March 2003), pp.429-440 29 / 29.

(30)

Références

Documents relatifs

We have designed and fabricated a dedicated temperature sensor for use with a 100 MHz ground penetrating RADAR (GPR) unit and demonstrated the ability to record echo signals when

Development of Surface Acoustic Wave pressure sensors for monitoring concrete structures.. Forum Acusticum, Dec 2020,

In this study, we have investigated a surface acoustic wave (SAW) biosensor to quantify the TNF- α /SPD-304 affinity and to estimate the binding kinetic of SPD-304 to TNF-α,

• Scanning Electron Microscopy (SEM): recording backscattered & secondary electrons of the target illuminated by electrons (charged particle path bent by electric field

Although a prac- tical consideration naturally hints at using the side op- posite to the piezoelectric layer coated with electrodes as the sensing area, the gravimetric sensitivity

Top right: Time domain records of the DAC output of the wireless acoustic sensor reader probing a quartz resonator strain gauge bound to a music tuning fork: the voice coil

scale to convert phase to temperature Pt100 probe φ(FFT)*33+901. 50 cm

We have designed and fabricated a dedicated temperature sensor for use with a 100 MHz ground penetrating RADAR (GPR) unit and demonstrated the ability to record echo signals when