• Aucun résultat trouvé

Strain localisation modes in the mechanics of materials

N/A
N/A
Protected

Academic year: 2022

Partager "Strain localisation modes in the mechanics of materials"

Copied!
74
0
0

Texte intégral

(1)

Strain localisation modes in the mechanics of materials

Samuel Forest

Centre des Mat´eriaux/UMR 7633 Ecole des Mines de Paris/CNRS

BP 87, 91003 Evry, France Samuel.Forest@ensmp.fr

(2)

Outline

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(3)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(4)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(5)

Loi de comportement ´ elastoplastique

• Elasticity ε˙=ε˙e˙p, σ=E

e

• Yield function g(σ, α), N = ∂g

∂σ

• Plastic flow ε˙p= ˙λP, P6=N

• Hardening modulus α˙ = ˙λh, H =−∂g

∂α.h

• Tangent operator (non symmetrical if non associative) σ˙ =L

˙ L

= E

si g <0 ou (g = 0 et N :E

˙≤0) L

= D

si g = 0 et N :E

˙>0 with

D

=E

− (E

:P)N (N :E

) H+N :E

:P

Bifurcation modes in elastoplastic solids 5/74

(6)

Rate form of the boundary value problem

∂Ω2

∂Ω1

V

T˙













˙

ε= 12(∇v +∇tv) div σ˙ +˙f = 0, σ˙ =L

˙

˙

σ .n =T˙ in ∂Ω1 v =V in ∂Ω2

• Linear comparison solid: takeL

=D

• Variational formulation (virtual power theorem) Z

˙

σ˙?dV = Z

˙f.v?dV+ Z

∂Ω1

T˙.v?dS+ Z

∂Ω2

˙.n).V dS for any fieldv? such thatv?=V in ∂Ω2

Bifurcation modes in elastoplastic solids 6/74

(7)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(8)

Conditions of uniqueness of the solution

Let (σ˙A˙A) and (σ˙B˙B) be two solutions on Ω at time t Z

˙

σA˙AdV = Z

˙f.vAdV + Z

∂Ω1

T˙.vAdS+ Z

∂Ω2

˙A.n).V dS

Bifurcation modes in elastoplastic solids 8/74

(9)

Conditions of uniqueness of the solution

Let (σ˙A˙A) and (σ˙B˙B) be two solutions on Ω at time t Z

˙

σA˙AdV = Z

˙f.vAdV + Z

∂Ω1

T˙.vAdS+ Z

∂Ω2

˙A.n).V dS Z

˙

σA˙BdV = Z

˙f.vBdV + Z

∂Ω1

T˙.vBdS+ Z

∂Ω2

˙A.n).V dS

Bifurcation modes in elastoplastic solids 9/74

(10)

Conditions of uniqueness of the solution

Let (σ˙A˙A) and (σ˙B˙B) be two solutions on Ω at time t Z

˙

σA˙AdV = Z

˙f.vAdV + Z

∂Ω1

T˙.vAdS+ Z

∂Ω2

˙A.n).V dS

− Z

˙

σA˙BdV = Z

˙f.vBdV+ Z

∂Ω1

T˙.vBdS+

Z

∂Ω2

˙A.n).V dS

Z

˙

σA :∆ε˙dV = Z

˙f.∆v dV + Z

∂Ω1

T˙.∆v dS

Bifurcation modes in elastoplastic solids 10/74

(11)

Conditions of uniqueness of the solution

Let (σ˙A˙A) and (σ˙B˙B) be two solutions on Ω at time t Z

˙

σA :∆ε˙dV = Z

˙f.∆v dV + Z

∂Ω1

T˙.∆v dS

− Z

˙

σB :∆ε˙dV = Z

˙f.∆v dV + Z

∂Ω1

T˙.∆v dS

Z

∆σ˙ :∆ε˙dV = 0

Bifurcation modes in elastoplastic solids 11/74

(12)

Conditions of uniqueness of the solution

Let (σ˙A˙A) and (σ˙B˙B) be two solutions on Ω at time t Z

∆σ˙ :∆ε˙dV = 0

If the solutions (σAA) and (σBB) have coincided until timet, one can assume

˙ σA =D

˙A, σ˙B =D

˙B

A necessary condition for the existence of several solutions then is Z

∆ε˙:D

:∆ε˙dV = 0

Bifurcation modes in elastoplastic solids 12/74

(13)

A sufficient condition for uniqueness

A sufficient condition ensuring the uniqueness of the solution (∆ε˙= 0) is the positivity ofsecond order power:

˙ ε:D

˙>0, ∀ε˙6= 0

˙ ε:D

s˙>0, avec D

s ijkl = 1

2(Dijkl+Dklij) Hill’s condition for uniqueness: D

s positive definite (Hill, 1958) Uniqueness may be lost (possible bifurcation) when

detD

s = 0

which givesHu= 1 2(q

N :E

:Nq P :E

:P−N :E

:P)

H>Hu: uniqueness ensured associative plasticity: Hu= 0 softening!

uniaxial + Large Strain= Consid`ere criterion...

Bifurcation modes in elastoplastic solids 13/74

(14)

Example : von Mises plasticity

• Von Mises plasticity:

g(σ,R) =J2)−R, J2) = r3

devdev

• Associative plasticity: N =P = 3 2

σdev J2

• The tangent operator can be computed easily!

N :E

:N =N : (2µN) = 3µ D

=E

− 3µ2 H/3 +µ

σdev⊗σdev J22

• Principal or eigen–tensors of D

=D

s : one tries d1 = σdev

J2 , D

:d1 = 2µH H+ 3µd1

• Principal or eigen–values: k,2µ, 2µH H+ 3µ

WhenH= 0 (perfect plasticity, begining of a softening regime)

Bifurcation modes in elastoplastic solids 14/74

(15)

Example : necking mode

Tensile test, [d1] =

−1 0 0

0 2 0

0 0 −1

possible perturbations when H = 0...

˙ σA =D

˙A =D

: (ε˙A+λd1)

Bifurcation modes in elastoplastic solids 15/74

(16)

Example : necking mode

Tensile test, [d1] =

−1 0 0

0 2 0

0 0 −1

possible perturbations when H = 0...

˙ σA =D

˙A =D

: (ε˙A+λd1)

Bifurcation modes in elastoplastic solids 16/74

(17)

Example : necking mode

Tensile test, [d1] =

−1 0 0

0 2 0

0 0 −1

possible perturbations when H = 0...

˙ σA =D

˙A =D

: (ε˙A+λd1)

Bifurcation modes in elastoplastic solids 17/74

(18)

Example : necking mode

0 20 40 60 80 100 120

0 0.04 0.08 0.12 0.16

F/S

δ/L

Bifurcation modes in elastoplastic solids 18/74

(19)

Example : necking mode

0 20 40 60 80 100 120

0 0.04 0.08 0.12 0.16

F/S

δ/L

Bifurcation modes in elastoplastic solids 19/74

(20)

Example : necking mode

0 20 40 60 80 100 120

0 0.04 0.08 0.12 0.16

F/S

δ/L

Bifurcation modes in elastoplastic solids 20/74

(21)

Example : necking mode

0 20 40 60 80 100 120

0 0.04 0.08 0.12 0.16

F/S

δ/L

Bifurcation modes in elastoplastic solids 21/74

(22)

Example : necking mode

0 20 40 60 80 100 120

0 0.04 0.08 0.12 0.16

F/S

δ/L

Bifurcation modes in elastoplastic solids 22/74

(23)

Example : necking mode

0 20 40 60 80 100 120

0 0.04 0.08 0.12 0.16

F/S

δ/L

Bifurcation modes in elastoplastic solids 23/74

(24)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(25)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(26)

Compatible discontinuous bifurcation modes : Hadamard jump conditions

Strain localization is the precursor of fracture.

Continuity of displacement is assumed through a surfaceS

[[u]] = [[u˙]] = 0

but discontinuities of some components

of its gradient∇u are considered 1 2

S n

Compatible bifurcation modes 26/74

(27)

Compatible discontinuous bifurcation modes : Hadamard jump conditions

Let us work in the frame attached to the surface of discontinuity:

[[u1]] = 0 =⇒[[u1,1]] = 0 [[u2]] = 0 =⇒[[u2,1]] = 0 but, in general,∃g such that

[[u1,2]] =g1 6= 0, [[u2,2]] =g2 6= 0 1

2 S

n

Compatible bifurcation modes 27/74

(28)

Compatible discontinuous bifurcation modes : Hadamard jump conditions

Let us work in the frame attached to the surface of discontinuity:

[[u1]] = 0 =⇒[[u1,1]] = 0 [[u2]] = 0 =⇒[[u2,1]] = 0 but, in general,

[[u1,2]] =g1 6= 0, [[u2,2]] =g2 6= 0 [[∇u]] =

0 g1 0 g2

= g1

g2

⊗ 0

1

[[∇u]] =g ⊗n

1

2 S

n

Compatible bifurcation modes 28/74

(29)

Compatible discontinuous bifurcation modes : Hadamard jump conditions

[[∇u˙]] =g ⊗n [[∇ε˙]] = 1

2(g ⊗n +n ⊗g) in generalg.n 6= 0

Criterion for the occurence of compatible bifurcation modes:

∆ε˙:D

: ∆ε˙= (g⊗n) :D

: (g⊗n) = 0 Theacoustic tensor Q

is introduced:

g.Q

.g =g.Q

sym.g = 0, Q

=n.D

.n

=⇒ detQsym= 0

1

2 S

n

Compatible bifurcation modes 29/74

(30)

Compatible discontinuous bifurcation modes : Hadamard jump conditions

One can imagine two parallel surfaces of discontinuity: it is astrain localization bandorshear bandin a wide sense. In- deed, the band does generally not un- dergo pure shear...

• g.n = 0: shear band

• g kn: opening mode

1 2

S1

S2

Compatible bifurcation modes 30/74

(31)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(32)

Example: compatible strain localization mode under plane stress conditions

Consider the mode

[d

1] =

−1 0 0

0 2 0

0 0 −1

but write it with respect to the frame (m,n)

[d

1] =

2 sin2θcos2θ 3 cosθsinθ 0 3 cosθsinθ 2 cos2θsin2θ 0

0 0 −1

to be identified with12(g n+ng) =

0 g1/2 g1/2 g2

= tan2θ= 1

2, ou sin2θ=1 3 θ= 35,26, 90θ= 54.74

n m

1 2

θ

Compatible bifurcation modes 32/74

(33)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(34)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(35)

Mandel–Rice criterion

Add the equilibrium contitions at the interface which were not taken into account until now:

[[σ˙]].n = 0, [[D

:ε˙]].n= 0

If the solutions on each side ofS are identical until timet, one has [[D

]] = 0 D

: [[ε˙]].n= 0 Let us consider the compatible modes:

D

: (g n).n = 0 Dijklgknlnj=njDjiklnlgk= 0

Q.g = 0 This is theacoustic tensor: Q

=n.D

.n

1

2 S

n

Mandel–Rice criterion:

detQ(n) = 0

stable propagation of perturbations [Mandel, 1966] [Rice, 1976]

Stability / ellipticity of the boundary value problem 35/74

(36)

Vocabulary

• Plastic waves [Mandel, 1962]

the previous situation corresponds to stationary plastic waves

• Stability: analysis if the growth of perturbations

• Loss of ellipticity of the boundary value problem:

when the incremental constitutive equations are inserted in the equations of equilibrium (static case), one gets a system of partial differential equations of order 2 in ˙ui. The system is said to beellipticwhen the differential operator has definite positive eigen–values. It can be shown that the problem then is well–posed(meaning that the solution continuously depends on the data).

Stability / ellipticity of the boundary value problem 36/74

(37)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(38)

Orientation of strain localization bands

The resolution of the equation detn.D

.n= 0 provides us with the plastic modulusH(n) for which a surface of discontinuity of normaln can arise. To determine the first possible band, one must findHcr andn such that

Hcr = max

knk=1 H(n)

In the case of isotropique elasticity and incompressible associative plasticity, one finds

dimension critical modulus orientation

of the problem Hcr n

plane 0 n21 = PP1

1−P2

stress n22= 1−n12

3D −EPk2 n2i = PPi+νPk

i−Pj

nk = 0,n2j = 1−n2i

plane 0 n21 =n22= 12

strain

ThePi are the eigenvalues of the plastic flow directionP(ε˙p= ˙λP).

Stability / ellipticity of the boundary value problem 38/74

(39)

Why is the 3D case less restrictive than the 2D case?

Tensile test, von Mises plasticity:Hplane stresscr = 0, H3Dcr =E4

Answer: the modes found under plane stress are incompatible with respect to the third direction...

n m

1 2

θ

3 2

1 2 3

Stability / ellipticity of the boundary value problem 39/74

(40)

Example: the elliptic criterion

• Plasticity criterion

g(σ) =σ?−R, σ?2 = 3

2Cσdevdev+F(trace σ)2

• Normality rule N = ∂g

∂σ = 1 σ?

3

2Cσdev+F(traceσ)1

• Tensile test

[P] = signeσ2

√C +F

F −C2 0 0

0 C +F 0

0 0 F −C

2

Stability / ellipticity of the boundary value problem 40/74

(41)

Example: the elliptic criterion

Bifurcation analysis under plane stress conditions:

Hcr = 0, n21 = 1 3

1−2F

C

F = 0 von Mises θ= 35.26 with

respect to the horizontal axis

F = C 4 θ= 25 with respect to the horizontal axis

F = C 2 θ= 0 with respect

to the horizontal

Stability / ellipticity of the boundary value problem axis 41/74

(42)

Example: the elliptic criterion

Bifurcation analysis under plane stress conditions:

Hcr = 0, n21 = 1 3

1−2F

C

F = 0 von Mises θ= 35.26 with

respect to the horizontal axis

F = C 4 θ= 25 with respect to the horizontal axis

F = C 2 θ= 0 with respect

to the horizontal

Stability / ellipticity of the boundary value problem axis 42/74

(43)

Example: the elliptic criterion

Bifurcation analysis under plane stress conditions:

Hcr = 0, n21 = 1 3

1−2F

C

F = 0 von Mises θ= 35.26 with

respect to the horizontal axis

F = C 4 θ= 25 with respect to the horizontal axis

F = C 2 θ= 0 with respect

to the horizontal

Stability / ellipticity of the boundary value problem axis 43/74

(44)

Example: compression of an aluminium foam

Stability / ellipticity of the boundary value problem 44/74

(45)

Example: compression of an aluminium foam

0 1 2 3 4 5 6 7 8

0 0.1 0.2 0.3 0.4 0.5 0.6

stress (MPa)

strain experiment

simulation

Stability / ellipticity of the boundary value problem 45/74

(46)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(47)

Crit` eres de localisation

C’est une question encore ouverte!

En 2D, le crit`ere de Rice est plausible (`a tester en compressible et en non associ´e!)

En 3D, le crit`ere d’apparition de modes

compatibles est sans doute le plus plausible

(ellipticit´e forte;

le crit`ere de Rice est trop

optimiste!)

Hcr H Qg 0 det Q 0

Hse gQg 0 det Qs 0

Hu ε: D :ε 0

det Ds 0 ellipticity

strong ellipticity uniqueness

Summary of strain localization criteria 47/74

(48)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(49)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(50)

Spurious / pathological mesh–dependence of finite element results

0 0.0072 0.0144 0.0216 0.0288 0.036

0 40 80 120 160 200

déplacement (mm) charge (N)

maillage 10x20 maillage 20x40 maillage 30x60

Regularization methods 50/74

(51)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(52)

M´ ecanique des milieux continus g´ en´ eralis´ es

Principe del’action locale: seule compte l’histoire d’un voisinage arbitrairement petit de la particuleX

[Truesdell, Toupin, 1960] [Truesdell, Noll, 1965]

Milieu Continu

action locale

action non locale

th´eorie non locale: formulation int´egrale [Eringen, 1972]

Regularization methods 52/74

(53)

M´ ecanique des milieux continus g´ en´ eralis´ es

Principe del’action locale: seule compte l’histoire d’un voisinage arbitrairement petit de la particuleX

[Truesdell, Toupin, 1960] [Truesdell, Noll, 1965]

Milieu Continu

action locale

action non locale

th´eorie non locale: formulation int´egrale [Eringen, 1972]

milieu mat´eriellement simple: F

milieunon mat´eriellement simple

milieu de Cauchy (1823) (classique / Boltzmann)

Regularization methods 53/74

(54)

M´ ecanique des milieux continus g´ en´ eralis´ es

Principe del’action locale: seule compte l’histoire d’un voisinage arbitrairement petit de la particuleX

[Truesdell, Toupin, 1960] [Truesdell, Noll, 1965]

Milieu Continu

action locale

action non locale

th´eorie non locale: formulation int´egrale [Eringen, 1972]

milieu mat´eriellement simple: F

milieunon mat´eriellement simple

milieu de Cauchy (1823) (classique / Boltzmann)

milieu d’ordren

milieu dedegr´en

Cosserat(1909) uR

micromorphe

[Eringen, Mindlin 1964]

uχ

second gradient [Mindlin, 1965]

FF

gradient de variable interne[Maugin, 1990]

uα

Regularization methods 54/74

(55)

Le milieu micromorphe: cin´ ematique

• Degr´es de libert´e et raffinement de la th´eorie DOF :={u, χ

} χ

s

a

MODEL:={u ⊗∇, χ

⊗∇}

Cas particuliers:

? Milieu de Cosserat χ

χ

a =

? Milieumicrostrain χ

χ

s

? Th´eorie du second gradient χ

u

• Mesures de d´eformation

STRAIN :={ε, e:=u ⊗∇−χ

, K

:=χ

⊗∇}

Regularization methods 55/74

(56)

Le milieu micromorphe: statique

• M´ethode des puissances virtuelles [Germain, 1973]

P(i) = Z

D

p(i) dV, P(c)= Z

∂D

p(c) dS

p(i)˙+s:˙e+S

...K˙

p(c) =t.u˙ +M :χ˙

• Equations de champ

? Quantit´e de mouvement +s).∇= 0

? Moment cin´etique g´en´eralis´e S

.∇+s= 0

• Conditions aux limites

t = (σ+s).n, M =S

.n

Regularization methods 56/74

(57)

Le milieu micromorphe: thermodynamique

• Equation locale de l’´energie

ρ˙ = p(i) − q.∇ + r

• Second principe et in´egalit´e de Clausius–Duhem ρη˙ + q

T

.∇ − r T ≥ 0 ρ(T η˙ − ) +˙ p(i) − q

T.(∇T) ≥ 0

• Variables d’´etat et ´energie libre de Helmholtz εep, e=ee+ep, K

=K

e+K

p

Z:={T, εe, ee, K

e, α}

Ψ =−Tη

Regularization methods 57/74

(58)

Le milieu micromorphe: potentiel de dissipation

• Exploitation du second principe `a la Coleman–Noll

? Lois d’´etat η=∂Ψ

∂T, σ =ρ∂Ψ

∂εe, s=ρ∂Ψ

∂ee, S

=ρ∂Ψ

∂K

e, R=ρ∂Ψ

∂α

? Lois d’´evolution dissipation r´esiduelle

D=σ :ε˙p+s:˙ep+S

...K˙

pRα˙

potentiel de dissipation

Ω(σ,s,S

,R)

˙ ε

p=∂Ω

∂σ, ˙ep= ∂Ω

∂s, K˙

p= ∂Ω

∂S

, α˙ =∂Ω

∂R

Regularization methods 58/74

(59)

Le mod` ele microstrain

Degr´es de libert´e (u,χ

s) Mesures de d´eformation :

−χ

s

s⊗∇)

σ=C

: (ε−εp)

s=b(ε−χ

s) S=Aχ

s ⊗∇

div(σ+s) = 0 divS

+s= 0

Sijk,k+sij = 0 Aχsij,kk+b(εij−χsij) = 0

εijsij −l2∆χsij Lien avec “implicit gradient–enhanced elastoplasticity models”

[Engelenet al., 2003]

Conditions aux limites : (ui, χsij) or (σij +sij)nj,Sijknk

Regularization methods 59/74

(60)

Programmation en ´ el´ ements finis (1)

Exemple: milieu micromorphe 2D

[DOF] = [U1 U2 X11 X22 X12 X21]T [STRAIN] = [ε11 ε22 ε33 ε12 e11 e22 e33 e12e21

K111 K112 K121 K122 K211 K212 K221 K222]T [STRAIN] = [B] [DOF]

[FLUX] = [σ11 σ22σ33 σ12 s11 s22 s33s12 s21

S111 S112 S121 S122 S211 S212 S221 S222]T

Regularization methods 60/74

(61)

Programmation en ´ el´ ements finis (2)

[B] =

x1 0 0 0 0 0

0 ∂x2 0 0 0 0

0 0 0 0 0 0

1 2x2

1

2x1 0 0 0 0

x1 0 −1 0 0 0

0 ∂x2 0 −1 0 0

0 0 0 0 0 0

x2 0 0 0 −1 0

0 ∂x1 0 0 0 −1

0 0 ∂x1 0 0 0

0 0 ∂x2 0 0 0

0 0 0 0 ∂x1 0

0 0 0 0 ∂x2 0

0 0 0 ∂x1 0 0

0 0 0 ∂x2 0 0

 S111

S112 S121 S122

S211 S212 S221

S222

= [A]

 K111

K112 K121 K122

K211 K212 K221

K222

Regularization methods 61/74

(62)

Programmation en ´ el´ ements finis (3)

matrice d’´elasticit´e g´en´eralis´ee [Mindlin, 1964]

AA 0 0 A1,4,5 0 A2,5,8 A1,2,3 0

0 A3,10,14 A2,11,13 0 A1,11,15 0 0 A1,2,3

0 A2,11,13 A8,10,15 0 A5,11,14 0 0 A2,5,8

A1,4,5 0 0 A4,10,13 0 A5,11,14 A1,11,15 0

0 A1,11,15 A5,11,14 0 A4,10,13 0 0 A1,4,5

A2,5,8 0 0 A5,11,14 0 A8,10,15 A2,11,13 0

A1,2,3 0 0 A1,11,15 0 A2,11,13 A3,10,14 0

0 A1,2,3 A2,5,8 0 A1,4,5 0 0 AA

avec

AA= 2A1+2A2+A3+A4+2A5+A8+A10+2A11+A13+A14+A15

etAi,j,k =Ai +Aj +Ak

Regularization methods 62/74

(63)

Plan

1 Bifurcation modes in elastoplastic solids Linear incremental formulation Loss of uniqueness

2 Compatible bifurcation modes Hadamard jump conditions

Orientation of a strain localization band

3 Stability / ellipticity of the boundary value problem Mandel–Rice criterion

Orientation of localization bands in 3D and 2D

4 Summary of strain localization criteria

5 Regularization methods

Mesh dependence of the results Mechanics of generalized continua Application to the case of metal foams

(64)

Bande de localisation de largeur finie

Cas des bandes horizontales obtenues `a l’aide d’un crit`ere elliptique σeq =√

C +F|σ22|, ε˙p22= ˙p√

C +F, p˙ = 2µ√

C +Fε˙22

2µ(C +F) +H

22+s22),2 = 0, S222,2+s22= 0 σ22= 2µ(ε22−εp22) = 2µ(C+F)+H(Hε22+R0

C +F) s22= 2µ(ε22−χ22), S222 =Aχ22,2

Finalement

χ22,222− 2µH¯

A( ¯H+ 2µ)χ22,2= 0, H¯ = 2µH 2µ(C +F) +H Longueur d’onde

1 ω =

s

A( ¯H+ 2µ) 2µ|H|¯

Regularization methods 64/74

(65)

Simulations par ´ el´ ements finis ` a l’aide du milieu micromorphe

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 20 40 60 80 100

p

y

10x2 elements 20x2 elements 50x2 elements 100x2 elements

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0 20 40 60 80 100

analytical FE analysis

Regularization methods 65/74

(66)

Comportement et rupture des mousses de nickel

longueur de fissure : 10 mm, taille de cellule : 0.5mm

Regularization methods 66/74

(67)

Comportement et rupture des mousses de nickel

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

stress (MPa)

strain experiment

model

Direction de traction RD

Crit`ere simple(iste) de rupture p =pcrit= 0.08 dispersion limit´ee enpcrit adoucissement explicite pour p>pcrit

R =R(p >pcrit)

Regularization methods 67/74

(68)

Traction d’une plaque fissur´ ee : cas classique

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 0.01 0.02 0.03 0.04 0.05 0.06

force/ligament (MPa)

displacement/gauge length 1609 nodes

experiment

0 0.05

0.1 0.15

0.2 0.25

0.3 0.35

0.4 0.45

0.5 0.55

0.6 0.65

0.7 0.75

0.8 0.85

0.9 0.95

1

strain component ε11

Regularization methods 68/74

(69)

Traction d’une plaque fissur´ ee : cas classique

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 0.01 0.02 0.03 0.04 0.05 0.06

force/ligament (MPa)

displacement/gauge length 1609 nodes

509 nodes experiment

0 0.05

0.1 0.15

0.2 0.25

0.3 0.35

0.4 0.45

0.5 0.55

0.6 0.65

0.7 0.75

0.8 0.85

0.9 0.95

1

strain component ε11

Regularization methods 69/74

(70)

Traction d’une plaque fissur´ ee : cas classique

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 0.01 0.02 0.03 0.04 0.05 0.06

force/ligament (MPa)

displacement/gauge length 3927 nodes 1609 nodes 509 nodes experiment

0 0.05

0.1 0.15

0.2 0.25

0.3 0.35

0.4 0.45

0.5 0.55

0.6 0.65

0.7 0.75

0.8 0.85

0.9 0.95

1

strain component ε11

Regularization methods 70/74

(71)

Traction d’une plaque fissur´ ee : cas micromorphe

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 0.01 0.02 0.03 0.04 0.05 0.06

force/ligament (MPa)

displacement/gauge length experiment

microfoam

0 0.02

0.04 0.06

0.08 0.1

0.12 0.14

0.16 0.18

0.2 0.22

0.24 0.26

0.28 0.3

0.32 0.34

0.36 0.38

0.4

strain component ε11

Regularization methods 71/74

Références

Documents relatifs

Point rancunière, mamie accède au désir de la toute petite et visitons ainsi, toute deux le monument!. A la suite d'une simple recommandation, nous entrons main dans la main,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

This opens the possibility of enriched local kinematics involv- ing phenomena of global rotation, inner deformation or inner resonance, according to studied configuration and

She needed stenting, pre- stenting and eventually, Melody (Medtronic Inc.) valve implantation for supravalvar conduit stenosis 3 months after implantation (Panel A).. During

Nous allons optimiser trois fonctions : la masse de carburant W f uel , la masse à vide W empty ainsi que le facteur acoustique F acou en fonction de quatre variables associées au

This antenna is based on the principle of broadband and frequency independent antenna like spiral antenna, which in free space simulation has a reflection coefficient less than

Eotaxin concentrations were compared in tears of patients with a history of SAC and patients who had no history of SAC, but were newly diagnosed as suffering from SAC, according

In contrast, in-network computing applications tend to be stateful and comprise a sequence of operations performed on complex data structures, such as hash tables or caches..