• Aucun résultat trouvé

average stress (MPa)

N/A
N/A
Protected

Academic year: 2022

Partager "average stress (MPa)"

Copied!
61
0
0

Texte intégral

(1)

1/61

Dr. Stéphane AVRIL

LMPF Research Group, ENSAM Châlons en Champagne, France

THE VIRTUAL FIELDS METHOD

PRINCIPLE, RECENT ADVANCES AND APPLICATIONS

Paris

Châlons en Champagne 12th April 2007, Université de Technologie de Compiègne

(2)

OUTLINE

• Introduction and basic concepts;

• Application 1: anisotropic elasticity in composites;

• Application 2: visco-elasticity in PMMA;

• Application 3: elasto-visco-plasticity in metals;

• Application 4: heterogeneous modulus distribution;

• Conclusion and main prospects.

(3)

3/61

Introduction and

basic concepts

(4)

Widespread use of full-field optical techniques in

experimental mechanics

(5)

5/61

Largely used for qualitative

analyses

(6)

Largely used for qualitative

analyses

(7)

7/61

Largely used for qualitative analyses

– Detection of shear bands or cracks ; – Model validation ;

– Verification of boundary conditions.

(8)

Interest in quantitative use for

model identification

(9)

9/61

Interest in quantitative use for

model identification

(10)

– Identification of sophisticated models in one single test ;

– Specimen geometry is not a constraint ; – Localization effects can be handled ;

– Identification of graded properties in the same specimen.

Interest in quantitative use for

model identification

(11)

11/61

- No standard characterization of uncertainty in full- field optical measurement techniques.

- Large amount of data to process require specific inverse approach.

Reason for poor use

for model identification

(12)

Resolution of an inverse problem Basic approach: updating

Parameters Ai

Model: f

Response Mj=f(Ai)

Measurements mj

Matching optimization

(13)

13/61

Particular case of full-field

measurements: alternative approach

Measurements m(x,y,z)

Direct

computation F(Ai,m)=0

Ai

Model f is derived from:

- the constitutive equations, - the conservation equations.

F(Ai,M)=0 Æ M=f(Ai)

THE VIRTUAL FIELDS METHOD

(14)

Application 1: anisotropic

elasticity in composites

(15)

15/61

* 0

* + =

∫ ∫

V

i i V

ij

ij ε dV T u dS

σ or

I Equilibrium equations

, j = 0

σ

ij + boundary conditions strong (local) weak (global) II Constitutive equations

III Kinematical equations (small strains/displacements)

) u u

2 ( 1

i, j j

, i

ij

= +

ε

The virtual fields method Example in linear elasticity

kl ijkl

ij

C ε

σ =

(16)

0 dS

u T dV

V

* i i V

* ij

ij

ε + =

σ

− ∫ ∫

Eq. I (weak form, static)

Substitute stress from Eq. II

*

0

*

+ =

− ∫ ∫

∂V

i i ij

kl

ijkl

dV T u dS

C ε ε

kl ijkl

ij

C ε

σ =

The virtual fields method

Example in linear elasticity

(17)

17/61

Equation valid for any KA virtual fields.

For each choice of virtual field: 1 equation.

Choice of as many VF as unknown parameters.

In elasticity:

Æ Linear system of equations to be inverted.

Æ Optimal choice of virtual fields for minimizing result uncertainty (Avril et al., Comp. Mech., 2004)

Æ More robust than updating approach (Avril et al., Int. J.

Sol. Struct., 2007)

*

0

*

+ =

− ∫ ∫

∂V

i i V

ij kl

ijkl

dV T u dS

C ε ε

The virtual fields method

Example in linear elasticity

(18)

Problem presentation

(19)

19/61

Glass epoxy ring cut from a tube:

Example

θ

r

x y

F

⎟⎟ ⎠

⎜⎜ ⎞

⎥ ⎥

⎢ ⎢

= ⎡

⎟⎟ ⎠

⎜⎜ ⎞

s r

ss r

r rr

s r

Q Q

Q

Q Q

ε ε ε σ σ σ

θ θθ

θ

θ

θ

0 0 0 0

Æ 4 parameters to identify Æ No standard test available

(20)

Need of two cameras

“back to back”

(21)

21/61

Deformation maps

using two cameras

(22)

Polynomial fit, degree 3, transform to cylindrical and analytical differentiation:

Strain maps

εr εθ εs

(23)

23/61

( )

dS M

u M T

dS e

Q

dS e

Q dS

e Q

dS e

Q

f

S s s ss

S r r

r r S

S r rr

) (

* )

( .

. .

.

*

*

*

*

*

∫ ∫ ∫

∫ + =

+ +

+

S

r r

ε ε

ε ε ε

ε ε

ε ε

ε

θθ θ θ θ θ θ

[ ] A × ( ) ( ) Q = B

4 virtual fields

dS M

u M T

dS

f

) (

* ) (

* ∫

S

: =

S

e r r

ε σ

PVW Constitutive equations

⎟⎟ ⎠

⎜⎜ ⎞

⎥ ⎥

⎢ ⎢

= ⎡

⎟⎟ ⎠

⎜⎜ ⎞

s r

ss r

r rr

s r

Q Q

Q

Q Q

ε ε ε σ σ σ

θ θθ

θ

θ

θ

0 0 0 0

&

Identification

(24)

Qrr Qθθ Qrθ Qss

Reference* (GPa) 10 40 3 4

Identified (GPa) 11.4 45.4 2.62 6.78

Coeff. var (%) – 9 tests 29 10 29 4

Moulart R., Avril S., Pierron F., Identification of the through-thickness rigidities of a thick laminated composite tube, Composites Part A: Applied Science and Manufacturing, vol. 37, n° 2, pp. 326-336, 2006.

Results

(25)

25/61

Application 2: visco-elasticity in

polycarbonate

(26)

⎟⎟

⎜⎜

+

⎟⎟

⎜⎜

=

⎟⎟

⎜⎜

xy yy xx

i xy i

xx i

xx i

xy

i xy i

xx

xy yy xx

r xy r

xx r

xx r

xy

r xy r

xx

xy yy xx

Q Q

Q Q

Q Q

i Q

Q Q

Q

Q Q

ε ε ε ω

ε ε ε σ

σ σ

0 0

0 0 0

0

0 0

)]

, ( cos[

) , ( )

, (

) cos(

) , ( )

, (

y x t

y x y

x

t y

x y

x

ϕ ω

ε ε

ω σ

σ

+

=

=

)]

, (

) [

, ( )

, (

) , ( )

, (

y x t

i t i

e y x y

x

e y x y

x

ϕ ω

ω

ε ε

σ σ

= +

=

Constitutive equations and assumptions

Inertial excitation with steady state and linear response.

(27)

27/61

Experimental arrangements

Polycarbonate panel 200mm x 150mm h = 3mm

(28)

CCD

O

M P

δ Q

λ

δ = 2λ . dα

The deflectometry technique

(29)

29/61

Out of resonance 80 Hz Near resonance 100 Hz

Slope measurements

(30)

Out of resonance 80 Hz Near resonance 100 Hz

Deduced curvatures

(31)

31/61

+

=

s y x

xy xx

yy xy

xy xx

xy xx

yy xy

xy xx

s y x

k k k B

B B

B

B B

i D

D D

D

D D

M M M

0 2 0

0 0

0 2 0

0 0

ω

xy xy xy

xx xx xx

xx xy 2

xx

D ; B

D B

D ; D

) 1

( E D

= β

= β

= ν ν

=

Four parameters to identify

Stiffness Damping

( j ) VF y ( j )

x

VF

1

=

2

1 + ,

2

=

2

1 +

Identification

(32)

E (GPa)

3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5

80 Hz 90 Hz 100 Hz Reference

Results

(33)

33/61

ν

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

80 Hz 90 Hz 100 Hz

Results

(34)

βxx (10-4 s)

0 0,2 0,4 0,6 0,8 1 1,2

80 Hz 90 Hz 100 Hz Reference

Results

(35)

35/61

βxy (10-4 s)

0 0,2 0,4 0,6 0,8 1 1,2 1,4

80 Hz 90 Hz 100 Hz

Results

(36)

Giraudeau A., Guo B., Pierron F., Stiffness and Damping Identification from Full Field Measurements on Vibrating Plates, Experimental Mechanics, Vol. 46, N°6, pp. 777-787, 2006.

- Improvement of the measurement temporal accuracy.

- Extension to anisotropic plates underway

Prospects

(37)

37/61

Application 3: elasto-visco-

plasticity of metals

(38)

Constitutive equations and assumptions

) ,

,

( X

g σ ε

σ & = &

Constitutive parameters to identify

(39)

39/61

Elasto-plasticity with plane stress and Von Mises criterion

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎥ ⎥

⎥ ⎥

⎢ ⎢

⎢ ⎢

− −

⎪ =

⎪ ⎬

⎪ ⎩

⎪ ⎨

s xy s

s xy y

s xx x

s y x

p s p s p s

E

ε σ ε σ ε σ

ν ν ν

ν σ ν

σ σ

&

&

&

&

&

&

&

&

&

3 2 3 2 3

2 0 1

0

0 0 1

1

2

)

( p

Q ε ε

σ & = −

(40)

Perzyna’s model for viscoplasticity

=

s xy n s s

s xy n y s

s xx n x s

s y x

p s H

p s H

s p

H

E

σ σ

γ σ ε

σ σ

γ σ ε

σ σ

γ σ ε

ν ν ν

ν σ ν

σ σ

) 1 3 (

) 1 ( 2

3

) 1 ( 2

3

2 0 1

0

0 0 1

1

0 0 0

2

&

&

&

&

&

&

Constitutive parameters to identify: E, ν, γ, σ , n, dH/dp.

(41)

41/61

Mechanical arrangement

L=28mm

x y

w=22mm

20 mm

Average strain rate: 1s-1 Images of the specimen recorded with high speed cameras

Deformation deduced by digital image correlation.

(42)

Fields of strain rate

(43)

43/61

Virtual field

y u

u * x = 0 ; * y = −

Across the measurement area:

0 ;

1 ;

0 * *

* = yy = xy =

xx ε ε

ε

(44)

Identification

( ) ∑ ∫∫

=

= N

l

l S

t

t y

t Sh

L t dtdS P

t y x E S n

E n

F

l

1

2

0

0 0

) ) (

, , , , , , 1 (

, ,

, γ σ σ γ

σ &

Æ minimization of a cost function defined from the principle of virtual work:

(45)

45/61

Identification

0 5 10 15 20 25

0 50 100 150 200 250 300 350 400

time (ms)

average stress (MPa)

from displacement fields from resultant load

(46)

- Numerical issues

- Larger strain rates Æ Hopkinson

- Heterogeneities: microscopic scale, welds...

Prospects

Pannier Y., Avril S., Rotinat R., Pierron F., Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method, Experimental Mechanics, Vol. 46, N°6, pp. 735-755, 2006.

Avril S., Pierron F., Yan J., Sutton M., Identification of viscoplastic parameters using DIC

(47)

47/61

Heterogeneous modulus

distribution

(48)

*

0

*

+ =

− ∫ ∫

∂V

i i V

ij kl

ijkl

dV T u dS

C ε ε

The virtual fields method for heterogeneous solids in linear

elasticity

*

0

*

+ =

− ∑ ∫ ∫

∂V

i i V

ij kl n

n

ijkl

dV T u dS

C

n

ε

ε

(49)

49/61

V1 V2 V3

Vn

Discretization of the solid

(50)

Cube with a stiff inclusion buried in it.

Silicone gel materials mimicking human tissue containing a tumour.

Experimental arrangements

1/8

(51)

51/61

Displacement fields measured by MRI

Scanning tomographic method:

Æ 3D bulk measurements!!

(52)

Principle of the identification

(53)

53/61

3D Results

(54)

Avril S., Huntley J., Pierron F. and Steele D., 3D-Heterogeneous stiffness

(55)

55/61

Conclusions

(56)

- Huge potential for some difficult and important engineering issues (heterogeneous materials, high strain rate, micro-scale…);

- Training required on optical FFMT: not a black box, primary influence on identification results

- Full-field processing: noise filtering, displacements to strains…

Prospects

(57)

57/61

Measurements m(x,y,z)

KEY POINT F(Ai,m)=0

Ai

Key point:

field reconstruction

Model f is derived from:

- the constitutive equations, - the conservation equations.

F(Ai,M)=0

(58)

Comparison of two approaches

(59)

59/61

Comparison of two approaches

(60)

Comparison of two approaches

(61)

61/61

Thank you for attention

Références

Documents relatifs

The identi®cation problem is considered as a constrained minimization problem and the gradient is computed using the adjoint state method, in spite of the diculties of the

Similarly, the surface residual strain can be calculated from simulation results as a function of the surface residual displacements in the x and y directions, see Eqs.

We observe that estimators based on the strong prolongation equation are al- ways less precise than the flux-free technique (and of course dual approaches). The minimization of

This article focuses on shape optimization with the level set method for static perfect plasticity, also called the Hencky model, for the von Mises criterion (also called Huber-Mises

Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials2. Kostas Danas, Pedro

Unité de recherche INRIA Futurs Parc Club Orsay Université - ZAC des Vignes 4, rue Jacques Monod - 91893 ORSAY Cedex France Unité de recherche INRIA Lorraine : LORIA, Technopôle

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Abstract — In this work, the Virtual Fields Method (VFM) and the Finite Element Updating Model (FEMU) are used for the identification of hyperelastic parameters of the Mooney, Yeoh