• Aucun résultat trouvé

Gauss–Lusztig decomposition for positive quantum groups and representation by q-tori

N/A
N/A
Protected

Academic year: 2022

Partager "Gauss–Lusztig decomposition for positive quantum groups and representation by q-tori"

Copied!
23
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Gauss–Lusztig decomposition for positive quantum groups and representation by q-tori

IvanC.H. Ip

KavliIPMU(WPI),TheUniversityofTokyo,Kashiwa,Chiba277-8583,Japan

a r t i c l e i n f o a b s t r a c t

Article history:

Received2December2014 Receivedinrevisedform24April 2015

Availableonline3June2015 CommunicatedbyD.Nakano

MSC:

Primary:20G42;secondary:81R50

We found an explicit construction of a representation of the positive quantum groupGL+q(N,R) anditsmodulardoubleGL+qq(N,R) by positiveessentiallyself- adjointoperators.Generalizing Lusztig’sparametrization,wefounda Gausstype decompositionforthetotallypositivequantumgroupGL+q(N,R) parametrizedby thestandarddecompositionofthelongest elementw0 W =SN−1.Underthis parametrization,wefound explicitlytherelationsbetweenthestandardquantum variables,therelationsbetweenthequantumclustervariables,andrealizingthem usingnon-compactgenerators oftheq-toriuv=q2vuby positiveessentiallyself- adjoint operators.The modular double arises naturally from the transcendental relations,andan L2(GL+qq(N,R)) spaceinthevon Neumannsetting canalso be defined.

© 2015ElsevierB.V.All rights reserved.

1. Introduction

The goal of the present work is to give an explicit construction of a representation of the positive Hopf algebraofquantized functionGL+q(N,R) andits modulardouble GL+qq(N,R) bypositiveessentially self-adjoint operators actingon acertain Hilbertspace H. This isdone byfindingaquantum analogueof the Gauss–Lusztigdecompositionfor GLq(N).Byanabuseofnotation, throughoutthepaper wewillcall GL+q(N,R) a“positivequantumgroup”.

The Gauss–Lusztig decomposition of the positive quantum group provides the foundation of the con- struction ofpositiverepresentations Pλ ofsplitrealquantum groupsUq(gR)[11,14,15],whichareacertain continuousanalogueofthestandardfinitedimensionalrepresentationsoftheDrinfeld–Jimbotypequantum groups Uq(g). Such decomposition also gives the preliminaries required for the generalization of the har- monicanalysisofthequantumplaneanditsquantumdoublestudiedin[13]tohigherrank.TheL2 setting described inthelastsectionmotivates theuse ofmultiplierHopfalgebrafrom thetheoryofC-algebrain

* Tel.:+818021639608.

E-mailaddress:ivan.ip@ipmu.jp.

http://dx.doi.org/10.1016/j.jpaa.2015.05.038 0022-4049/© 2015ElsevierB.V.All rights reserved.

(2)

thecontextofDrinfeld–Jimbotypequantumgroup[16,17],whichprovidesanewlinkbetweenthequantized algebraoffunctionsGq(R) anditsquantum envelopingalgebraUq(gR) inthefunctionalanalyticsetting.

Moreover, the harmonic analysis in this sense for the positivequantum group SL+q(2,R) is closely re- latedto quantum Liouville theory,a certainnon-compact quantum integrable system[3,25] of interestto mathematical physicists. Itsgeneralization to higher rankwill be a veryinteresting connection to theso- calledquantumTodafieldtheory[8,31].Suchconnectionshouldbesomesortofacontinuousversionofthe Kazhdan–Lusztig equivalenceof categories [18,19], which is yetto be establishedmathematically. Finally the combinatorics of the quantum tori generators developed in this paper also provides new insights to the quantummutations appearinginthe theoryof quantum cluster algebras as well as (higher)quantum Teichmüllertheory [9,10].

1.1. Lusztig’s totalpositivity

Let Gbe a semi-simplegroup ofsimply-laced type,T itsR-split maximal torus ofrank r, and U± its maximalunipotentsubgroupwith dimU+=m.TheGaussdecompositionofthemaxcellofGisgivenby

G=UT U+. (1.1)

In type Ar (N = r+ 1), this amounts to the decomposition into lower triangular, diagonal and upper triangularmatrices.

On theother hand, given atotally positive matrix G>0, where all entries of thematrix and itsminors (i.e.determinantsofsubmatrices)arestrictly positive,itcanbedecomposedas

G>0=U>0T>0U>0+, (1.2)

wherealltheentriesandtheminorsofU±andT arestrictlypositiveiftheyarenotidenticallyzero.Lusztig in[21]discoveredaremarkableparametrization ofG>0 usingadecompositionof themaximalWeylgroup elementw0∈W.Letw0=si1. . . sim beareducedexpressionforw0,thenthereisanisomorphismbetween Rm>0−→U>0+ givenby

(a1, a2, . . . , am)→xi1(a1)xi2(a2). . . xim(am), (1.3) wherexik(ak)=IN+akEik,ik+1andEi,j isthematrixwith1attheentry(i,j) and0otherwise.Asimilar resultalsoholdsforU>0.WiththisisomorphismLusztigwentontogeneralizethenotionoftotalpositivity toLie groupsofarbitrarytype.

Furthermore,in[1],Berensteinet al.studiedthisdecompositionfortypeAr,inthecontext nowknown as cluster algebra.They showedvarious relations and parametrizations using thecluster variables, inthis case corresponding to the different minors. Corresponding to the standard decomposition of w0 is the parametrization using initial minors, which are the determinants of those square sub-matrices that start from eitherthetoprowor theleftmostcolumn.

Using this parametrization,we found in[11] afamily of positiveprincipalseries representations of the modulardoubleUqq(sl(N,R)),wherethenotionofthemodulardoublewasfirstintroducedbyFaddeev[6,7]

for N = 2. These positiverepresentations generalize theself-dual representations of Uqq(sl(2,R)) studied forexamplein[3,13,25],andlaterfurthergeneralizedto allothersimply-lacedand non-simply-lacedtypes in[14,15].

(3)

1.2. Gaussdecomposition

Ontheotherhand,inordertostudythepositivequantumgroupGL+q(2,R) intheC-algebraicandvon Neumann setting, in[13,26] aquantum version of the Gauss decomposition for GLq(2) is studied, where roughlyspeakinganymatricesaredecomposedinto productoftheform

z11 z12

z21 z22

=

u1 0 v1 1

1 u2

0 v2

, (1.4)

where {ui,vi}with uivi =q2viui are mutually commuting Weyl pairthat generatesthe algebraC[Tq] of q-tori.

Things become moreinteresting inthe split real case, where we specialize the quantum parameter to

|q|= 1,withb2R\Q,0< b<1 anddefine

q:=eπib2, q:=eπib−2. (1.5)

Then there exists acanonical representationof theWeyl pairas positiveessentially self-adjoint operators acting onL2(R)

u=e2πbx, v=e2πbp, (1.6)

andtheabovedecompositiongivesarealizationofthepositivequantumgroupGL+q(2,R) whereallentries andthequantumdeterminantarerepresentedbypositiveessentiallyself-adjointoperatorsactingonL2(R2).

Moreover, byreplacing b−→b−1 weobtaintherepresentationsforthemodulardouble GL+qq(2,R).

Itisfurthershownin[13]thattheGaussdecompositionofGL+q(2,R) aboveisequivalenttotheDrinfeld–

Woronowicz’s quantumdouble construction [24]over thequantumax+bgroup,and itsharmonicanalysis is studied indetail.A new Haar functional is discovered, and anL2-space of “functions”over GL+qq(2,R) is defined using this Haar functional.With these set up, we provedthat L2(GL+qq(2,R)) decomposesinto directintegralofthepositiveprincipalseriesrepresentationsPλ,s:

L2(GL+qq(2,R)) R

R+

Pλ,s⊗ Pλ,sdμ(λ)dλds (1.7)

as theleftandright regularrepresentationsofthemodulardoubleUqq(gl(2,R)),wherethemeasure dμ(λ) isgivenbythequantum dilogarithmfunction.ThisisaclosequantumanalogueofthePeter–Weyltheorem in thecase ofcompact Lie group, whichcomes as a surprisesince theresult doesnot involve any kindof discrete seriesrepresentationasintheclassicalSL(2,R) case.

1.3. Gauss–Lusztig decomposition

Combiningtheapproachesabove,ouraiminthispaperistofindtheGaussdecompositionofthepositive quantum groupof higher rank, GL+q(N,R), interms of Lusztig’s unipotent parameters ai definedabove.

These parametersarenolongercommutingpositiverealnumbers,andthegoalofthis paperistodiscover theirquantumrelationswitheachother,suchthatthedecompositionrecoversthequantumgroupGLq(N), and furthermore in the split real case the generators are represented by positive essentially self-adjoint operators.

Let uscall twovariables quasi-commuting iftheycommuteupto apowerof q2.Inthis paperweprove thefollowing theorem:

(4)

Theorem1.1(Gauss–Lusztigdecomposition).ThegeneratorsofthepositivequantumgroupGL+q(N,R)can berepresented byN2 operators

{bm,n, Uk, am,n}

with1≤n≤m≤N−1,1≤k≤N,whereeach variableispositiveself-adjoint operatorthat commutes or q2-commuteswith each other,sothat

(1) Thevariables {Uk,am,n}generatetheuppertriangular quantumBorelsubgroup T>0U>0+ , (2) Thevariables {bm,n,Uk} generate thelowertriangularquantum BorelsubgroupU>0T>0, (3) Thevariables am,ncommute with bm,n.

Furthermore,theGauss–Lusztig decompositionfortheotherparts ofthemodulardouble GLq(N,R)canbe obtainedby replacing allvariables{bm,n,Uk,am,n}by their tildeversion

x→x:=xb12. (1.8)

Asacorollary,weobtainthefollowing resultsofGL+q(N,R) afterspecializationto thesplit realcase:

Theorem1.2.

(1) There is an embedding of GL+q(N,R) into the algebra of N22 q-tori generated by {ui,vi} satisfying uivi=q2viui,which arerealizedby

ui=e2πbxi, vi=e2πbpi. (1.9)

(2) Thequantumclustervariablesxij,definedbythequantizedinitialminors,canberepresentedasproducts of thevariables {bm,n,Uk,am,n},andhencethey quasi-commutewith eachother.

From the main theorem, wecan extendthe positivequantum group GL+qq(N,R) into theC-algebraic settingbygivinganoperatornormtoeachelementwhichisrepresentedbyintegralsofcontinuouscomplex powers of the generators, completely analogous to the N = 2 case. We can also give an L2 completion anddefine theHilbertspaceL2(GL+qq(N,R)).Thenitisnaturaltoconjectureitsdecompositionunderthe regularrepresentationofthemodulardoubleUqq(sl(N,R)) intothedirectintegralofpositiveprincipalseries representationsconstructedin[11],inanalogytothedecompositionsofL2(GL+qq(2,R)) givenin(1.7).

1.4. Remarks

The Gauss decompositionfor ageneral quantum group isdefinitely notnew [5,30]. Howevertheusual notioninthecontextofGLq(N) isjustdecomposingthequantumgroupintoaproductoflowerandupper triangular matrices,and thequantum Plücker relationsbetween thecoordinatesare studied.Thoughthis approachisanaturalconsideration,therelationsinvolvedarequiteadhoc,andfurthermoreithasnoway to be generalized to the positive setting, its representation being rather unclear. Therefore we name our decomposition the Gauss–Lusztig decomposition to distinguish it from the standard approach, where we decompose our quantum groupinto products ofelementary matricesbearing aquantum variable,so that thepositivityandtheirrepresentationsaremanifest.

Finally we also remark that in [2,10], the notion of quantum cluster algebra is studied, where quasi- commutingclustervariablesareconsidered,andtheq-commutingrelationsarecompatiblewiththealgebraic

(5)

framework. Howeveritsrelation to theparametrizationof GLq(N) isnotveryexplicit,and itsrepresenta- tionbythecanonicalq-tori{e2πbx,e2πbp}isnotshown.Inthispaper,startingfromtheverydefinitionofa quantum group, we foundusing new combinatoricsmethodthatthese cluster variables, quasi-commuting in some complicated powers of q2, are actually decomposed into simpler variables {bm,n,Uk,am,n} that commuteonlyuptoafactorofq2,andexplicitformulaisgivenforthecaseGLq(N).Theq-commutations wefoundexplicitlyarecloselyrelatedtothePoissonstructureoftheclusterX-varietyconsideredin[9].We note thatinthispaper weonlyuse asinglechoiceof clustervariables givenby theinitialminors. A more thorough understandingofthetheoryofquantumcluster algebrainthecontextofquantumgroupsshould bepossiblebyalsoconsideringexplicitlythequantummutationstootherclusters,correspondingtodifferent parametrization ofthemaximalelementw0 explainedinTheorem 5.8(seealsoRemark 5.9).

Thepaperisorganizedasfollows.InSection2wedescribeindetailtheGaussdecompositionforGLq(2) studied in [13]. In Section 3 we describe the Lusztig parametrization of the totally positive matrix in GL+(N,R),and thedescriptionofthe clustervariables definedin[1]. Thenwe introducethedefinitionof GLq(N) inSection4,andusingcertaincombinatoricsmethods,wefindinSection5thequantumrelations betweenthevariablesof theGauss–Lusztigdecomposition.InSection6weconstruct therepresentationof thesequantumvariablesusingN22 quantumtori,andalsopresentanexampledemonstratingtheminimal representation usingonly N22 tori.Finallyusing thequantum torirealization,inSection7wedefine the positive quantum group GL+q(N,R), and describe its relation to the modular double, and inSection 8a possible constructionofanL2(GL+qq(N,R)) space.

2. GaussdecompositionforGLq(2)

ThequantumgroupGLq(2) isoneofthesimplestmatrixquantumgroup.Itsrepresentationtheoryand generalpropertiesasaHopfalgebracanbefoundforexamplein[4,22,29].Inthispaperwewillusearescaled versionofGLq(2).Thisversionisconsiderede.g.in[12,13],andhastheadvantageofactingnaturallyonthe standardL2(R) space,duetotherescaledquantumdeterminant(2.6)whichresemblestheclassicalformula withoutany qfactors.Thisalsosimplifiessomecomputationsinvolvedinlatersections.

Definition2.1.WedefineMq(2) tobethebi-algebraoverC[q,q1] generatedbyz11,z12,z21andz22subjected to thefollowingcommutationrelations:

z11z12=z12z11, (2.1)

z21z22=z22z21, (2.2)

z11z21=q2z21z11, (2.3)

z12z22=q2z22z12, (2.4)

z12z21=q2z21z12, (2.5)

detq:=z11z22−z12z21=z22z11−z21z12, (2.6) with co-productΔ givenby

Δ(zij) =

k=1,2

zik⊗zkj, (2.7)

and co-unitgivenby

(zij) =δij. (2.8)

(6)

Definition2.2. Wedefine theHopfalgebra

GLq(2) :=Mq(2)[det−1q ] (2.9)

byadjoiningtheinverseelementdetq1.

Remark 2.3. The antipode γ of the Hopf algebra GLq(2) is defined through the inverse element det−1q . Howeverwewillnotusetheantipodeinthispaper.

Remark2.4.Itisoftenconvenientto writethegeneratorsasamatrix Z:=

z11 z12

z21 z22

,

thentheco-productcanberewritten asstandardmatrixmultiplication:

Δ

z11 z12

z21 z22

=

z11 z12

z21 z22

z11 z12

z21 z22

. (2.10)

Inthepapers[13,26],theGaussdecompositionofGLq(2) isstudied.Thegeneratorszijcanbedecomposed uniquelyinto

Z=

z11 z12 z21 z22

=

u1 0 v1 1

1 u2 0 v2

, (2.11)

wheretheWeylpairs{ui,vi}i=1,2 arenon-commutativevariablessatisfying

uivi=q2viui, (2.12)

[ui, vj] = [ui, uj] = [vi, vj] = 0 fori=j. (2.13) Definition2.5. Wedefine C[Tq] tobethealgebraofquantumtorus:

C[Tq] :=C[q, q−1]u, v, u−1, v−1/(uv=q2vu) (2.14) consistingofLaurentpolynomialsinthevariablesuandv.

Theninparticular,wehaveanembeddingofthealgebraGLq(2) intothealgebraofquantumtori:

GLq(2)−→C[Tq]⊗2, (2.15)

wheretheelements ofGLq(2) canbe expressedasLaurentpolynomials.

Inorder to generalizethis construction to the higherrank, it turns outthatit is betterto rewrite the decomposition(2.11)intheform:

Z=

1 0 v1 1

u1 0

0 1

1 0 0 v2

1 u2 0 1

=

u1 0 v1u1 1

1 u2

0 v2

(2.16) wheretheentriesofeachofthetwomatricesstillsatisfythequantumrelations(2.1)–(2.6)ofMq(2).Finally we note that the quantum determinant detq quasi-commutes with all other variables. It is this property thatmotivates us tostudy the Gauss decompositionfor GLq(N) not using thestandard coordinates,but usingthe“clustervariables”whichwewillintroduceinthenextsection.

(7)

3. ParametrizationofGL+(N,RRR)

Inclassicalgrouptheory,thetotallypositivepartGL+(N,R) isthesemi-subgroupof GL(N,R) sothat all the entries are positive, and allthe minors, including the determinant, are also positive.There are in generaltwo equivalent waysto realizethetotallypositivesemi-group.In[21], aparametrization usingthe Gauss decompositionisfound:

G=U>0T>0U>0+ , (3.1)

where T>0 is thediagonal matrixwithpositiveentries ui, thepositiveunipotentsemi-subgroup U>0+ (and similarly forU>0)isdecomposedas

U>0+ = m k=1

eakEik = m k=1

(IN+akEik,ik+1), (3.2) where Ei,i+1 is thematrixwith1attheposition(i,i+ 1) and0otherwise,andtheik’scorrespond tothe decompositionofthelongestelement w0 oftheWeylgroupW =SN−1:

w0=si1si2. . . sim. (3.3)

Using thestandarddecompositionforw0:

w0=sN−1sN−2. . . s2s1sN−1sN−2. . . s2sN−1sN−2. . . s3. . . sN−1, (3.4) where sk= (k,k+ 1) arethe2-transpositions,U>0+ canbeexpressed intheform:

⎜⎜

⎜⎜

⎜⎜

1 a1,1 0 0 0

0 1 a2,1 0 0

0 0 1 . .. 0

0 0 0 . .. aN−1,1

0 0 0 0 1

⎟⎟

⎟⎟

⎟⎟

⎜⎜

⎜⎜

⎜⎜

1 0 0 0 0

0 1 a2,2 0 0

0 0 1 . .. 0

0 0 0 . .. aN−1,2

0 0 0 0 1

⎟⎟

⎟⎟

⎟⎟

· · ·

⎜⎜

⎜⎜

⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 . .. 0

0 0 0 . .. aN−1,N−1

0 0 0 0 1

⎟⎟

⎟⎟

⎟⎠ .

(3.5) The labeling is definedas follows: am,n is the entry at them-th row and appearsthen-th time from the left. Similarly,U>0 isgivenbythetransposeofU>0+ ,i.e.

⎜⎜

⎜⎜

⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 . .. . .. 0

0 0 0 bN−1,1 1

⎟⎟

⎟⎟

⎟⎠· · ·

⎜⎜

⎜⎜

⎜⎝

1 0 0 0 0

0 1 0 0 0

0 b2,1 1 0 0

0 0 . .. . .. 0

0 0 0 bN−1,N−2 1

⎟⎟

⎟⎟

⎟⎠

⎜⎜

⎜⎜

⎜⎝

1 0 0 0 0

b1,1 1 0 0 0

0 b2,2 1 0 0

0 0 . .. . .. 0

0 0 0 bN−1,N−1 1

⎟⎟

⎟⎟

⎟⎠ .

(3.6) Under this parametrization, Berenstein et al. [1] studied the parametrization by the so-called cluster variables, in this case corresponds to the initial minors of the matrix. These are the determinantsof the square submatriceswhich start from eitherthe top rowor the leftmost column.More precisely, a matrix g∈GL(N,R) istotallypositiveifandonlyifallitsinitialminors(includingthedeterminantofthematrix

(8)

itself) are strictly positive. Furthermore, the initial minor can be expressed uniquelyas aproduct of the parametersaij,bij andui,hencegivinga1–1correspondencebetweentheparametrizations.

InthestudyofthequantumGaussdecomposition,itturnsoutthatitisjustenoughtolook atT>0U>0+. Letusfirstconsider U>0+ .

Definition 3.1. Denote by xij, 1 i < j ≤N, the initial minor with the lower right corner at the entry (i,j),whichuniquelydeterminesthesubmatrix.Following[1],wewill alsocallxij thecluster variables.

Thenthere isanexplicitrelationbetweenxij and aij: Proposition3.2. (See[1].)Wehave

ai,Nj = xj,i+1xj1,i1

xj,ixj−1,i , (3.7)

xi,i+j = i m=1

j n=1

am+n−1,n. (3.8)

Herewedenotexi,i=xi,0=x0,j= 1.

The aboverelationscan be expressed schematicallyby thediagram shown inFig. 1, where the cluster variablexi,i+j is expressedastheproductof theamn variablesinsidethebox:

Fig. 1.The clusterxi,i+j fori= 2, j= 4.

AsintheN = 2 case, wesplitthediagonalsubgroupT>0 intotwo halves:

T>0=T>0T>0+ :=

⎜⎜

⎜⎜

⎜⎝

u1 0 0 0 0

0 u2 0 0 0

0 0 . .. 0 0

0 0 0 uN−1 0

0 0 0 0 1

⎟⎟

⎟⎟

⎟⎠

⎜⎜

⎜⎜

⎜⎝

1 0 0 0 0

0 v1 0 0 0

0 0 v2 0 0

0 0 0 . .. 0

0 0 0 0 vN−1

⎟⎟

⎟⎟

⎟⎠

, (3.9)

andjustconsider thev variablesforthedecompositionoftheupper triangularpart.Thentheformulasin T>0+U>0+ forai,j staythesame,whilethoseforxi,j aremodifiedasfollows:

xi,i+j= i

m=1

j n=1

am+n−1,n i−1

k=1

vk. (3.10)

4. Definitionof GLq(N)

ThequantumgroupGLq(N) isdefinedbythefollowing relationsinvolvingtherank1case.

(9)

Definition 4.1. Wedefine Mq(N) tobe thebi-algebra overC[q,q−1] generated by{zij}Ni,j=1, suchthatfor every1≤i< i≤N,1≤j < j≤N, thesubmatrix

zij zij

zij zij

(4.1) is acopyofMq(2), i.e.thecorrespondinggeneratorssatisfytherelations(2.1)–(2.6).

Thequantum determinantisagaindefinedusingtheclassicalformula(withnoqinvolved):

Definition 4.2.Wedefinethequantumdeterminantas detq=

σSN

(1)σz1,σ(1). . . zN,σ(N), (4.2) where SN isthepermutationgroupofN elements.

Thenitfollowsfrom(2.6)andaninductionargumentthatdetq doesnotdependontheorderoftherow index,providedthatallthemonomialshavethesameorderofrowindex.

Definition 4.3.WedefineGLq(N) tobetheHopfalgebra

GLq(N) :=Mq(N)[det−1q ]. (4.3)

TheHopfalgebrastructureisgivenbythesameclassicalformula Δ(zij) =

N k=1

zik⊗zkj, (4.4)

(zij) =δij. (4.5)

Theantipodeγ canbedefinedinvolvingdet−1q , butagainwewillnotuseitinthepresent paper.

As inthecaseofGLq(2),wecanconvenientlywritethegeneratorsasamatrix Z:=

zijN

i,j=1. (4.6)

Let us call amatrix X of non-commutative entries a“GLq(N)-matrix” ifthe matrix entries of X satisfy thedefiningrelationsofMq(N) inDefinition 4.1,andthedeterminantdetq(X) ofX isnotidenticallyzero.

Inparticular someoftheentriesareallowed tobeconstants.

Then fromtheco-associativityoftheco-productΔ,

Δ(Z) =Z⊗Z, (4.7)

we havethefollowingproperty:

Proposition 4.4. If X andY are GLq(N)-matrices such that the matrixentries of X commute with those of Y,then thematrix product

G=XY (4.8)

(10)

isagain aGLq(N)-matrix,where thedeterminantisnon-zero andgivenby

detq(XY) =detq(X)detq(Y). (4.9)

Henceinorderto findaGauss decomposition

Z =XY (4.10)

for GLq(N) where X is lower triangular and Y is upper triangular, it suffices to find the corresponding matrix thatsatisfies the quantum relations (that any matrix canbe expressed in this form is proved, for example, in[5]). We will dothis byemploying theconstruction using the parametrizations of the totally positivematricesGL+(N,R).

5. Gauss–Lusztigdecomposition ofGLq(N)

Let T+ and U+ be given by the same matrices as in (3.5) and (3.9), but instead with formal non- commutingvariablesvm,amn for1≤n≤m≤N−1.

Definition 5.1. We define the variables xij,1 i < j ≤N to be the quantum determinant of the initial submatrices (with thesame parametrization given inSection 3) of the matrixproduct Z = T+U+ using thedeterminantformula(4.2). Wewill callxij thequantum clustervariables.

Thenwecanstateourmain results:

Theorem 5.2. The product Z = T+U+ is a GLq(N)-matrix if and only if we have the following q-commutation relationsbetweenthevariablesgivenby:

amnvm=q2vmamn foralln,

amnamn =q2amnamn forn> n,

amnam1,n =q2am1,namn forn≤n,

commuteotherwise.

Furthermore thevariablesxij can bewritten as

xi,i+j= i

m=1

j n=1

am+n−1,n i−1

k=1

vk (5.1)

= (a11a22a33. . .)(a21a32a43. . .). . .(. . . ai+j1,j)(v1v2. . . vi1) (5.2) inthis particularorder.Finallyfor everyGLq(N)-matrix,thecommutationrelationsbetweenthevariables xij aregivenby

xi,i+jxk,k+l=q2P(i,j;k,l)xl,k+lxj,i+j, (5.3) whereforj ≤l,

P(i, j;k, l) = #{m, n|l+ 2≤m+n≤k+l+ 1,1≤m≤i,1≤n≤j}

#{m, n|1≤m+n≤i,1≤m≤k,1≤n≤l} (5.4)

(11)

and

P(k, l;i, j) =−P(i, j;k, l). (5.5)

Corollary5.3.LetU andT bedefinedby(3.6)and(3.9)sothatbmn andumcommutewithamn andvm. Then {bmn,u−1m}satisfies exactlythe samerelations as{amn,vm}. LetT =TT+ be thediagonal matrix with entries Tk=ukvk1 for1≤k≤N,wherewedenoteby v0=uN = 1.Thentheproduct

Z=UT U+ (5.6)

gives theGauss–LusztigdecompositionofGLq(N).Moreprecisely,thismeansthatthegenerators{zij}and det−1q oftheHopfalgebra GLq(N)canbeexpressed intermsofN2 variables{amn,bmn,um,vm}(andtheir inverses) that commute uptoafactorof q2.

Theq-commutation relationsforamn(andalsobmn)canberepresentedneatly byadiagram:

(5.7)

whereu−→vmeansuv=q2vu,anddoublearrowsmeansitq2-commuteswitheverythinginthatdirection.

Inother words,thearrowsconsistofallthepossible leftdirections,andallthenorth-eastdirectionsgoing up onelevel.Furthermore, note thatthecommutation relationsfor amn, vm,um andbmn are justcopies of theGauss decomposition(2.16)forGLq(2).

Remark5.4.It waspointedoutbyA.Goncharovthatifwemakeachangeofvariablesbytakingratiosof thegenerators:

am,n=

am,1 n= 1,

qam,na−1m,n−1 n >1 (5.8)

(theq factoris usedto preservepositivity,cf. Section7), thenthecommutation relationsamong theam,n variables takeamoresymmetricform,representedbythediagram

(12)

(5.9)

ThischoiceofgeneratorsiscloselyrelatedtothePoissonstructureoftheclusterX-varieties,studiedfor examplein[9].

Wewilluseseverallemmas toprovethetheorem.

Lemma5.5. Assumetheq-commutation relationsinTheorem 5.2 foramn andvm hold. Then(5.1)holds.

Proof. Weusethefactthat,byinduction,eachentry zij oftheuppertriangularmatrixhasaclosedform expressiongiven by

zi,i+j = vi1

1t1<t2<...<tji+j1

(ai,t1ai+1,t2. . . ai+j1,tj)

:=

t

Si,t. (5.10)

Wealsohavezi,i= 1 andzi,ij = 0.

Hencethequantized initialminorxi,j isgivenbysumsofproductsoftheform

Sj,t=S1,t1S2,t2. . . Sj,tj. (5.11) Now using theq-commutation relations, which saythatamn commuteswith amn when both m> m and n > n, we canarrange the order on eachmonomial Sj,t so that ithas a“maximal” ordering: If the productamnamn appearsintheordering,theneitherm=m+ 1 and n> n,orm < m.Furthermore,if thelastterminSk,tisam,n,thenthetermam+1,n forn> nwillnotappearinSk+1,t,sothatnothingcan commutetothefront,whilewecanpushallthevmtothebacksincevmcommuteswithamn form< m. This orderingis uniqueinthesense thatfor everymonomialwhere theorder inwhichap, appearsfor eachfixed pis the same,thecorresponding maximal ordering is thesame. Hencetheclassical calculation works and all the terms will cancel, except the one with minimal lexicographical ordering. This term is precisely

S1,tminS2,tmin. . . Si,tmin, where

Sk,tmin =vk−1ak,1ak+1,2. . . ak+j−1,j.

Againeachvk−1 ineachSk commuteswith allthea’s, sowe canmovethem towardstheback, andhence givingtheexpression (5.1). 2

(13)

Lemma 5.6.Assume theq-commutationrelations foramn andvm hold.Then (5.3)holds.

Proof. Usingthe expression givenbyLemma 5.5,we canstudyhow xij andxkl commute.Wedothis by counting how many q-commutations it takes for a fixed am,n appearing in xi,i+j to travel through each variable am,n inxk,k+l.

First, notice thatam,n appears inxk,k+l only if1≤n ≤l and 0≤m−n ≤k−1.Now fix m,n and consider amn.Itq2-commuteswithamn inxk,k+lwhen:

q2:am,n with n< n,hencealso1≤n ≤l and0≤m−n ≤k−1.Wecanrewritethisas A1= #{n|max(m+ 1−k,1)≤nmin(l, n1, m)},

q−2:am,n withn> n,hencealso1≤n≤l and0≤m−n≤k−1 whichreducesto A2= #{n|max(m+ 1−k, n+ 1)≤nmin(l, m)},

q2:am−1,n withn≥n,hence

A3= #{n|max(m−k, n)≤n min(l, m1)},

q−2:am+1,n withn≤n,hence

A4= #|max(m−l+ 2,1)≤n min(l, n, m+ 1)}.

Hencetheamountofq2powerspickedupisjustthesignedsumofthecountabove.Byacasebycasestudy, these expressionscanbesimplified:

A3−A2=

1 m+n≥l+ 2, n+m≤k+l+ 1, n≤l

0 otherwise,

A1−A4=

⎧⎪

⎪⎩

1 n≥l+ 1, k+ 1≤m+n≤k+l

1 m+n≤k,1≤n≤l

0 otherwise.

Hence,thetotalamountofpowerpicked upafter summingallm,nisgivenby

#{l+ 2≤m+n≤k+l+ 1, n≤l}+ #{k+ 1≤m+n≤l+k, l+ 1≤n}

#{m+n≤k,1≤n≤l}, subjectto 1≤m≤i,1≤n≤j.

Letus assumej ≤l.Then n≤j≤l,and theexpressioncanbe simplifiedto

#{l+ 2≤m+n≤k+l+ 1} −#{m+n≤k}, subjectto 1≤m≤i,1≤n≤j.Thistakescareofamn.

Westillneedtocalculatethoseforvm.Sincethereisonlyonevmappearinginxk,k+lforeach1≤m≤k, wejustneedtocounthowmanyamn’swithindexm≤k+ 1 arethere.Henceusingtherenamedam+n−1,n theconditionis

(14)

#{m, n|m+n≤k,1≤m≤i,1≤n≤j},

andthisis theamountofq2 pickedup,hencecanceledwiththelastterminthepreviouscalculation.

Similarlyconsideringtheotherdirection,theamountof q2 pickedupis

#{m, n|m+n≤i,1≤m≤k,1≤n≤l}. Hencewearriveat ourformula. 2

Lemma5.7. Wehave

P(i, j;k, l) =P(i, j−1, k, l1). (5.12) Proof. This is done by simplecounting. Assumej ≤l. Let us compare thedifference between the corre- spondingtermsoftheP function.Wehaveforthesecond term:

#{m, n|1≤m+n≤i,1≤m≤k,1≤n≤l}

#{m, n|m+n≤i,1≤m≤k,1≤n≤l−1}

= #{m, n|1≤m+l≤i,1≤m≤k}, whileforthefirsttermwehave

#{m, n|l+ 2≤m+n≤k+l+ 1,1≤m≤i,1≤n≤j}

#{m, n|l+ 1≤m+n≤k+l,1≤m≤i,1≤n≤j−1}

= #{m, n|l+ 2≤m+n≤k+l+ 1,1≤m≤i,1≤n≤j}

#{m, n|l+ 2≤m+n≤k+l+ 1,1≤m≤i,2≤n≤j}

= #{m|l+ 2≤m+ 1≤k+l+ 1,1≤m≤i}

= #{m|l+ 2≤m+l+ 1≤k+l+ 1,1≤m+l≤i}

= #{m|1≤m≤k,1≤m+l≤i}. Hencetheamountscancel. 2

ProofofTheorem5.2. Wewillprovethetheorem byinduction.WhenN = 2 thedecompositionisjust 1 0

0 v1

1 a11

0 1

witha11v1=q2v1a11. Hencethiscaseholdstrivially.

Assumeeverythinghold fordim =N−1.

For dim =N, firstwe notice thataN1,N1 commuteswith aii fori < N−1 by lookingat theentry z1,i+1=a11a22. . . aii,whichcommuteswitheachotherbytheGLq(2) relations.

Next we notice that the cluster variables for a general GLq(N)-matrix depend only on the variables appearing in T+U+, since we assumed that the lower triangular matrix UT commutes with T+U+. Hencetherelationsbetweenxi,i+j whichhold forT+U+ will alsoholdforGLq(N).

Nowforageneralclustervariable xk,N inthenewrank,weknowfromLemma 5.5thataN−1,N−k isthe onlynewtermappearing.HencethecommutationrelationsbetweenaN1,Nkandai+j1,jisequivalentto thecommutationrelationsbetweenxk,N andxi,i+j byinductiononnewterms.Nowconsiderthe(N1)× (N1) submatrix correspondingto xN−1,N. Thisby definitionsatisfiestheGLq(N1) relations,and in particular the commutation relationbetween xk,N and xi,i+j shouldbe the sameas the relation between xk,N−1 andxi,i+j−1.However,thisisprecisely thestatementprovedinLemma 5.7. 2

(15)

Theaboverelationscanbegeneralizedtoarbitraryreducedexpressionforw0asfollows.Let(a,b,c) and (a,b,c) bepositiveq-commutingvariablessuchthat

b

a c

and

a c

b

(5.13)

where againu−→v meansuv=q2vu.

Then asin(3.2),theproducts

x2(a)x1(b)x2(c) =x1(a)x2(b)x1(c)

form acopyof U+ oftheGauss decompositionofGLq(3) correspondingto thereducedexpressions w0=s2s1s2=s1s2s1,

where

a= (a+c)1cb=bc(a+c)1, b=a+c,

c= (a+c)1ab=ba(a+c)1, and thismap

φ: (a, b, c)(a, b, c) (5.14)

is aninvolution between(a,b,c)←→(a,b,c).Inparticular, we seethatbyapplying this transformation to any three consecutive variables amn corresponding to the sub-word of the form sisjsi with i adjacent to j, allthe arrows inthediagram (5.13) arepreserved. Applying this transformation,we candeduce all quantumLusztig’svariablesforarbitraryreducedexpressionforw0.Hencewecanrestatethecommutation relationsinTheorem 5.2as follows:

Theorem5.8.Letain,m bethecoordinatesofU+ correspondingtothereducedexpressionofw0=si1. . . sin. Then the product T+U+ is a GLq(N)-matrix if and only if for any |i j| = 1, the coordinates {vi,vj,ai,m,aj,n,ai,k} form a copy of GLq(3), where {ai,m,aj,n,ai,k} appear in this exact order in the parametrization of U+.Inotherwords,wehave

(5.15)

Remark5.9.Theabovetransformationoftheamn coordinatesbetweendifferentreducedexpressionofthe longest Weyl element w0 can be rewritten in terms of the variables xi,j using (5.1). This becomes the quantized cluster mutations,or underthe limitq −→ 1,the cluster mutationsfor the parametrization of totallypositivematrices,whichishistoricallythefirstexamplesandthemainmotivationfortheintroduction of thetheory ofclusteralgebra[1].

(16)

6. Embedding intothealgebraofquantumtori

In order to deal with positivity for the split real case in the next section, we would like to find an embeddingofthealgebraMq(N) (resp.GLq(N))into copiesofthealgebraofquantumtori C[Tq],so that itselementsareexpressedintermsofpolynomials(resp.Laurentpolynomials)inthequantumtorivariables.

HenceduetotheGauss–Lusztigdecompositionestablishedintheprevioussection,theremainingtaskisto findanexplicitrealizationofthegeneratorsamn,vm usingseveral copiesoftheWeylpair{u,v}satisfying uv=q2vu.

Theorem6.1. Thereisan embeddingofalgebra

T+U+−→C[Tq]N2 +N2 4 givenby

vm→vm (6.1)

amn→um

m−1

k=n

vm−1,k

n−1

l=1

vm,l

um,n, (6.2)

whereT+U+isnowrealizedasthealgebrageneratedby{amn,vm}satisfyingtherelationsfromTheorem 5.2, andC[Tq]N2 +N−42 isgeneratedbytheWeylpairs{um,vm}and{umn,vmn}for1≤n≤m≤N−1,where wehaveomittedthelastsetofgenerators{uN1,N1,vN1,N1}.(WedefineuN1,N1:= 1intheformula.)

Similarly, forUT generated by{bmn,um},wehave theembedding UT−→C[Tq]N2 +N−42 givenby

um→um (6.3)

bmn→vm m1

k=n

vm−1,k

n1 l=1

vm,l

um,n, (6.4)

wherethegenerators{u,v}(with sameindexing above) commutewith {u,v}used above.

Together,this gives anembeddingof thealgebra GLq(N)UT⊗T+U+:

GLq(N)−→C[Tq]⊗N2+N−4. (6.5)

Proof. The proof is straightforward to check, since for the uvariables only um and umn appear in amn. Hencewejustneedto count,at mostonce, howmanyvmn appearsinanothervariables. 2

Remark6.2.ThisembeddingresemblestheDrinfelddoubleconstruction,whichreads

D(Uq(b)) =Uq(g)⊗ Uq(h). (6.6)

WithourassignmentforUT⊗T+U+,wecanactuallycombinethediagonalvariables(hence“modding”

outh)as follows:

Références

Documents relatifs

An important issue of quantum control is to design explicit control laws for the problem of the single input bilinear Schrödinger equation, that is..

8 See the UNIDROIT website, aiming at collecting the whole case law on the CMR issued by states party to the convention : www.unilaw.org. The website would however need to be

On the adjoint representation of orthogonal free quantum groups.. Roland Vergnioux joint work with

The conditionnaly negative type function associated to c X is the one associated to Brannan’s deformation. In particular the cocycle arising from Brannan’s deformation can be

La conservation des communications électroniques à des fins de preuve de transactions commerciales Rosier, Karen Published in: Bulletin Social Publication date: 2007 Document Version

From our point of view, this shows first that spacetime emergence could, in principle, be more radical than what we actually find in current approaches to QG, and second that

In general, in order to approach the generation conjecture, we can use the Tannakian approach to the compact quantum groups, coming from [28], as follows:..

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des