• Aucun résultat trouvé

Geometrical effects in diffusion problems, the case of radiator fins

N/A
N/A
Protected

Academic year: 2022

Partager "Geometrical effects in diffusion problems, the case of radiator fins"

Copied!
5
0
0

Texte intégral

(1)

Power to dissipate : 50 W Typical dimension : L= 3cm Physical properties of air : density 1 kg/m3

specific heat 1000 J/kg.K

thermal conductivity 0.025 W/m.K

If we rely only on diffusion in air, how much power can we dissipate from the flat chip without fins?

Geometrical effects in diffusion problems, the case of radiator fins

How much power can we dissipate by adding a radiator with fins ?

Is there an optimum length for fins given their thickness e and the heat transfer coefficient h between the fins and the surrounding air ?

Physical properties of aluminum (material of the fins) : thermal conductivity 240 W/m.K

(2)

e H

T

1

T

0

x T(x)

h

Write the heat balance in an element of fin and derive an equation for T(x) What are the assumptions on the temperature field within

the fin that can be done using the hypothesis e << H ?

What is the temperature distribution within the fin and the resulting heat flux to the air ?

What are the boundary conditions for T(x) ?

(3)

J

D

=

M

dT dx

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

M

d

2

T (x)

dx

2

e = 2h [T (x) T

0

]

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

0 = dJ

D

(x)

dx e + 2h [T (x) T

0

]

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

J

D

(x) e = J

D

(x + dx) e + 2h [T (x) T

0

] dx

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

d

2

T (x)

dx

2

= 2h

e

M

[T (x) T

0

] = [T (x) T

0

]

`

2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Heat flux within the fin

Heat flux balances in an element of fin between x and x+dx :

(4)

` =

r e

M

2h

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T (x) T

0

= A exp(x/`) + B exp( x/`)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(0) = T

1

M

dT

dx

x=H

= h[T (H ) T

0

]

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

H

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

` T

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(x)

x!1

! T

0

T

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(x) T

0

= (T

1

T

0

) exp( x/`)

Boundary conditions : x=0

x=H, assuming H < l

x=H, assuming

(5)

J

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> L

= 2h(T

1

T

0

) exp( x/`)

J

total

=

Z

H 0

2h(T

1

T

0

) exp( x/`) dx

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

J

total

Z

1

0

2h(T

1

T

0

) exp( x/`) dx = 2h`(T

1

T

0

)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

J

total

⇡ p

2h e

M

(T

1

T

0

)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Local heat flux to the air :

Total heat flux to the air :

Références

Documents relatifs

L'étude de la dynamique spatio-temporelle d’occupation du sol et de celle des peuplements d’armoise blanche a montré qu'il y a des processus de dégradation irréversible du

The influence of the N interstitials on the diffu- sion coefficient is correlated with the low-temperature diffusion anomaly of H in the pure metals.. For H in pure Nb and pure

In addition to nickel sulphamate (the major electrolyte component), formulation additives can also comprise nickel chloride (to increase nickel anode dissolution), sulphamic

En conclusion, nous trouvons que les ´etats proches de k k = 0 s’adaptent instantan´ement ` a la population pr´esente dans le r´eservoir, et que la diff´erence entre les

This question, however, will not be elucidated because we prove in Section 4 that the bulk diffusion coefficient is smooth up to the boundary.. Consider the resolvent

Besides the existing “cabled” antenna array, 3 self-triggered, autonomous radiodetection stations have been installed within CODALEMA in July 2009.. Such an autonomous station

Key words: Convective heat transfer coefficient, correlation, phase change material, heat storage system, transient forced convection, numerical

Thanks to the flexibility of isogeometric analysis and geometry-independent field approximations, we investigate the impact of geometrical and material uncertainties on the behaviour