• Aucun résultat trouvé

Shape Coexistence and Mixing of Low-Lying $0^+$ States in $^{96}$Sr

N/A
N/A
Protected

Academic year: 2021

Partager "Shape Coexistence and Mixing of Low-Lying $0^+$ States in $^{96}$Sr"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-01891280

https://hal.archives-ouvertes.fr/hal-01891280

Submitted on 8 Jan 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Shape Coexistence and Mixing of Low-Lying 0

States in

96

Sr

S. Cruz, P.C. Bender, R. Krucken, K. Wimmer, F. Ames, C. Andreoiu, R.A.E.

Austin, C.S. Bancroft, R. Braid, T. Bruhn, et al.

To cite this version:

S. Cruz, P.C. Bender, R. Krucken, K. Wimmer, F. Ames, et al.. Shape Coexistence and Mixing

of Low-Lying 0

+

States in

96

Sr. Phys.Lett.B, 2018, 786, pp.94-99. �10.1016/j.physletb.2018.09.031�.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Shape

coexistence

and

mixing

of

low-lying

0

+

states

in

96

Sr

S. Cruz

a

,

b

,

P.C. Bender

b

,

R. Krücken

a

,

b

,

K. Wimmer

c

,

d

,

,

F. Ames

b

,

C. Andreoiu

e

,

R.A.E. Austin

f

,

C.S. Bancroft

d

,

R. Braid

d

,

T. Bruhn

b

,

W.N. Catford

g

,

A. Cheeseman

b

,

A. Chester

e

,

D.S. Cross

e

,

C.Aa. Diget

h

,

T. Drake

i

,

A.B. Garnsworthy

b

,

G. Hackman

b

,

R. Kanungo

f

,

b

,

A. Knapton

g

,

W. Korten

j

,

b

,

K. Kuhn

d

,

J. Lassen

b

,

R. Laxdal

b

,

M. Marchetto

b

,

A. Matta

g

,

k

,

D. Miller

b

,

M. Moukaddam

b

,

N.A. Orr

k

,

N. Sachmpazidi

d

,

A. Sanetullaev

f

,

b

,

C.E. Svensson

l

,

N. Terpstra

d

,

C. Unsworth

b

,

P.J. Voss

e

aDepartmentofPhysicsandAstronomy,UniversityofBritishColumbia,Vancouver,BCV6T1Z4,Canada bTRIUMF,Vancouver,BCV6T2A3,Canada

cDepartmentofPhysics,TheUniversityofTokyo,7-3-1Hongo,Bunkyo-ku,Tokyo113-0033,Japan dDepartmentofPhysics,CentralMichiganUniversity,MtPleasant,MI48859,USA

eDepartmentofChemistry,SimonFraserUniversity,Burnaby,BCV5A1S6,Canada fDepartmentofAstronomyandPhysics,SaintMary’sUniversity,Halifax,NSB3H3C2,Canada gDepartmentofPhysics,UniversityofSurrey,Guildford,Surrey,GU27XH,UnitedKingdom hDepartmentofPhysics,UniversityofYork,York,YO105DD,UnitedKingdom

iDepartmentofPhysics,UniversityofToronto,Toronto,ONM5S1A7,Canada jIRFU,CEA,UniversitéParis-Saclay,F-91191Gif-sur-Yvette,France

kLPC,ENSICAEN,CNRS/IN2P3,UNICAEN,NormandieUniversité,14050Caencedex,France lDepartmentofPhysics,UniversityofGuelph,Guelph,ON,N1G2W1,Canada

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received7March2018

Receivedinrevisedform12September 2018

Accepted16September2018 Availableonline27September2018 Editor:V.Metag

Keywords:

Single-particlestructure Transferreaction Shapecoexistence

Thelowenergyexcited0+2,3statesin96Srareamongstthemostprominentexamplesofshapecoexistence

acrossthenuclearlandscape.Inthiswork,theneutron[2s1/2]2contentofthe0+1,2,3statesin96Srwas

determinedby meansofthe d(95Sr, p) transferreactionatthe TRIUMF-ISAC2facilityusingtheSHARC

andTIGRESSarrays.Spectroscopicfactorsof0.19(3)and0.22(3)wereextractedforthe96Srgroundand

1229 keV 0+ states,respectively, byfitting the experimental angular distributions to DWBAreaction model calculations.Adetailedanalysisofthe

γ

-decayoftheisomeric0+3 statewasusedtodetermine aspectroscopic factorof0.33(13). Theexperimentalresults are comparedtoshell modelcalculations, whichpredict negligiblespectroscopicstrengthfor theexcited0+ statesin96Sr. Thestrengths ofthe

excited0+2,3stateswerealsoanalyzedwithinatwo-levelmixingmodelandareconsistentwithamixing strength ofa2=0.40(14) and adifference inintrinsic deformations of |β|=0.31(3).These results

suggestcoexistenceofthreedifferentconfigurationsin96Srandstrongshapemixingofthetwoexcited 0+states.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

Describingtheshapeevolutionofatomicnucleipresentsa chal-lengetomodernnuclearstructuretheory.Theshapeofthenucleus isaresultofadelicateinterplaybetweenmacroscopic,liquid drop-like andmicroscopic shell structure effects. Nuclei witha closed shell configurationare spherical intheir ground states,butaway frommagicnumbersdeformedgroundstatesareobserved.The de-greeofdeformation resultsfromtheinteractionbetweenprotons

*

Correspondingauthor.

E-mailaddress:wimmer@phys.s.u-tokyo.ac.jp(K. Wimmer).

and neutrons depend on the exact occupation of single-particle orbitals near the Fermi surface. Therefore, small changes in the nucleonnumbercanleadtorapidchanges inboththemagnitude and type ofdeformation. One of the mostdramatic examples is the region of neutron-rich Zr( Z

=

40) and Sr ( Z

=

38) isotopes. While the properties of Zr and Sr nuclei with N

58 indicate sphericalgroundstates,withtheadditionofjusttwoneutronsthe groundstatesbecome stronglydeformedfor N

=

60 andbeyond. The nucleiat thisshape transitionaround N

=

60 exhibit shape coexistence [1] withlow-lyingexcited deformed(spherical)states

https://doi.org/10.1016/j.physletb.2018.09.031

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

fornucleiwithN

58 (N

60).Thesuddenonsetofdeformation in100Zrhasbeenexplainedbythestrongresidualinteraction be-tweentheproton–neutronspin-orbitpartnerorbitals

π

[

0g9/2]and

ν

[

0g7/2].Whileinanindependentparticlepicturethe

π

[

0g9/2]

or-bitalis completely empty in Zr, addingneutrons to the

ν

[

0g7/2]

orbital enables the promotion of protons from the lower lying orbitalstothedeformation-driving

π

[

0g9/2] orbital [2,3]. The

re-sultingsuddentransitionfromsphericaltodeformedgroundstates and the emergence of shape-coexisting states in the vicinity of

N

=

60 and Z

=

40 hasbeenasubjectofconsiderableinterestfor manyyears,boththeoretically [2–21] andexperimentally[22–29]. InSr, theshape transitionisevidentthroughmeasurementsof binding energies [30], charge radii [23], excitation energies and quadrupole transition probabilities of low-lying states [24,27,28]. Low-lying0+stateswithstrongelectricmonopole(E0)transitions betweenthemindicatethecoexistenceofstateswithdifferent in-trinsicdeformationsortheoccurrenceofstronglymixed configura-tions [31].In96Sr(N

=

58)thelow-lying1229and1465 keV0+2,3 statesareassociatedwithshape-coexistence,asevidencedby the verystrongmonopoletransitionstrength

ρ

2

(

E0

)

=

0

.

185

(

50

)

[32]

betweenthem.However, themeasuredlifetimesandextracted E0

andE2 transitionstrengthsforthedecayofthe0+2 and0+3 states do not allow the conclusive determination ofthe mixing ampli-tudes betweenthe two excited 0+ states ortheir relative defor-mation.Thespectroscopicquadrupolemomentsofthe2+1 statein

96Srandthe2+

2 statein98Srwerefoundtobeverysimilar [27,28],

indicating that these states possess similar underlying structure. Themixing ofthe two coexistingshapes in98Sr isweak despite theirproximity [26,27].

Severaltheoreticalstudies have providedinformation on elec-tromagnetictransitionprobabilitiesin96Sr.Thelow-lying0+states in 96Sr have been studied using the complex excited VAMPIR method with a realistic effective interaction in a large model space [20].In that work,the lowestthree 0+ stateswere associ-atedwithtripleshapecoexistenceofspherical,prolate,andoblate configurations.However,thestrong E0 transitionbetweenthe 0+2 and0+3 statesin96Srwas notreproduced.Thebeyondmeanfield calculationswiththe Gogny D1Sinteraction of Refs. [27,28] pre-dict two excited bands in 96Sr with only moderate deformation butsubstantial triaxiality. Recently, Monte-Carlo shell model cal-culationsin a large modelspace were ableto reproduce the en-ergylevelsandB

(

E2

)

valuesoflow-lyingstatesintheZrisotopic chain [21]. When extended to the Sr isotopes [29], these calcu-lationsdescribe well the levelschemes and B

(

E2

)

valuesof 94Sr

and98Sr butpredict alreadysubstantial deformationfor96Sr. For all these theoretical calculations the agreement withthe experi-mentalinformationismuchbetterin98Srand98Zrthan96Sr.

Inthis Letter,we report onthe first investigation ofthe low-lying 0+1,2,3 states in 96Sr through the d(95Sr, p) transfer reaction

at5.5 A MeVininversekinematics,providingcrucialinsightsinto theshapemixinganddifferencesindeformationofthecoexisting shapes in 96Sr. In contrast to the experimental work performed

to date, we investigate the shape transition in 96Sr from a dif-ferent perspective and study the single-particle properties. Since the95Sr 1

/

2+ groundstate isdominatedby the

[

2s1/2] spherical

single particle configuration,as we demonstrated in the present experimentalcampaign [33],the



=

0 transferinthed(95Sr, p)

re-actionprobesthecomponentofthe

[

2s1

/

2

]

2 configurationinthe 0+ state wave functions. Our work allowed for the first time to establishthemixingbetweenthedifferentshapesin96Sr.The

re-sultsindicatea strongmixingofthetwo excited 0+ stateswhile theweakpopulationofthegroundsstatehintstothecoexistence ofthreeshapesin96Sr.

The present experiment was performed at the TRIUMF-ISAC2 facility [34] where a 95Sr beam was produced by impinging a

Fig. 1. Excitation energyspectrumof96Srobtainedfromenergiesand anglesof

protonsemittedatbackwardlaboratoryangles.Thetotalspectrum(filledpoints) includestheinformationfromallmeasuredprotonsintheangularrangeθlab>90◦

whilethegatedspectrum(openpoints),correctedfortheefficiencyofTIGRESS,is additionallygatedoncoincident414 keVγ-raysfromthe0+2→2+1 transition.The

fits(redsolidlines)includepeaks(bluedashedline)correspondingtothe0 keV (0+1),1229(0+2),1465(0+3)and2084 keV(1+,2+)96Srstates,aswellasa

con-tinuousbackgroundforthetotalspectrum.Notethatforthe 0+3 statetheγ-ray detectionefficiencyislowerduetothe6.7(10) nshalf-lifeandthe 38% branch-ingratiotothe0+2 state [39].(Forinterpretationofthecolorsinthefigure(s),the

readerisreferredtothewebversionofthisarticle.)

480MeV protonbeamwithan intensityof10

μ

A on aUCx

tar-get.Theneutron-richSrisotopeswereproduced throughuranium fission, were laser ionized, mass separated and transported to a charge state booster [35]. The beam ( Q

=

16+) was transported to the ISAC2 facility where its kinetic energy was increased to 5.5 A MeV usingthe superconducting linearaccelerator [34].The post-accelerated 95Sr beam was delivered for approximately 2.5 dayswith an averageintensityof 1

.

5

×

106 particlesper second. The beam impinged upon a 0.44(4) mg/cm2, 92(1)% deuterated

polyethylene(CD2)target,mountedinthecenter oftheSHARC

sili-condetectorarray [36].SHARC(SiliconHighly-segmentedArrayfor Reactionsand Coulex)is a compactarrangement ofdouble-sided siliconstripdetectorswhichisoptimizedforhighgeometrical effi-ciencyandexcellentspatialresolution,with

lab

1◦.TheSHARC

array was surrounded by the TIGRESS

γ

-ray detector array,with 12HPGeCompton-suppressedcloverdetectorsarrangedina com-pact hemispherical arrangement with approximately 50% of 4

π

geometrical coverage [37]. The beam composition was measured periodically throughout the experiment using a Bragg ionization detector [38],whichwaspositionedadjacenttotheTIGRESS exper-imental station.Thecomposition ofthe A

=

95 beamwas 95(3)%

95Sr.

The excitation energy ofstates in 96Sr populated through the

d(95Sr, p)reactionwasdeterminedbymeasuringtheprotonenergy andscattering angle.Fig.1 showstwo reconstructed 96Sr excita-tionenergy(Ex)spectraproducedusingonlydatafrombackwards

laboratory angles (

θ

lab

>

90◦) as the excitation energy resolution

is improved in this angular range. The direct population of the 0+1 96Sr ground state is clearly visible while the large

β

-decay background(fromaccidentallystopped95Sr)anddensityofstates

made it impossible to resolve higher lying states. Excited states were thus identified usingthe de-excitation

γ

-ray in addition to an Ex gate. A

γ

-ray gate on the 414 keV 0+2

2+1 transition

was usedtoproducethe

γ

-rayefficiency-corrected excitation en-ergyspectrum(openpoints).Inthisspectrum,the1229 keV(0+2), 1465 keV (0+3) and 2084 keV (1+

,

2+) 96Sr states could be

re-solved using a fit (blue dashed lines) that utilized a fixed res-olution (FWHM

=

425 keV), determined from the groundstate, andtheknownexcitation energiesofthe states.Fig.2showsthe Doppler-reconstructed

γ

-ray energy spectrum forTIGRESS detec-tors positioned at backward angles (

θ

lab

>

120◦) in coincidence

(4)

Fig. 2.γ-rayenergyspectrumcoincidentwith96Srstatesintherange800<E x<

1900 keV.OnlyTIGRESSdetectorspositionedatθlab>120◦wereused.Transitions

markedwithastararefromthedecayofthe1507,1995,2084and2113 keVstates whichwerepartiallyincludedintheexcitationenergygate.Thesestateswillbe dis-cussedindetailinaforthcomingpublication.Thetransitionmarkedwithatriangle couldnotbeidentified.Apartialexperimentallevelschemeisshownontheright, includingonlystatesandtransitionsrelevantforthisworkaswellasthe235 keV

E0 transition.

withprotons. An excitation energy gate of 800

<

Ex

<

1900 keV

wasutilizedtoincludeprotonsassociatedwiththedirect popula-tionofthe1229 keV(0+2)and1465 keV(0+3)states.

For the Doppler reconstruction, the

γ

rays were assumed to be emittedatthe centerofthetarget. Thisis notcorrectfor the 650 keV transition from the long-lived (6.7 ns [39]) 1465 keV 0+3 state, which decays outside the target. By using only the most backward TIGRESS detectors a reasonably narrow Doppler-correctedpeakcouldbeachievedforthistransition,sinceherethe difference betweenthereal emission angleofthe

γ

ray andthe angleassumedfortheDopplerreconstruction issufficientlysmall evenforarelativelylong-livedstate.Thisallowedforaclear iden-tification of this transition, despite the reduced

γ

-ray detection efficiency. The cross-section for the population of the 1465 keV 0+3 statewas determined usingarelative

γ

-ray intensityanalysis between the 650 keV 0+3

2+1 line and the 414 keV 0+2

2+1 line(Fig. 2). The experimentally observedyields for these transi-tions were compared to adetailed Geant4 [40] simulation ofthe decayofthe1229and1465 keVstates,takingintoaccountthe TI-GRESSgeometry,attenuationof

γ

-raysintheSHARCchamberand beam-line material, the kinematics of the recoiling 96Sr nucleus

(

β

0

.

1) andtheknownhalf-lives anddecaybranching ratiosof thetwostates.Fromtheratioofthenumberofmeasured

γ

raysit wasdeducedthattherelativepopulationstrengthofthe1465 keV statecomparedtothe1229 keVstateis1.50(52).

Fig. 3 shows the experimental angular distributions for the 0+1,2 96Sr states compared to distortedwave Born approximation (DWBA) andadiabatic distortedwaveapproximation (ADWA) cal-culationsthat were carriedoutusing FRESCO [41]. FortheDWBA calculations, the optical model (OM) parameters were optimized usingtheelasticscatteringangulardistributionsford(95Sr, d)and p(95Sr, p), the datafor which were acquired simultaneously with d(95Sr, p). For d(95Sr, d) the OM parameters of Lohr and

Hae-berli [42] wereused,withslightadjustmentsto betterreproduce the elastic scatteringdata. The p(95Sr, p) data was dominated by

pureRutherfordscatteringandwas,withinuncertainties,not sen-sitivetodifferentOMparameters.Thesecalculationsalsoprovided the normalization of the cross section. The analysis procedure of Wilson et al. [43] was followed, and further details will be provided in a forthcoming publication [33]. For the ADWA cal-culation global nucleon-nucleus OM parameters from [44] were used. The calculations (Fig. 3) model the d(95Sr, p) reaction as

Fig. 3. FitofDWBA(blue)andADWA(green)calculationstoexperimentaldatafor the96Sr0+

1 groundstate(a)and1229 keV0+2 state(b).Forthedeterminationof

the spectroscopicfactorsonlytheforwardcenter-of-massanglesθcm<45◦ were

considered.

a single-step process where the transferred neutron populates the

ν

2s1/2 orbital via pure



=

0 angular momentum transfer.

The ADWA calculations better reproduce the data at large scat-tering angles where deuteron breakup is expected to affect the transfer cross section. The spectroscopic factors C2S are deter-mined asthe ratio of experimental to reaction model cross sec-tion, the fits were restricted to the forward angles

θ

cm

<

45◦.

For the transfer to the 0+1,2 96Sr states the spectroscopic fac-tors amount to C2S

=

0

.

19

(

3

)

and 0.22(3), respectively, for the DWBA and 0.15(3) and 0.19(3) for the ADWA calculations. The spectroscopicfactoruncertainties includebothstatisticaland sys-tematiccontributionsrelatedtothenormalizationofthedata. Ad-ditional uncertainties for the absolute value of the spectroscopic factors arise from the choice of the reaction model and the op-tical model potential parameters especially for the DWBA. Based on the comparison of the two reaction models and various sets of optical model parameters these amount to 20%. For the rel-ative spectroscopic factors ofthe 0+ states used to extract their mixingstrengththeseuncertaintiescancel.Theinclusionof multi-step processes through coupled channels calculations leads to a slightly better description ofthe differential crosssection, at the expenseofadditionalunconstrainedparameters.Completeand de-tailed coupled-channel calculations are beyond the scope of the present work. To estimate the contribution, the inelastic excita-tion of 95Sr was taken into account through an effective defor-mation length. A value of

δ

n

=

1

.

1 fm reproduces the measured

(

d

,

d

)

cross section and is consistent with the spherical nature of 95Sr determined from the charge radius [23] and the

neigh-boring 94,96Sr [28,29]. Changes to the spectroscopic factors are

less than 10% and do not alter the conclusion presented in the following.

(5)

Table 1

Comparisonofexperimental(usingtheDWBAcalculations)tocalculatedspectroscopicfactors(C2S)for0+statesin96Srpopulatedviathed(95Sr, p)reaction.The

experi-mentalvaluesforthetwoexcited0+statesresultintheunmixedsphericalstate,whilefortheshellmodelcalculationsthetwo0+stateswiththehighestC2S arelisted

(fordetailsseetext).

Exp. Unmixed glek a glek b glek c

Ex(keV) C2S Ex(keV) C2S Ex(keV) C2S Ex(keV) C2S Ex(keV) C2S

0 0.19(3) 0 0.19(3) 0 1.742 0 1.575 0 1.455

1229 0.22(3) 1314 0 – – – – – –

1465 0.33(13) 1380 0.55(13) 2271 0.056 1691 0.098 444 0.105

It was not possible to extract an angular distribution for the 1465 keV0+3 state duetolow statistics.However, fromthe anal-ysisoftherelativepopulationstrengthdiscussedabove,the spec-troscopic factor for the 1465 keV state could be deduced to be 0.33(12) or 0.29(13), for DWBA and ADWA calculations, respec-tively. The relative spectroscopic factors used in the discussion beloware not affected by the choice of the reaction model and thesystematicuncertaintiesarising fromthenormalizationofthe crosssection.

Therelativestrengthsofthe0+2,3statesin96Srwereinterpreted usingatwo-levelshapemixingmodel.The0+1 groundstateof96Sr wasexcludedfromthemixingmodelanalysisasthemixingofthis statewiththeexcited 0+2,3 statesisexpectedtobenegligible.This isevidencedbythefactthatnoE0 transitionsbetweentheexcited 0+2,3 statesandthe01+ groundstateof 96Sr were reportedinthe

workofJung [45].Thisassumptionisalsosupportedbytherecent Coulomb excitation data and beyond mean field calculations re-portedbyClémentetal. [27,28].Usingthetwo-levelmixingmodel, themonopole transitionstrength between the 0+2,3 96Sr statesis relatedtotheirmixingstrengtha2 andintrinsicquadrupole defor-mations

β

by,

ρ

2

(

E0

)

=



3 4

π



2 Z2a2

(

1

a2

)



(β

2

)



2 (1)

where Z is the atomic number [31]. In the case where the un-mixedstates are a spherical configuration 0+sph (

β

sph

=

0) and a

stronglydeformedconfiguration0+def (with

β

def),thedifferencein

(squared)deformationbetweentheconfigurationsis

(β

2

)

= β

def2 . Thewave functions ofthe 0+2,3 statesin 96Sr wouldtherefore be



0+2



=

a





0+sph



+

1

a2



0+ def



and



0+3



=

1

a2





0+ sph



a



0+def



, respectively,withthe mixingamplitudea.Giventhat the ground state of 95Sr has a nearly spherical shape [23], a substantial

re-arrangement of the valence nucleons would be required in or-dertodirectlypopulateastronglydeformedconfigurationin96Sr throughasingle-steptransferreactionsuchas

(

d

,

p

)

.Itistherefore assumed that there was negligible direct population of the de-formedconfiguration,0+def,inthisexperimentandsothestrength ofthe 0+2,3 statesin 96Sr is adirect measure ofthe 0+sph content ofthe excited 1229 and1465 keV state wave functions. The ra-tioofthespectroscopicfactorsofthe02+ and0+3 statesin 96Sris thereforeequalto 1−a2a2, givinga2

=

0

.

40

(

14

)

.This resultis

inde-pendentofthereactionmodelchoiceastheratioisdeterminedby theratioofcrosssectionswithadynamicalcorrectionaccounting forthe difference inexcitation energy. By combiningthe known value of

ρ

2

(

E0

)

with ourexperimental constrainton the mixing

strengtha2,equation (1) wasusedtodeterminetheabsolutevalue of

β

def

=

0

.

31

(

3

)

. In this strong mixing scenario the interaction

strength betweenthe 0+2,3 statesin 96Sr is 113 keV and the

en-ergiesoftheunmixed0+defand0+sph statesare1314and1380 keV, respectively.Itisinterestingtocomparetheseresultstotheshape coexistenceinneighboring98Sr.Here,the0+

2 stateissituatedonly

215 keVabovethegroundstateandatwo-levelmixingmodel re-sultedinonlyaweakmixingbetweenthecoexistingstates [26,28]. Asaresult,the98Sr0+1 groundstateisstronglydeformedwhereas theexcited0+2 isnearlyspherical.Theweakmixingalsoimpliesa surprisinglysmallinteractionstrengthbetweentheunmixed con-figurationsofonly

10 keV.

The strongly populated 2084 keV state (Figs.1 and2), hasa 51%branchingratioviathe855 keVtransitiontothe1229 keV0+2 state relative to the 2084 keV ground state transition. Using the 0+2,3 mixing strength of 0.40(14) one can calculate the expected branching ratio for the 2084 keV to 1465 keV 0+ state transi-tion ifweassume that the transitionratetothe unmixed0+def is negligible.Basedonthis,thebranchingratioforthis619 keV tran-sition isexpectedto be 57+5125 (30+2713)% relative tothe 2084 keV groundstatetransitionwithin1

σ

uncertainties,assumingthatthe 2084 keVstatehasaspinandparityof1+(2+).Nomeasurement ofthistransitionhasbeenreported [39] anditwas not observed in thepresent experiment.Thus, the observationof the855 keV transitionandthenon-observationofahypothetical619 keV indi-catesthat the1229 keVstatecontains alarger componentofthe 0+sphconfigurationthanthe1465 keVstate(a2

>

0

.

5).Atthesame time the E0 and E2 branchingratios andthevery different half-livesoftheisomeric1465 keVstate andthe1229 keVstate favor

a2

>

0

.

5 aswell.

Shell modelcalculationswere carriedout using NushellX [46], employingtheglek interaction [47].Themodelspacecomprisesof theproton f pg9/2 andneutron gds orbitals.Thetwo-bodymatrix

elementsareobtainedfromG-matrixcalculationswithsome mod-ificationstobetterdescribetheYandZrnuclei [47].Forthe calcu-lations presentedhere, the single-particle energieswere adjusted toreproducelowenergystatesforoddmassnucleiinthevicinity of Z

=

40 and N

=

58.Statesin95,96Srandspectroscopicfactors

ford(95Sr, p)werecalculatedusingseveraldifferentvalencespaces

toinvestigatetheinfluenceofthe variousprotondegreesof free-dom.Fortheneutronsan inertN

=

50 corewasassumedandthe valence spaceincluded the

ν

[

2s1/2],

[

1d3/2],

[

1d5/2], and

[

0g7/2]

orbitals. Calculations were carried out separately usingthree dif-ferent proton valence spaces. In valence space

a, the protons are required to be inert ina

π

[

1p3/2]4 configuration.In valence

space b

,proton excitationsinto the nearby

π

[

1p1/2] orbital are

allowed. Finally,valencespace c

furtherexpands theproton va-lence space to include the

π

[

0g9/2] orbital by allowing for two

additionalprotonexcitationsacrossthe Z

=

40 sub-shellgap.The occupancy of the

π

[

0g9/2] orbital was restricted to two protons

duetocomputationallimitations.Table1comparesthe experimen-talspectroscopicfactorsforthe0+stateswiththosepredictedby the shell model calculationsfor the three different configuration spaces.Theexperimentalvaluefortheunmixed1380 keV0+state shown in Table 1 corresponds to the total excited 0+sph spectro-scopic factor, the sum of the experimental spectroscopic factors for the 0+2,3 states.The shell model calculations predict a much largerneutron

ν

[

2s1/2]2 componentforthegroundstate thanthe

excited 0+ state while experimentally the opposite is observed. Includingthe

π

[

0g9/2]protonconfigurationintheshellmodel

(6)

cal-culationsonly slightlyincreasesthepopulation ofthe excited 0+ state,whiledramaticallyloweringits energy(seeTable1). Exper-imentally, about half of the overall predicted

ν

[

2s1/2]2 strength

is observed in the low-lying 0+ states. The present shell model interactionsandsingle-particleenergiesalsodescribewellthe ex-perimental spectroscopic factors for the low-lying states in 95Sr populated via the d(94Sr, p) reaction, carried out as part of the

same experimental campaign. For the 1

/

2+ ground state of 95Sr

a C2S

=

0

.

45 (forvalencespace

b which described bestthe ex-citation energies) is predicted while the measurement using the sameanalysisaspresentedhereresultsin C2S

=

0

.

41

(

9

)

.Further

results on the d(94,95Sr, p) reactions will be reported in a

forth-comingpublication [33].

Theseresultsshow,thatwhilethe94,95Srnucleiaswellasthe

strongly deformed98Srnucleus can be described rather well

us-ingshellmodel [29,33] andbeyondmeanfieldcalculations [27,28],

96SratN

=

58,justbeforetheshapetransition,hasamuchmore

complicatedstructure.Thepresenttransferreactionstudyenables to selectivelypopulate thespherical component ofthe 0+ states in96Sr. Thespherical componentisfound mainly inthestrongly mixedexcited 0+states.Themixingratiowasdeterminedforthe firsttimeinthepresentstudy.Thegroundstateontheotherhand is only weakly populated in the d(95Sr, p) reaction suggesting a triple shape coexistence in 96Sr witha (weakly) oblate or triax-ialgroundstate.

In summary, we have measured the population of low-lying statesin96Srvia thed(95Sr, p)reactionat5.5 A MeV.The results showasurprisinglystrongpopulationofanexcitedspherical con-figurationin96Sr,whichitself isstronglymixedwitha deformed

(

β

=

0

.

31

(

3

)

) configuration,givingrise to two 0+ statesat 1229 and1465 keV.Owingtothealmostpure

ν

[

s1/2]groundstate

con-figuration ofthe 1

/

2+ ground state in95Sr, the

(

d

,

p

)

transferis

mostlysensitivetothe

ν

[

s1/2]2 configurationinthefinal0+state.

Contrarytotheexperimentaldata,shellmodelcalculationsusinga constrainedmodelspacepredictapredominant

ν

[

s1/2]2

configura-tionforthe96Srgroundstate.Thissuggeststheoccurrenceofthree

distinct shapesin 96Sr. Clearly,more extensivetheoreticalstudies are required to gain better insights into thesingle-particle wave functionsintheSrisotopesinthiscontext.Extensionsofthework carriedoutfortheZrisotopes withlargescaleshellmodel calcu-lations [15] andMonteCarloShellModelcalculations [21],aswell asfurtherdevelopmentsofthebeyondmeanfieldcalculations [14,

16,27,28],willbeofinterest.

TheeffortsoftheTRIUMFoperationsteaminsupplyingthe95Sr beam are highly appreciated. We acknowledge support fromthe ScienceandTechnologiesFacilityCouncil(UK,grantsEP/D060575/1 and ST/L005727/1), the National Science Foundation (US, grant PHY-1306297), the Natural Sciences and Engineering Research CouncilofCanada, theCanadaFoundation forInnovationandthe British Columbia Knowledge and DevelopmentFund. TRIUMF re-ceives funding via a contribution through the National Research CouncilCanada.

References

[1]K.Heyde,J.L.Wood,Shapecoexistenceinatomicnuclei,Rev.Mod.Phys. 83 (2011)1467–1521.

[2]P.Federman,S.Pittel,Towardsaunifiedmicroscopicdescriptionofnuclear de-formation,Phys.Lett.B69(1977)385–388.

[3]P.Federman,S.Pittel,Unifiedshell-modeldescriptionofnucleardeformation, Phys.Rev.C20(1979)820–829.

[4]D.Arseniev,A.Sobiczewski,V.Soloviev,Equilibriumdeformationsof neutron-richnucleiinthe

A

∼100 region,Nucl.Phys.A139(1969)269–276.

[5]A.Kumar,M.R.Gunye,NuclearstructureofSr,Zr,andMoisotopes,Phys.Rev. C32(1985)2116–2121.

[6]S.Michiaki,A.Akito,Shape transitionofnucleiwith massaround A =100, Nucl.Phys.A515(1990)77–92.

[7]J.Skalski,P.-H.Heenen,P.Bonche,Shapecoexistenceandlow-lyingcollective statesin

A

∼100 Zrnuclei,Nucl.Phys.A559(1993)221–238.

[8]A.Baran,W.Höhenberger,Ground-statepropertiesofstrontiumisotopes,Phys. Rev.C52(1995)2242–2245.

[9]G.Lalazissis,M.Sharma,Ground-statepropertiesofexoticnucleinear

Z

=40 intherelativisticmean-fieldtheory,Nucl.Phys.A586(1995)201–218.

[10]J.Skalski,S.Mizutori,W.Nazarewicz,Equilibriumshapesandhigh-spin prop-ertiesoftheneutron-rich

A

≈100 nuclei,Nucl.Phys.A617(1997)282–315.

[11]A.Holt,T.Engeland,M.Hjorth-Jensen,E.Osnes,Applicationofrealistic effec-tiveinteractionstothe structureoftheZr isotopes,Phys. Rev.C61(2000) 064318.

[12]H.Zhang,S.Im,J.Li,W.Zuo,Z.Ma,B.Chen,W.Scheid,ImprovedBCS-type pairingfortherelativisticmean-fieldtheory,Eur.Phys.J.A30(2006)519–529.

[13]T.Rzaca-Urban,K.Sieja,W.Urban,F.Nowacki,J.L.Durell,A.G.Smith,I.Ahmad, (h11/2,g7/2)9−,Phys.Rev.C79(2009)024319.

[14]R. Rodriguez-Guzman, P. Sarriguren, L.M. Robledo, Systematics of one-quasiparticleconfigurationsinneutron-richoddSr,Zr,andMoisotopeswith theGognyenergydensityfunctional,Phys.Rev.C82(2010)044318.

[15]K.Sieja,F.Nowacki,K.Langanke,G.Martínez-Pinedo,Shellmodeldescription ofzirconiumisotopes,Phys.Rev.C79(2009)064310.

[16]R.Rodriguez-Guzman,P.Sarriguren,L.Robledo,S.Perez-Martin,Chargeradii andstructuralevolutioninSr,Zr,andMoisotopes,Phys. Lett.B691(2010) 202–207.

[17]Y.-X.Liu,Y.Sun,X.-H.Zhou,Y.-H.Zhang,S.-Y.Yu,Y.-C.Yang,H.Jin,A systemat-icalstudyofneutron-richZrisotopesbytheprojectedshellmodel,Nucl.Phys. A858(2011)11–31.

[18]H.Mei,J.Xiang,J.M.Yao,Z.P.Li,J.Meng,Rapidstructuralchangeinlow-lying statesofneutron-richSrandZrisotopes,Phys.Rev.C85(2012)034321.

[19]J.Xiang,Z.Li,Z.Li,J.Yao,J.Meng,Covariantdescriptionofshapeevolutionand shapecoexistenceinneutron-richnucleiat

N

≈60,Nucl.Phys.A873(2012) 1–16.

[20]A.Petrovici,Tripleshapecoexistenceandshapeevolutioninthe

N

=58 Srand Zrisotopes,Phys.Rev.C85(2012)034337.

[21]T.Togashi,Y.Tsunoda,T.Otsuka,N.Shimizu,Quantumphasetransitioninthe shapeofZrisotopes,Phys.Rev.Lett.117(2016)172502.

[22]K.L.Kratz,A.Schröder,H.Ohm,M.Zendel,H.Gabelmann,etal.,Beta-delayed neutronemissionfrom93−100RbtoexcitedstatesintheresidualSrisotopes,

Z. Phys.A306(1982)239–257.

[23]F.Buchinger,E.B.Ramsay,E.Arnold,W.Neu,R.Neugart,etal.,Systematicsof nucleargroundstatepropertiesin78−100Sr bylaserspectroscopy,Phys.Rev.C

41(1990)2883–2897.

[24]H. Mach, F. Wohn,G. Molnar,K. Sistemich,J.C. Hill, et al., Retardation of

B(E2;01+→21+)ratesin90−96Srandstrongsubshellclosureeffectsinthe A ∼100 region,Nucl.Phys.A523(1991)197–227.

[25]C.Y.Wu,H.Hua,D.Cline,A.B.Hayes,R.Teng,etal.,Multifacetedyraststructure andtheonsetofdeformationin96,97Sr and 98,99Zr,Phys. Rev.C70(2004)

064312.

[26]J.Park,A.Garnsworthy,R.Krücken,C.Andreoiu,etal.,Shapecoexistenceand evolutionin98Sr,Phys.Rev.C93(2016)014315.

[27]E.Clément,M.Zieli ´nska,A.Görgen,W.Korten,S.Péru,etal.,Phys.Rev.Lett. 116(2016)022701.

[28]E.Clément, M. Zieli ´nska, S. Péru, H. Goutte, S. Hilaire, et al., Low-energy Coulombexcitationof96,98Sr beams,Phys.Rev.C94(2016)054326.

[29]J.-M.Régis,J.Jolie,N.Saed-Samii,N.Warr,M.Pfeiffer,etal.,Abruptshape tran-sitionatneutronnumber

N

=60:

B

(E2)valuesin94,96,98Sr fromfastγγ

timing,Phys.Rev.C95(2017)054319.

[30]M.Wang,etal.,Chin.Phys.C41(2017)030003.

[31]J.Wood,E.Zganjar,C.D.Coster,K.Heyde,Electricmonopoletransitionsfrom lowenergyexcitationsinnuclei,Nucl.Phys.A651(1999)323–368.

[32]G.Jung,B.Pfeiffer,L.J.Alquist,H.Wollnik,P.Hungerford,etal.,Gamma–gamma angularcorrelations oftransitionsin94Sr and96Sr,Phys. Rev.C22(1980)

252–263.

[33] S.Cruz,etal.,2018,tobepublished.

[34]G.C.Ball,L.Buchmann,B.Davids,R.Kanungo,C.Ruiz,C.E.Svensson,Physics withreacceleratedradioactivebeamsat TRIUMF-ISAC,J. Phys.G,Nucl.Part. Phys.38 (2)(2011)024003.

[35]F.Ames,R.Baartman,P.Bricault,K.Jayamanna,Chargestatebreedingof ra-dioactiveisotopesforISAC,HyperfineInteract.225(2014)63–67.

[36]C.A.Diget, etal., SHARC:Silicon Highly-segmentedArray forReactions and CoulexusedinconjunctionwiththeTIGRESSγ-rayspectrometer,J.Instrum.6 (2011)P02005.

[37]G.Hackman,C.E.Svensson,The TRIUMF-ISACgamma-rayescape suppressed spectrometer,TIGRESS,HyperfineInteract.225(2014)241–251.

[38]C.Nobs,SimulatingandTestingtheTRIUMFBraggIonisationChamber,Masters thesis,UniversityofSurrey,Guildford,2013.

[39] Evaluatednuclearstructuredatafile,https://www.nndc.bnl.gov/ensdf/,2018. [40]S.Agostinelli, et al., Nucl.Instrum. MethodsPhys.Res., Sect. A 506(2003)

250–303.

(7)

[42]J.Lohr,W.Haeberli,Elasticscatteringof9–13MeVvectorpolarizeddeuterons, Nucl.Phys.A232(1974)381–397.

[43]G.Wilson,W.Catford, N.Orr, C.Diget,A.Matta, etal., Shellevolution ap-proachingthe

N

=20 islandofinversion:structureof26Na,Phys.Lett.B759

(2016)417–423.

[44]A.Koning,J.Delaroche,Localandglobalnucleonopticalmodelsfrom1keVto 200MeV,Nucl.Phys.A713 (3)(2003)231–310.

[45]G. Jung,Nuclear Spectroscopyon Neutron Rich RubidiumWith Even Mass Numbers,PhDthesis,JustusLiebig-Universitat,Giessen,1980.

[46] B.A. Brown, Computer code NUShellX, https://people.nscl.msu.edu/~brown/ resources/resources.html,2018.

[47]H. Mach, E.K. Warburton, R.L. Gill,R.F.Casten, J.A.Becker, B.A.Brown, J.A. Winger, Meson-exchange enhancement of the first-forbidden 96Yg(0)

96Zrg

(0+) β transition:βdecayofthe low-spinisomerof96Y,Phys.Rev.C

Figure

Fig. 1. Excitation energy spectrum of 96 Sr obtained from energies and angles of protons emitted at backward laboratory angles
Fig. 3 shows the experimental angular distributions for the 0 + 1 , 2 96 Sr states compared to distorted wave Born approximation (DWBA) and adiabatic distorted wave approximation (ADWA)  cal-culations that were carried out using FRESCO [41]

Références

Documents relatifs

Comparison of the calculated negative parity energy levels in the framework of the strong coupling model (SCM)

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). For the lighter species, experimental results on transition proba- bilities

The potential energy surface, which allows to calculate the shape probability using the so-called Boltz- mann factor, is obtained within macroscopic-microscopic method, where

The experimental results are in good overall agreement with self-consistent beyond-mean-field calculations based on the Gogny D1S interaction, which suggests both triaxial degree

The method used for the nuclear charge (Z) identication of this new isomer of mass 95, is shown in Fig.. Coincidence measurements were performed between the

Table 2: Internal conversion electron data for transitions observed at ISOLDE in the decay of. 119m,g Cs →

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Our purpose was to map out a larger set of energy levels for the low-lying states of NiD, using Fourier transform spectroscopy to resolve laser-induced fluorescence, and to