• Aucun résultat trouvé

Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in $^{106,108}$ Sn

N/A
N/A
Protected

Academic year: 2021

Partager "Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in $^{106,108}$ Sn"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-02144351

https://hal.archives-ouvertes.fr/hal-02144351

Submitted on 26 Apr 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Pairing-quadrupole interplay in the neutron-deficient tin

nuclei: First lifetime measurements of low-lying states in

106,108

Sn

M. Siciliano, J.J. Valiente-Dobón, A. Goasduff, F. Nowacki, A.P. Zuker, D.

Bazzacco, A. Lopez-Martens, E. Clément, G. Benzoni, T. Braunroth, et al.

To cite this version:

M. Siciliano, J.J. Valiente-Dobón, A. Goasduff, F. Nowacki, A.P. Zuker, et al.. Pairing-quadrupole

in-terplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in

106,108

Sn.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Pairing-quadrupole

interplay

in

the

neutron-deficient

tin

nuclei:

First

lifetime

measurements

of

low-lying

states

in

106

,

108

Sn

M. Siciliano

a

,

b

,

c

,

,

J.J. Valiente-Dobón

a

,

A. Goasduff

a

,

b

,

d

,

F. Nowacki

e

,

A.P. Zuker

e

,

D. Bazzacco

d

,

A. Lopez-Martens

f

,

E. Clément

g

,

G. Benzoni

h

,

T. Braunroth

i

,

F.C.L. Crespi

h

,

j

,

N. Cieplicka-Ory ´nczak

h

,

1

,

M. Doncel

k

,

S. Ertürk

l

,

G. de France

g

,

C. Fransen

i

,

A. Gadea

m

,

G. Georgiev

f

,

A. Goldkuhle

i

,

U. Jakobsson

n

,

G. Jaworski

a

,

2

,

P.R. John

b

,

d

,

3

,

I. Kuti

o

,

A. Lemasson

g

,

T. Marchi

a

,

D. Mengoni

b

,

d

,

C. Michelagnoli

g

,

4

,

T. Mijatovi ´c

r

,

C. Müller-Gatermann

i

,

D.R. Napoli

a

,

J. Nyberg

p

,

M. Palacz

q

,

R.M. Pérez-Vidal

m

,

B. Say˘gi

a

,

5

,

D. Sohler

o

,

S. Szilner

r

,

D. Testov

b

,

d

,

M. Zieli ´nska

c

,

D. Barrientos

s

,

B. Birkenbach

i

,

H.C. Boston

t

,

A.J. Boston

t

,

B. Cederwall

n

,

J. Collado

u

,

D.M. Cullen

v

,

P. Désesquelles

f

,

C. Domingo-Pardo

m

,

J. Dudouet

f

,

6

,

J. Eberth

i

,

F.J. Egea-Canet

a

,

V. González

u

,

L.J. Harkness-Brennan

t

,

H. Hess

i

,

D.S. Judson

t

,

A. Jungclaus

w

,

W. Korten

c

,

M. Labiche

x

,

A. Lefevre

g

,

S. Leoni

h

,

j

,

H. Li

n

,

A. Maj

y

,

R. Menegazzo

d

,

B. Million

h

,

A. Pullia

h

,

j

,

F. Recchia

b

,

d

,

P. Reiter

i

,

M.D. Salsac

c

,

E. Sanchis

u

,

O. Stezowski

z

,

Ch. Theisen

c

aINFN,LaboratoriNazionalidiLegnaro,Legnaro(PD),Italy

bDipartimentodiFisicaeAstronomia,UniversitàdiPadova,Padua(PD),Italy cCEA/Irfu/DPhN,UniversitédeParis-Saclay,Gif-sur-Yvette,France dINFN,SezionediPadova,Padua,Italy

eIPHC,CNRS/IN2P3UniversitédeStrasbourg,Strasbourg,France fCSNSM,CNRS/IN2P3,UniversitédeParis-Saclay,Orsay,France

gGrandAccélérateurNationald’IonsLourds,CEA/Irfu/DRFandCNRS/IN2P3,Caen,France hINFN,SezionediMilano,Milan,Italy

iInstitutfürKernphysik,UniversitätzuKöln,Cologne,Germany jDipartimentodiFisica,UniversitàdiMilano,Milan,Italy kUniversidaddeSalamanca,Salamanca,Spain lÖmerHalisdemirÜniversitesi,Ni˘gde,Turkey

mInstitutodeFísicaCorpuscular,CSIC-UniversidaddeValencia,Valencia,Spain nDepartmentofPhysics,RoyalInstituteofTechnology,Stockholm,Sweden oINR,HungarianAcademyofSciences,Debrecen,Hungary

pDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden q´SrodowiskoweLaboratoriumCie¸ ˙zkichJonów,UniwersytetWarszawski,Warsaw,Poland rRuderBoškovi´cInstituteandUniversityofZagreb,Zagreb,Croatia

sCERN,Geneva,Switzerland

tOliverLodgeLaboratory,UniversityofLiverpool,Liverpool,UK

uDepartamentodeIngenieríaElectrónica,UniversitaddeValencia,Valencia,Spain vSchusterLaboratory,UniversityofManchester,Manchester,UK

wInstitutodeEstructuradelaMateria,CSIC,Madrid,Spain xSTFCDaresburyLaboratory,Warrington,UK

yInstytutFizykiJa¸drowejim.HenrykaNiewodnicza´nskiego,PolskaAkademiaNauk,Krakow,Poland zIPN-Lyon,CNRS/IN2P3,UniversitédeLyon,Villeurbanne,France

*

Correspondingauthorat:CEA/Irfu/DPhN,UniversitédeParis-Saclay,Gif-sur-Yvette,France.

E-mailaddress:marco.siciliano@lnl.infn.it(M. Siciliano).

1 Presentaddress:InstytutFizykiJa¸drowejim.HenrykaNiewodnicza´nskiego,PolskaAkademiaNauk,Krakow,Poland. 2 Presentaddress:Srodowiskowe´ LaboratoriumCie¸ ˙zkichJonów,UniwersytetWarszawski,Warsaw,Poland. 3 Presentaddress:InstitutfürKernphysik,TechnischeUniversitätDarmstadt,Darmstadt,Germany. 4 Presentaddress:InstitutLaue-Langevin,Grenoble,France.

5 Presentaddress:EgeÜniversitesi,˙Izmir,Turkey.

6 Presentaddress:IPN-Lyon,CNRS/IN2P3,UniversitédeLyon,Villeurbanne,France.

https://doi.org/10.1016/j.physletb.2020.135474

(3)

2 M. Siciliano et al. / Physics Letters B 806 (2020) 135474

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received24December2019

Receivedinrevisedform27March2020 Accepted4May2020

Availableonline11May2020 Editor: B.Blank Keywords: Lifetime Nuclearstructure Multi-nucleontransfer LightSn Trackingarray

The lifetimesofthe low-lyingexcitedstates2+ and 4+ have beendirectlymeasuredinthe neutron-deficient 106,108Sn isotopes. The nuclei werepopulated via adeep-inelastic reactionand the lifetime measurementwasperformedemployingadifferentialplungerdevice.Theemitted

γ

raysweredetected by the AGATAarray,whilethe reactionproductswereuniquely identifiedbythe VAMOS++ magnetic spectrometer. Large-Scale Shell-Modelcalculations withrealistic forcesindicatethat,independentlyof thepairingcontentoftheinteraction,thequadrupoleforceisdominantintheB(E2;2+1→0+g.s.)values

anditdescribeswelltheexperimentalpatternfor104−114Sn;theB(E2;4+1→2+1)values,measuredhere forthefirsttime,dependcriticallyonadelicatepairing-quadrupolebalance,disclosedbytheveryprecise resultsin108Sn.

©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

A little over a decade ago, the Sn isotopes were considered theparadigmsofpairingdominance: low-lyingstatesofgood se-niority,nearly constant J π

=

2+1 excitation energiesandparabolic B

(

E2

;

2+1

0+g.s.

)

behavior. Thelatter was observedfor A

116. Forthe lighter species, experimental results on transition proba-bilities were scarce as the presence of low-lying isomeric states hindered direct measurements of lifetimes below them. From Coulomb-excitationmeasurementswithradioactiveionbeamsonly the reduced transition probability between the first excited 2+ state and the ground state could be determined [1–8]. Within experimental uncertainties,they suggest arather-constant behav-ior for 106

A

110, instead of the parabolic trend expected when isovector T

=

1 pairing dominates.This “plateau” includes alsothe stable112,114Sn nuclei, forwhich measurements ofboth B

(

E2

;

2+1

0+g.s.

)

andB

(

E2

;

4+1

2+1

)

valuesexist [9].Beforethis work, the B

(

E2

;

4+1

2+1

)

values were completely absent inthe neutron-deficientSnisotopes.

The experiment described in this Letter was devoted to de-termine the strength of 2+1

0+g.s. and 4+1

2+1 transitions in

106,108Snbymeasuringthelifetimeof2+

1 and4+1 states.Although

severaltheoretical interpretations havebeen proposed [10,1,4,11,

12], the evolution of the B

(

E2

;

21+

0+g.s.

)

values in the light Snnucleiremains puzzling.The experimental and theoretical re-sultsthatwillbepresentedinthisLetterprovideafurtherinsight, which reveals the underlying structure of the light tin isotopes, namelythecounterbalanceofquadrupoleandpairingforcesinthe Snisotopicchain.

2. Experiment

A multi-nucleon transfer reaction, that is commonly used to investigate neutron-rich nuclei [13–15], was unconventionally adoptedtopopulatetheSnisotopesclosetotheprotondripline, so the isotopes of interest were populated in the collision of a

106Cdbeamanda92Motarget.Thebeam-targetcombinationand

beam energy were selected as a compromise between two re-quirements. On one hand the reaction fragments energy had to be sufficientlyhightoallow their identificationby the spectrom-eter.Ontheother,inorderto performthelifetimemeasurement, thepopulationofthestatesabovethe6+isomershadtobe min-imized; this condition imposed an upper limit on the excitation energyandconsequentlyonbeamenergy,evenattheexpenseof thecrosssectiontopopulatemoreexoticspecies.The106Cdbeam,

providedbytheseparated-sectorcyclotronoftheGANIL facilityat anenergyof770MeV,impingedonto a0.8mg/cm2 92Motarget. ThelifetimemeasurementwasperformedwiththeRecoilDistance Doppler-Shift(RDDS)method[16–18].Thetargetwasmountedon

thedifferentialCologneplungerwitha1.6mg/cm2thicknatMg

de-graderdownstream.Inordertomeasurethelifetimesofinterest, 8differenttarget-degraderdistancesintherange31-521 μmwere used.Thecomplete(A,Z)identification,together withthe velocity vector forthe projectile-like products was obtainedonan event-by-event basis using the VAMOS++ spectrometer [19–21], placed at the grazing angle

θ

lab=25◦. In coincidence with the magnetic

spectrometer, the

γ

rays weredetected bythe

γ

-raytracking de-tector arrayAGATA[22,23],consistingof8triple-clusterdetectors placed at backward angles in a compact configuration (18.5 cm fromthetarget).Thecombinationofthepulse-shapeanalysis[24] and the Orsay Forward-Tracking (OFT) algorithm [25] allowed to reconstructthetrajectoryofthe

γ

raysemittedby thefragments. More details about theion identificationand the analysis proce-durecanbefoundinRefs. [26,27].

3. Results

Thanks to the precise determination of the ion velocity vec-tor andthe identificationof thefirst interaction point ofeach

γ

ray inside AGATA, Doppler correction was applied on an event-by-event basis.The magnetic spectrometer directlymeasured the fragments velocity after the degrader (

β

af ter

9%). However, for

each

γ

-raytransitiontwopeakswereobserved,relatedtoits emis-sion before and after the Mg foil: the

γ

rays emitted after the degrader areproperlyDoppler corrected,whilethoseemitted be-foreareshiftedtolowerenergiesbecauseofthedifferentvelocity ofthereactionfragment(

β

be f ore

10%).Therelativeintensitiesof

thepeaksasafunctionofthetarget-degraderdistancearerelated tothelifetimeofthestateofinterest.Theareasareobtainedviaa

χ

2-minimizationfit,performedbyconsideringagaussianshapeof

thepeaks,whosecentroidandFWHMwereconstrainedfromthe closest and longesttarget-degrader distancespectra, anda linear background.

The completeidentificationoftheVAMOS++spectrometerand theemploymentofamulti-nucleontransfer(MNT)mechanism al-lowedustoreconstructtheTotalKinetic-EnergyLoss(TKEL)ofthe reaction. Thisquantity was crucialforthelifetimemeasurements in108Sn,sinceitallows ustocontrolthedirectpopulationofthe excited states [18,28], in order to reduce possible contamination fromthehigh-lyingstatesabovethe6+1 isomer.Forthisnucleus,in fact,theenergiesofthe2+1

0g.s.(1206keV)and8+1

6+1 (1196

(4)

Fig. 1. Doppler-correctedγ-rayenergyspectraof108Snbefore(black)andafter(green)thegateontheTotalKinetic-EnergyLoss(TKEL),obtainedbysummingupthe

statisticsofallthetarget-degraderdistances.The2+1 →0+g.s.(red),4+1→2+1 (blue)and8+1→6+1 (orange)transitionsaremarked,indicatingtheunshifted (u)andshifted (s)

centroidswithasolidandadashedline,respectively.Intheinset,theTKELdistributionandthesetgate(green)arepresented.

abovethe6+1 isomer:forTKEL

<

21 MeV,the8+1

6+1 transition peaksbecamenegligibleandthemeasuredlifetimeofboth4+1 and 2+1 statesremainedconstant,evenformorerestrictiveconditions. ThedeterminationofsuchaTKELcondition anditseffectsonthe lifetimemeasurement arediscussed indetail inRef. [29].In that work, the ratio of the 4+1

2+1 transition components remains constant also for larger values of the TKEL, which is consistent withthe unalteredline-shapeoftheFig.1spectra at

900 keV; thisis duetothefact thatthe 6+1 isomer“blocks” the depopula-tionfromhigher-lyingstates,sotheirpresencedoes notaffectthe lifetimemeasurementofthe4+1 state.The sameisobviouslytrue forthe2+1 statebut,inthisspecificcase,ablindintegrationofthe spectrum will includethe unshifted componentof the 8+

6+ transition. Being the 8+ a long lived state with a lifetime more thantwo ordersofmagnitudelarger thanthe 2+1,thiswould re-sultinanartificiallyshorterlifetime.Forthisreason,theTKELcut allowstogetridofthecontaminationofourtransitionofinterest fromthe8+deexcitation.Fig.2(left)showstheDoppler-corrected

γ

-ray energyspectraof 108Snfor severaldistances,requiringthe TKEL

<

21 MeVcondition.Thisnontraditionalprocedureallowedus totakeintoaccountjustthe6+1,4+1 and2+1 statesinthe measure-mentofthelifetimesviaDecay-Curve Method(DCM).Duetothe directpopulation ofthe excited states,the presence ofthe long-lived6+1 isomersimplifiesthelifetimemeasurementby“blocking” the depopulation from the higher-lying states and, as shown in Fig.2(right),itcontributesjustasanoffsettothedecaycurvesof the4+1 and2+1 states.

For106Snthedescribed TKEL-gateprocedurewas notrequired and, becauseof thepresence of thelong-lived isomer, thedecay cascadeofthe6+1,4+1 and2+1 stateswastakenintoaccountwhile measuringthelifetimeviaDCM.Alsointhiscase,thepresenceof the6+1 isomericstateaffectsthelifetimeanalysisbyintroducingan offset,whichisrelatedtothedirectpopulationofthestates [17], in the decaycurves of the 21+ and 4+1 excited states. The direct populationof the excited stateswas extracted fromthe single-

γ

spectra.Thisinformationwasusedtoconstraintheparametersof thedecaycurves.Thepossiblepresence ofadditionalfeeders was investigatedin the single-

γ

spectra andalso in the

γ

-

γ

coinci-dences:exceptforthoseconsideredinthemeasurement,noother transitionsfeedingthe4+1 and2+1 excitedstateswereobservedfor both106,108Sn.InFig.2(rightpad)thedecaycurvesarepresented

Table 1

Measured lifetime of the excited states in 106,108Sn and corresponding B(E2;Iπ2)values.Thelastcolumnshowsthetheoreticalpredictionsfrom theextensionofthecalculationsofRef. [1] (seetext).

Eγ [keV] τ[ps] B(E2) [e2fm4] Exp. Theo. 108Sn 2+ 1 1206.1 0.76 (8) 422 (44) 425 4+1 905.1 3.7 (2) 364 (20) 349 106Sn 2+ 1 1207.7 1.3 (7) 245 (132) 339 4+1 811.9 5 (4) 446 (334) 379

for the 4+1 and 2+1 states: the extractedlifetime ofthe 2+1 state is inperfect agreementwith theliterature, supporting the valid-ityoftheexperimentalmethod.Therefore,thankstothepowerful setupandtheunconventionalexperimentaltechnique,thelifetime ofthe2+1 and4+1 stateshavebeenmeasured,forthefirsttime,in

106,108Sn.

Table1summarizestheexperimentalresults,showingthe life-times and the derived reduced transition probabilities B

(

E2

)

for

108Snand106Snisotopes,aswellasthetheoreticalvaluesfromthe

extensionofthecalculationsofRef. [1],obtainedbyemployingthe sameinteractioninthefull gds valencespaceforbothprotonsand neutrons,usingtheeffectivecharges

(

,

)

= (

1

.

35

,

0

.

65

)

, allow-ingupto4p

4h excitationsandwithoutanysenioritytruncation. The extracted B

(

E2

)

values forthe 106,108Snisotopes are shown

in Fig. 3 together withall previous experimental results for the whole isotopic chain. The B

(

E2

;

21+

0+g.s.

)

strengths previously measuredarecompatiblewiththeresultsobtainedinthis experi-ment,whilefortheB

(

E2

;

4+1

2+1

)

valuesnodataexistedinthis region. Unfortunately, the exoticity of 106Sn andthe necessity to

avoid the population of the states above the long-lived 6+ iso-merresultinaratherlargestatisticalerrorontheB

(

E2

;

4+1

2+1

)

valueforthisisotope. 4. Discussion

(5)

4 M. Siciliano et al. / Physics Letters B 806 (2020) 135474

Fig. 2. (left)Doppler-correctedγ-rayenergyspectraof108Snfordifferenttarget-to-degraderdistances,gatedontheTotalKinetic-EnergyLoss(TKEL).Foreachtransition

theunshifted (u)andshifted (s)centroidsareindicatedbyasolidandadashedline,respectively.(right)Ratioofthetransitioncomponentsintensityasafunctionofthe distance,obtainedbygatingontheTKEL.Thedashedlinesrepresentthefitteddecaycurvesforthetwoexcitedstates.

newly measured B

(

E2

;

4+1

2+1

)

values.Given a proper interac-tion, it is very simple to describe the “anomalous” B

(

E2

;

2+1

0+g.s.

)

patternoftheSnisotopes,whilethe –hithertounexplored– B

(

E2

;

4+1

2+1

)

behaviordemandsmorecare.

The context of these theoretical results is provided by the Pseudo-SU(3) symmetry, which acts in the space of gds orbits above(andexcept)g9/2.ThebasicideaisinspiredbyElliott’sSU(3)

scheme [31,32] andconsistsinbuildingintrinsicstatesthat max-imizethe quadrupole operator [33–35]. As shown in Figure 2 of Ref. [30] (top rightpad), for the light Snnuclei only the first 6 neutronsplayaroleinthevalueofthequadrupoleoperator,while the contribution of the following 6 neutrons is null, leading to a “plateau” inthe B

(

E2

;

2+1

0+g.s.

)

reducedtransition probabil-ities. For a strong enough quadrupole force, the system exhibits rotationalfeatures,leadingto B4/2

B

(

E2

;

4+1

2+1

)/

B

(

E2

;

2+1

0+g.s.

)

1

.

43 (Alaga rule). This holds in the Cd case, while for Snthe quadrupole strength ismuch reduceddue to theabsence of g9/2 proton holes. It is still strong enough to produce a

sta-ble B

(

E2

;

2+1

0+g.s.

)

pattern analogous to the Cd one, but the B

(

E2

;

4+1

2+1

)

behaviorbecomessensitivetopairingand single-particlebehavior.Thus,itappearsthatthequadrupoledominance inCd gives wayto a formofpairing-quadrupole interplayin Sn. Forthe sake ofcompleteness, inwhat follows we briefly explain thestepsinvolvedintheshellmodelcalculations.

The interaction must be extracted from a realistic potential, properly renormalized and monopole corrected. All realistic po-tentials give very similar results [34], N3LO was chosen [46] and Vlowk-regularized [47]. The CDB [48] or AV18 [49]

poten-tials would yield the same results. The indispensable renormal-izations amount to a –rigorously established– 30% boost of the quadrupoleforceandaphenomenological40%increaseofthe pair-ing force [50]. The replacementofthemonopoletermis impera-tive, since the realistic interactions have bad monopole behavior [34, Sec. II.B.3]. Thus, thiscorrection was done by replacing the monopolepart of the interaction with the Hamiltonianprovided by the GEMO (GEneral MOnopole) code [51], which is based on the Duflo-Zuker mass formula [52,53], adding the single particle spectrumof101Sn(inparenthesestheenergies inMeV):

g9/2

(

6

.

0

),

d5/2

(

0

.

0

),

g7/2

(

0

.

5

),

s1/2

(

0

.

8

),

d3/2

(

1

.

6

).

TheresultinginteractioniscalledI.3.4.Possibleuncertainties con-cernthepairingcontent,sothepairingstrengthhasbeentreated asa free parameter and different values have been investigated, yieldingtotheI.3.0andI.3.2interactions(withnoand20% correc-tions,respectively).Furthermore,accordingtothestudyofRef. [54, Fig.3.2.1],analternativetotheGEMOspectrum(DZinthatFigure)

Fig. 3. ReducedtransitionprobabilityB(E2)forthe(a)2+1→0+g.s.and(b)4+1 →2+1

transitionsalongtheSnisotopicchain.Theresultsofthepresentwork(redsquares) arecomparedwiththosefrompreviousexperiments[9,36,1–3,37,4,38,5,39–41,6,42,

7,43,44,8,45].ThepredictionsfromLarge-ScaleShell-Modelcalculations fromthe I.3.4interactionarealsoshown(openblackpentagons).

isanextrapolatedestimate(EX)equivalenttopushingupthes1/2

orbitalto1.6MeV,whichresultsintheI.3.4s1.6interaction. The calculations were performed with the ANTOINE pro-gram [34] inut M spaces in the gds shellofup to ug9/2-proton

holes and t g9/2-neutron holes, for a total of M holes. Here we

presentut M

=

202 casesofm-schemedimensionsofupto6

·

107,

butitwascheckedthattheyreproducewellthe1010-dimensional ut M

=

444 cases.

Fig.4(a)establishesthat theamountofpairingmakesno dif-ference inthe B

(

E2

;

2+1

0+g.s.

)

transitionprobabilities.Theshift inthe positionofthes1/2 orbithasan influence,albeitminor.In

the Fig.4 (b)both the pairingandthe single particle shiftmake an enormous difference in the B

(

E2

;

4+1

2+1

)

behavior. In the caseof strongquadrupole dominance, the B

(

E2

;

2+1

0+g.s.

)

pat-ternwouldbeasinFig.4(a)andtheB

(

E2

;

4+1

2+1

)

onewould bethesamemultipliedby1.43.Thisisnotfarfromthe1.25forthe I.3.0case,asshowninFig.4(c).The B4/2ratioisfurtherreduced

(6)

Fig. 4. Experimentalandcalculated(a)B(E2;2+1→0+g.s.)and(b)B(E2;4+1→2+1)

valuesand(c)B4/2ratio.Effectivechargesare(eπ,eν)= (1.40,0.72)throughout. ForA=112 and114 theneutroneffectivecharge shouldbeincreasedto0.75 toaccountfortheomissionofthe h11/2 shell,thatplaysasmallbutsignificant

role.ExperimentalB(E2;2+1→0+g.s.)valuesaretheweightedaveragesoftheFig.3 results,whiletheB(E2;4+1→2+1)datacomesfromRef. [9] andthepresentwork.

I.3.0s1.6hasthes1/2singleparticleenergymovedupby800keVwithrespectto

GEMO.

lostforthetwoI.3.4cases,butbothareclosetotheobserved val-uesin112−114Sn [9]. Moreover,ournewmeasurein 108Snbreaks the ambiguity in favor of the I.3.4 chosen standard with GEMO spectrum,providingapotentiallyinteresting suggestionaboutthe spectrumof101Sn.

Traditionally all emphasis has been put in explaining the B

(

E2

;

2+1

0+g.s.

)

patterns,while the B

(

E2

;

4+1

2+1

)

oneshave been ignored. To understand the present situation, we do well to remember that nuclear structure is a compromise between monopole, quadrupole and pairing. Under a favorable monopole structure (andgoodmonopolebehavioroftheinteraction), quadru-poledominanceobtains andleads torotational features.Energies (momentsofinertia)aresensitivetopairing,buttheB

(

E2

;

2+1

0+g.s.

)

patternsareimmune.Thisiswhatseemstobehappeningin thecalculationsofTogashiet al.[12],whoseB

(

E2

;

2+1

0+g.s.

)

pat-ternis identicalto ours, while thewave-functions exhibit strong spin and mass dependence in the g9/2 proton-hole occupancy,

which are nearly constant in our case. We attribute the coinci-denceinthepatternstogoodmonopolebehavior.

Inadditionto the B

(

E2

)

strengths, thetheoretical estimations arein goodagreement withthe excitation energyofthe 2+1 and

4+1 states: besides the I.3.0 that represents the no-pairing limit, the variousinteractions presented inthepaper arewithin

200 keVaccuracy.

5. Conclusions

The unconventional use of multi-nucleon transfer reactions withaplungerdevice hasallowedustomeasurelifetimesinthe neutron-deficient106,108Snisotopes. Sincedeep-inelasticreactions

directlypopulatethelow-lyingexcitedstatesofthechannelsof in-terest,theexperimentallimitationscausedbythepresenceofthe low-lyingisomers were overcome. Moreover, theTKEL-gate tech-nique allowedusto avoidthe possiblecontamination from high-lyingstatesabovethe6+1 isomers.ThisledtothefirstB

(

E2

;

4+1

2+1

)

measurementinthismassregion.Thetheoreticalresultsshow thattheexperimentaltrendofthe B

(

E2

;

21+

0+g.s.

)

valuesinthe mass region 104

A

114 can be reproduced within the gds model space. Traditionally, pairing was thought to be dominant in the Sn isotopes but the calculations indicate that the rather constant pattern ofthe B

(

E2

;

2+1

0+g.s.

)

values is associatedto quadrupoledominance,independentofthepairingstrength.Inthe caseof B

(

E2

;

4+1

2+1

)

values,instead,pairing becomescrucial: itisclearthatquadrupoledominanceholdsforthe J π

=

0+g.s.

,

2+1 states,butitisstronglychallengedforthe4+1 statethrough mix-ing with a pairing dominated intruder. On the other hand, the lackofprecise informationaboutthe4+1 stateshindersthe char-acterization of such an intruder state. What is beyond doubt is theimportanceoftheveryprecisemeasurementsin108Sn, which haveshowntoopennewperspectivesintheunderstandingofthe quadrupole-pairinginterplay.

These results representa step forward to our current knowl-edge of the region. Indeed, the precise measurement of the B

(

E2

;

4+1

2+1

)

value in 108Sn has led to a unique theoretical

work which,inaddition todiscussin detailthebalance between pairing-quadrupole correlations in the nuclear interaction, ques-tions the “goodness” ofprevious theoretical works.In fact, while many different theoretical works have claimed to reproduce the trend ofthereduced transitionprobabilities B

(

E2

;

2+1

0+g.s.

)

in the N

=

Z

=

50 region,ourpaperhighlights thatthe B

(

E2

;

2+1

0+g.s.

)

values are not the only ones to be of key importance for understanding the nuclear structure close to 100Sn; actually, the B

(

E2

;

4+1

2+1

)

values,whose theoreticaldiscussion is faced for theveryfirsttimeinthisarticle,resulttobeofcrucialimportance forunderstandingthenuclearstructureoftheregion.

Furtherexperimentalandtheoreticalstudiesshouldfocustheir attentionsontheelectromagneticpropertiesnotonlyofthe2+1

0+g.s.transitions,butalsoofthe 4+1

2+1 ones.Thiswillallowus toshedlightonthepeculiarstructureoftheSnisotopicchain,of the Z

50 regionandofother regionswheresimilar behaviorof the B

(

E2

)

strengths havebeenobserved,suchasthe N

=

50 iso-tonicchain.Inaddition,theproton- andneutron-transfer spectro-scopicfactorswillprovidefurtherinformationonthemicroscopic natureofthelow-lyingstatesinthe Z

50 region.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgement

(7)

6 M. Siciliano et al. / Physics Letters B 806 (2020) 135474

and to A. Poves for his fruitful comments. This work was par-tiallysupported bytheEuropeanUnion’sSeventhFramework Pro-gramme for Research and Technological Development (grant no. 262010).A.G. acknowledges the supportof theFondazione Cassa diRisparmio Padova e Rovigounder theproject CONPHYT, start-ing grant in 2017. The work was also supported (B.C, H.L., J.N. andU.J.)bySwedishResearchCouncilunderthegrantagreements nos. 822-2005-3332, 821-2010-6024, 821-2013-2304, 621-2014-5558and2017-0065,andbytheKnutandAliceWallenberg Foun-dationgrantno.2005.0184,(B.S.)bytheScientificand Technolog-ical Council of Turkey (TUBITAK) underthe project no. 114F473, (A.G.,A.J.andR.P.)bytheMinisteriodeCienciaeInnovacíonunder the contracts nos. SEV-2014-0398, FPA2017-84756-C4 and EEBB-I-15-09671,by the Generalitat Valenciana underthe grant agree-ment no.PROMETEO/2019/005 andby the EU-FEDER funds,(T.M andS.S.)bytheCroatianScienceFoundationundertheprojectno. 7194,(I.KandD.S.)bytheHungarianNationalResearchand Inno-vation Office (NKFIH) underthe project nos. K128947,PD124717 andGINOP-2.3.3-15-2016-00034,(M.P.)bythePolishNational Sci-enceCentrewiththegrantsnos.2014-14-M-ST2-00738, 2016-22-M-ST2-00269 and 2017-25-B-ST2-01569 under the COPIN-IN2P3, COPIGALandPOLITAprojects.

References

[1]A.Banu, J.Gerl,C.Fahlander, M.Górska,H. Grawe,T.R. Saito,H.-J. Woller-sheim,E.Caurier,T.Engeland,A.Gniady,M.Hjorth-Jensen,F.Nowacki,T.Beck, F.Becker,P.Bednarczyk,M.A.Bentley,A.Bürger,F.Cristancho,G.d.Angelis,Z. Dombrádi,P.Doornenbal,H.Geissel,J.Grebosz,G.Hammond,M.Hellström,J. Jolie,I.Kojouharov,N.Kurz,R.Lozeva,S.Mandal,N.M˘arginean,S.Muralithar,J. Nyberg,J.Pochodzalla,W.Prokopowicz,P.Reiter,D.Rudolph,C.Rusu,N.Saito, H.Schaffner,D.Sohler,H.Weick,C.Wheldon,M.Winkler,108Snstudiedwith

intermediate-energyCoulombexcitation,Phys.Rev.C72(2005)061305(R).

[2]C.Vaman, C.Andreoiu,D.Bazin, A.Becerril,B.A.Brown,C.M. Campbell,A. Chester,J.M.Cook,D.C.Dinca,A.Gade,D.Galaviz,T.Glasmacher,M. Hjorth-Jensen,M. Horoi,D. Miller,V.Moeller,W.F.Mueller, A.Schiller, K.Starosta, A.Stolz,J.R.Terry,A.Volya,V.Zelevinsky,H.Zwahlen, Z=50 Shellgapnear

100Snfromintermediate-energyCoulombexcitationsineven-mass106−112Sn

isotopes,Phys.Rev.Lett.99(2007)162501.

[3]J.Cederkäll,A.Ekström,C.Fahlander,A.M.Hurst,M.Hjorth-Jensen,F.Ames,A. Banu,P.A.Butler,T.Davinson,U.D.Pramanik,J.Eberth,S.Franchoo,G.Georgiev, M.Górska,D.Habs,M.Huyse,O.Ivanov,J.Iwanicki,O.Kester,U.Köster,B.A. Marsh,O.Niedermaier,T.Nilsson,P.Reiter,H.Scheit,D.Schwalm,T.Sieber,G. Sletten,I.Stefanescu,J.VandeWalle,P.VanDuppen,N.Warr,D.Weisshaar, F.Wenander,Sub-barrierCoulombexcitationof110Snanditsimplicationsfor

the100Snshellclosure,Phys.Rev.Lett.98(2007)172501.

[4]A.Ekström,J.Cederkäll,C.Fahlander,M.Hjorth-Jensen,F.Ames,P.A.Butler,T. Davinson,J.Eberth,F.Fincke,A.Görgen,M.Górska,D.Habs,A.M.Hurst,M. Huyse,O.Ivanov,J.Iwanicki,O.Kester,U.Köster,B.A.Marsh,J.Mierzejewski, P.Reiter,H.Scheit,D.Schwalm,S.Siem,G.Sletten,I.Stefanescu,G.M.Tveten, J.VandeWalle,P.VanDuppen,D.Voulot,N.Warr,D.Weisshaar,F.Wenander, M.Zieli ´nska,0+gs→2+1 transitionstrengthsin

106Snand108Sn,Phys.Rev.Lett.

101(2008)012502.

[5]R. Kumar, P. Doornenbal, A. Jhingan, R.K. Bhowmik, S. Muralithar, S. Ap-pannababu, R.Garg,J.Gerl,M. Górska,J.Kaur, I.Kojouharov,S. Mandal,S. Mukherjee,D.Siwal,A.Sharma,P.P. Singh,R.P.Singh,H.J.Wollersheim, En-hanced 0+g.s.→2+1 E2 transition strengthin

112Sn, Phys. Rev.C81(2010)

024306.

[6]V.M.Bader,A.Gade,D.Weisshaar,B.A.Brown,T.Baugher,D.Bazin,J.S. Berry-man,A.Ekström,M.Hjorth-Jensen,S.R.Stroberg,W.B.Walters,K.Wimmer,R. Winkler,Quadrupolecollectivityinneutron-deficientSnnuclei:104Snandthe

roleofprotonexcitations,Phys.Rev.C88(2013)051301.

[7]P.Doornenbal,S.Takeuchi,N.Aoi,M.Matsushita,A.Obertelli,D.Steppenbeck, H.Wang,L.Audirac,H.Baba,P.Bednarczyk,S.Boissinot,M.Ciemala,A.Corsi, T.Furumoto,T.Isobe,A.Jungclaus,V.Lapoux,J.Lee,K.Matsui,T.Motobayashi, D.Nishimura,S.Ota,E.C.Pollacco,H.Sakurai,C.Santamaria,Y.Shiga,D.Sohler, R. Taniuchi,Intermediate-energy Coulombexcitation of104Sn: moderate E2

strengthdecreaseapproaching100Sn,Phys.Rev.C90(2014)061302.

[8]R.Kumar,M.Saxena,P.Doornenbal,A.Jhingan,etal.,Noevidenceofreduced collectivityinCoulomb-excitedSnisotopes,Phys.Rev.C96(2017)054318.

[9]N.Jonsson,A.Bäcklin,J.Kantele,R.Julin,M.Luontama,A.Passoja,Collective statesinevenSnnuclei,Nucl.Phys.A371(1981)333.

[10]A.Ansari,Studyofthelowest2+excitationsandB(E2)transitionstrengthsin relativisticQRPAforSn-,andPb-isotopes,Phys.Lett.B623 (1)(2005)37.

[11]B. Maheshwari, A. Kumar Jain, B. Singh, Asymmetric behavior of the

B(E2; 0+→2+)valuesin104−130Snandgeneralizedseniority,Nucl.Phys.A

952(2016)62.

[12]T.Togashi,Y.Tsunoda,T.Otsuka,N.Shimizu,M.Honma,Novelshape evolu-tioninSnisotopesfrommagicnumbers50to82,Phys.Rev.Lett.121(2018) 062501.

[13]S. Szilner,C.A. Ur, L.Corradi, N.M˘arginean, G.Pollarolo, A.M.Stefanini, S. Beghini,B.R. Behera,E.Fioretto,A.Gadea,B.Guiot, A.Latina, P.Mason,G. Montagnoli,F.Scarlassara,M. Trotta, G.d.Angelis,F.D.Vedova, E.Farnea, F. Haas,S.Lenzi,S.Lunardi,R.M˘arginean,R.Menegazzo,D.R.Napoli,M.Nespolo, I.V.Pokrovsky,F.Recchia,M.Romoli,M.-D.Salsac,N.Soi ´c,J.J.Valiente-Dobón, Multinucleontransferreactionsinclosed-shellnuclei,Phys.Rev.C76(2007) 024604.

[14]L.Corradi,G.Pollarolo,S.Szilner,Multinucleontransferprocessesinheavy-ion reactions,J.Phys.G36(2009)113101.

[15]J.J.Valiente-Dobón,Gamma-rayspectroscopyofneutron-richnucleipopulated viamultinucleon-transferreactions,in:BasicConceptsinNuclearPhysics: The-ory,ExperimentsandApplications,vol. 182,2016,p. 87.

[16]A.Dewald,S.Harissopulos,P.VonBrentano,Thedifferentialplungerandthe differentialdecaycurvemethodfortheanalysisofrecoildistanceDoppler-shift data,Z.Phys.A334(1989)163.

[17]A.Dewald, O.Möller,P.Petkov,Developingtherecoil distancedoppler-shift techniquetowardsaversatiletoolforlifetimemeasurementsofexcitednuclear states,Prog.Part.Nucl.Phys.67(2012)786.

[18]J.J.Valiente-Dobón,D.Mengoni,A.Gadea,E.Farnea,S.M.Lenzi,S.Lunardi,A. Dewald,T.Pissulla,S.Szilner,R.Broda,F.Recchia,etal.,Lifetimemeasurements oftheneutron-richN=30 isotones50Caand51Sc:orbitaldependenceof

ef-fectivechargesinthe f p shell,Phys.Rev.Lett.102(2009)242502.

[19]S.Pullanhiotan,A.Chatterjee,B.Jacquot,A.Navin,M.Rejmund,Improvement inthereconstructionmethodforVAMOSspectrometer,Nucl.Instrum.Methods Phys.Res.,Sect.B266(2008)4148.

[20]M.Rejmund,B.Lecornu,A.Navin,C.Schmitt,etal.,Performanceofthe im-proved largeracceptance spectrometer: VAMOS++, Nucl. Instrum. Methods Phys.Res.,Sect.A646(2011)184.

[21]M.Vandebrouck,A.Lemasson,M.Rejmund,G.Fremont,J.Pancin,A.Navin,C. Michelagnoli,J.Goupil, C.Spitaels,B.Jacquot,DualpositionsensitiveMWPC fortrackingreactionproductsatVAMOS++,Nucl.Instrum.MethodsPhys.Res., Sect.A812(2016)112.

[22]S.Akkoyun,etal.,Agata-advancedgammatrackingarray,Nucl.Instrum. Meth-odsPhys.Res.,Sect.A668(2012)26.

[23]E.Clément,C.Michelagnoli,G.deFrance,H.J.Li,A.Lemasson,C.B.Dejean,et al.,ConceptualdesignoftheAGATA1πarrayatGANIL,Nucl.Instrum.Methods Phys.Res.,Sect.A855(2017)1.

[24]B.Bruyneel,B.Birkenbach,J.Eberth,H.Hess,G.Pascovici,P.Reiter,A.Wiens,et al.,CorrectionforholetrappinginAGATAdetectorsusingpulseshapeanalysis, Eur.Phys.J.A49 (5)(2013)1.

[25]A.Lopez-Martens,K.Hauschild,A.Korichi,J.Roccaz,J.P.Thibaud,γ-ray track-ingalgorithms:acomparison,Nucl.Instrum.MethodsPhys.Res.,Sect.A533 (2004)454.

[26]M. Siciliano, J.J. Valiente-Dobón, A. Goasduff, D. Bazzacco, et al., Study of quadrupole correlations in N=Z=50 region via lifetime measurements, Acta Phys.Pol.B48(2017)331.

[27]M.Siciliano,Studyofquadrupolecorrelationsintheneutron-deficientSnand Cdregionvialifetimesmeasurements,NuovoCimentoC40(2017)84.

[28]D. Mengoni, J. Valiente-Dobón, E. Farnea, A. Gadea, A.Dewald, A. Latina, Lifetimemeasurementsofneutron-richnucleiaround48Cawiththe

CLARA-PRISMAsetup,Eur.Phys.J.A42 (3)(2009)387.

[29]M.Siciliano,J.Valiente-Dobón,A.Goasduff,Nuclearstructureinthe neutron-deficientSnnuclei.TKELeffectsonlifetimemeasurements,EPJWebConf.223 (2019)01060.

[30]A.Zuker, Quadrupoledominance inlight cd and sn isotopes, Phys. Rev.C (2020),acceptedforpublication.

[31]J.P.Elliott,CollectivemotioninthenuclearshellmodelI.Classificationschemes forstatesofmixedconfigurations,Proc.R.Soc.Lond.(1958)128.

[32]J.P.Elliott,CollectivemotioninthenuclearshellmodelII.Theintroductionof intrinsicwave-functions,Proc.R.Soc.Lond.(1958)562.

[33]A.P.Zuker,J.Retamosa,A.Poves,E.Caurier,Sphericalshellmodeldescription ofrotationalmotion,Phys.Rev.C52(1995)R1741.

[34]E.Caurier,G.Martínez-Pinedo,F.Nowacki,A.Poves,A.P.Zuker,Theshellmodel asaunifiedviewofnuclearstructure,Rev.Mod.Phys.77(2005)427.

[35]A.P. Zuker,A.Poves,F.Nowacki,S.M. Lenzi, Nilsson-SU3self-consistencyin heavyN=Z nuclei,Phys.Rev.C92(2015)024320.

[36]D.C.Radford,etal.,Nuclearstructurestudieswithheavyneutron-richRIBSat theHRIBF,Nucl.Phys.A746(2004)83.

[37]J.N.Orce,S.N.Choudry,B.Crider,E.Elhami,S.Mukhopadhyay,M.Scheck,M.T. McEllistrem,S.W.Yates,2+1→0+1 transitionstrengthsinSnnuclei,Phys.Rev. C76 (2)(2007)021302(R).

(8)

transitionin114SnstudiedviaCoulombexcitationininversekinematics,Phys.

Rev.C78(2008)031303(R).

[39]J.M.Allmond,D.C.Radford,C.Baktash,J.C.Batchelder,A.Galindo-Uribarri,C.J. Gross,P.A. Hausladen,K. Lagergren,Y. Larochelle,E.Padilla-Rodal,C.-H. Yu, Coulombexcitationof124,126,128Sn,Phys.Rev.C84(2011)061303(R).

[40]A.Jungclaus,J.Walker,J.Leske, K.H.Speidel, A.E.Stuchbery,M.East, etal., Evidenceforreducedcollectivityaroundthe neutronmid-shellinthestable even-massSn isotopesfrom new lifetimemeasurements, Phys. Lett.B 695 (2011)110.

[41]G.Kumbartzki,etal.,Transientfieldg factorandmean-lifemeasurementswith arareisotopebeamof126sn,Phys.Rev.C86(2012)034319.

[42]G.Guastalla,D.D.DiJulio,M.Górska,J.Cederkäll,P.Boutachkov,P.Golubev,S. Pietri,H.Grawe,F.Nowacki,K.Sieja,etal.,Coulombexcitationof104Snand

thestrengthofthe100Snshellclosure,Phys.Rev.Lett.110(2013)172501.

[43]J.M.Allmond,A.E.Stuchbery,A.Galindo-Uribarri,E.Padilla-Rodal,D.C.Radford, J.C.Batchelder,C.R.Bingham,M.E.Howard,J.F.Liang,B.Manning, S.D.Pain, N.J. Stone,R.L.Varner,C.-H. Yu,Investigation intothe semimagic natureof thetinisotopesthroughelectromagneticmoments,Phys.Rev.C92 (4)(2015) 041303(R).

[44]G.J.Kumbartzki,N.Benczer-Koller,K.-H.Speidel,D.A.Torres,J.M.Allmond,P. Fallon,I.Abramovic,L.A.Bernstein,J.E.Bevins,H.L.Crawford,Z.E.Guevara,G. Gürdal,A.M.Hurst,L.Kirsch,T.A.Laplace,A.Lo,E.F.Matthews,I.Mayers,L.W.

Phair,F.Ramirez,S.J.Q.Robinson,Y.Y.Sharon,A.Wiens, Z=50 corestability in110Snfrommagnetic-momentandlifetimemeasurements,Phys.Rev.C93

(2016)044316.

[45]M. Spieker, P. Petkov, E. Litvinova, C. Müller-Gatermann, S.G. Pickstone, S. Prill,P.Scholz,A.Zilges,Shapecoexistenceandcollectivelow-spinstatesin

112,114Snstudiedwiththe

(p,p γ)Doppler-shiftattenuationcoincidence tech-nique,Phys.Rev.C97(2018)054319.

[46]D.Entem,R.Machleidt,Accuratechiralpotential,Phys.Lett.B524(2002)93.

[47]S.Bogner,T.Kuo,A.Schwenk,Model-independentlowmomentumnucleon in-teractionfromphaseshiftequivalence,Phys.Rep.386 (1)(2003)1.

[48]R.Machleidt,F.Sammarruca,Y.Song,Cdbonn,Phys.Rev.C53(1996)R1483.

[49]R.B.Wiringa,V.G.J.Stoks,R.Schiavilla,Argonnepots,Phys.Rev.C51(1995)38.

[50]M.Dufour,A.P.Zuker,RealisticcollectivenuclearHamiltonian,Phys.Rev.C54 (1996)1641.

[51] J.Duflo, A.P. Zuker,GEMO programgemosp9.fin https://www-nds.iaea.org/ amdc/,2000.

[52]J.Duflo,A.P.Zuker,ThenuclearmonopoleHamiltonian,Phys.Rev.C59(1999) R2347.

[53]J.Mendoza-Temis,J.G.Hirsch,A.P.Zuker,TheanatomyofthesimplestDuflo– Zukermassformula,Nucl.Phys.A843 (1)(2010)14.

[54]T.Faestermann,M.Górska,H.Grawe,Thestructureof100Snandneighbouring

Références

Documents relatifs

In this paper, we draw on past and current farming systems analysis across sub- Saharan Africa to: (i) describe approaches for tailoring options to socio-ecological niches at

First, this region of mass is known to exhibit appreciable ground state deformation /30/, and the deformation effect observed in heavy deformed nuclei is bound to manifest itself

peaks attributed to 218Th y-transitions could be observed in singles y-spectra and this hampered further measurements such as y-ray angular

The contribution of possible E2 excitation to the spectrum obtained with the lead target has — in a first step — been determined using data taken with the aluminum target and

Comparison of the calculated negative parity energy levels in the framework of the strong coupling model (SCM)

The experimental setup consists of three traps: A linear Paul trap, a preparation Penning trap for beam cooling, and isobaric separation and a precision Penning trap for the

The method used for the nuclear charge (Z) identication of this new isomer of mass 95, is shown in Fig.. Coincidence measurements were performed between the

The Giant Pairing Vibration, a two-nucleon collective mode originating from the second shell above the Fermi surface, has long been predicted and expected to be strongly populated