• Aucun résultat trouvé

Re-examining the transition into the $N=20$ island of inversion: Structure of $^{30}$Mg

N/A
N/A
Protected

Academic year: 2021

Partager "Re-examining the transition into the $N=20$ island of inversion: Structure of $^{30}$Mg"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-01719652

https://hal.archives-ouvertes.fr/hal-01719652

Submitted on 8 Jan 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Re-examining the transition into the N = 20 island of

inversion: Structure of

30

Mg

B. Fernández-Domínguez, B. Pietras, W.N. Catford, N.A. Orr, M. Petri, M.

Chartier, S. Paschalis, N. Patterson, J.S. Thomas, M. Caamaño, et al.

To cite this version:

B. Fernández-Domínguez, B. Pietras, W.N. Catford, N.A. Orr, M. Petri, et al.. Re-examining the

transition into the N = 20 island of inversion: Structure of

30

Mg. Phys.Lett.B, 2018, 779, pp.124-129.

�10.1016/j.physletb.2018.02.002�. �hal-01719652�

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Re-examining

the

transition

into

the

N

=

20 island

of

inversion:

Structure

of

30

Mg

B. Fernández-Domínguez

a

,

b

,

c

,

,

B. Pietras

a

,

W.N. Catford

d

,

N.A. Orr

b

,

M. Petri

a

,

e

,

f

,

M. Chartier

a

,

S. Paschalis

a

,

f

,

N. Patterson

d

,

J.S. Thomas

d

,

M. Caamaño

c

,

T. Otsuka

g

,

A. Poves

h

,

N. Tsunoda

g

,

N.L. Achouri

b

,

J.-C. Angélique

b

,

N.I. Ashwood

i

,

A. Banu

j

,

1

,

B. Bastin

b

,

R. Borcea

l

,

J. Brown

f

,

F. Delaunay

b

,

S. Franchoo

m

,

M. Freer

i

,

L. Gaudefroy

n

,

S. Heil

e

,

M. Labiche

o

,

B. Laurent

b

,

R.C. Lemmon

o

,

A.O. Macchiavelli

k

,

F. Negoita

l

,

E.S. Paul

a

,

C. Rodríguez-Tajes

n

,

P. Roussel-Chomaz

n

,

M. Staniou

l

,

M.J. Taylor

f

,

2

,

L. Trache

j

,

l

,

G.L. Wilson

d

aDepartmentofPhysics,UniversityofLiverpool,Liverpool,L69 7ZE,UK

bLPC-Caen,IN2P3/CNRS,ENSICAEN,UNICAENetNormandieUniversité,14050Caen Cedex,France cUniversidadedeSantiagodeCompostela,15754SantiagodeCompostela,Spain

dDepartmentofPhysics,UniversityofSurrey,GuildfordGU2 5XH,UK

eInstitutfürKernphysik,TechnischeUniversitätDarmstadt,64289Darmstadt,Germany fDepartmentofPhysics,UniversityofYork,Heslington,YorkYO10 5DD,UK

gCNS,UniversityofTokyo,7-3-1 Hongo,Bunkyo-ku,Tokyo,Japan

hDepartamentodeFisicaTeóricaandIFT-UAM/CSIC,UniversidadAutónomadeMadrid,E-28049Madrid,Spain iSchoolofPhysicsandAstronomy,UniversityofBirmingham,Birmingham,B15 2TT,UK

jCyclotronInstitute,TexasA&MUniversity,CollegeStation,TX-77843,USA

kNuclearScienceDivision,LawrenceBerkeleyNationalLaboratory,Berkeley,CA 94720,USA lIFIN-HHBucharest-Magurele,RO-077125,Romania

mIPN-Orsay,91406Orsay,France

nGANIL,CEA/DRF–CNRS/IN2P3,BP55027,14076CaenCedex 05,France

oNuclearStructureGroup,CCLRCDaresburyLaboratory,Daresbury,WarringtonWA4 4AD,UK

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received14December2017

Receivedinrevisedform1February2018 Accepted1February2018

Availableonline6February2018 Editor:D.F.Geesaman

Intermediateenergysingle-neutronremovalfrom31Mghasbeenemployedtoinvestigatethetransition

intotheN=20 islandofinversion.Levelsupto5 MeVexcitationenergyin30Mgwerepopulatedand

spin-parityassignmentswereinferredfromthecorrespondinglongitudinalmomentumdistributionsand

γ

-raydecayscheme. Comparisonwith eikonal-modelcalculationsalsopermittedspectroscopic factors to be deduced. Surprisingly, the 0+2 level in 30Mg was found tohave astrengthmuch weaker than

expectedinthe conventionalpicture ofapredominantly2p2h intruderconfiguration having alarge overlapwiththedeformed31Mggroundstate.Inaddition,negativeparitylevelswereidentifiedforthe

first timein30Mg, one ofwhichislocated atlow excitationenergy. Theresults are discussedinthe

light ofshell-model calculationsemployingtwo newly developedapproaches with markedlydifferent descriptionsof thestructure of30Mg. It isconcluded thatthe cross-shelleffects inthe regionofthe

islandofinversionatZ=12 are considerablymorecomplexthanpreviouslythoughtand thatnpnh

configurationsplayamajorroleinthestructureof30Mg.

©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

*

Correspondingauthor.

E-mailaddress:beatriz.fernandez.dominguez@usc.es(B. Fernández-Domínguez). 1 Presentaddress:DepartmentofPhysicsandAstronomy,JamesMadison Univer-sity,Harrisonburg,VA22807,USA.

2 Presentaddress:Divisionofcancersciences,UniversityofManchester, Manch-ester,M139PL,UK.

The“islandofinversion”(IoI)inwhichtheneutron-richN

20 isotopes of Ne, Na and Mg exhibit ground states dominated by cross-shell intruder configurations, has attracted much attention since thefirstobservations[1,2].Inparticular,thisregionhas be-comethetestinggroundforourunderstandingofmanyofthe con-ceptsofshellevolutionawayfrom

β

-stabilityandhassparkedthe

https://doi.org/10.1016/j.physletb.2018.02.002

0370-2693/©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

developmentofsophisticatedshell-modelinteractions. Theoretical approaches first employed mean field [3] and, later, shell-model calculations[4–9] to explain the enhanced binding energies and low2+excitationenergies,whereindeformationandadiminished N

=

20 shell gap [15] result in f p-shell intruder configurations dominatingthegroundstatewavefunctions.

In the case of the Mg isotopes, 30,31Mg were first suggested to lie outside the IoI, based on their masses [10,11]. Subse-quent measurements, notably the measurements of the ground statespin-parity( J π

=

1

/

2+) andmagneticmoment[12,13] have combined with theoretical work (e.g., Refs. [14,15]) to produce a widely accepted picture in which 31Mg is the lightest magne-siumisotopewithin theIoI.Itsgroundstate ischaracterisedby a stronglyprolatedeformedintruderstructurewithanalmost pure neutron 2p

2h configuration[16,17]. In contrast, 30Mg is firmly placed outside the IoI and its structure interpreted as a spher-ical 0p

0h ground state [18] coexisting with a neutron 2p

2h intruder-dominateddeformed0+2 isomericstateat1.788 MeV[19, 20] and withnegativeparitylevels expectedtoappear, according toshell model calculations, ata relatively highexcitation energy (

>

3.5 MeV[21]).

Very recently, calculations employing a new type of interac-tion – EEdf1 – have reproduced many of the properties of the neutron-richisotopesofNe,MgandSi[22].Significantly,the inter-actionwasderived forthesd

+

p f shellsfromfundamental prin-ciplesandexplicitly includingthree-body forces.Intriguingly, the EEdf1 calculationspredict that multiple particle–hole excitations playamuchbiggerrolethansuggestedbytheearliercalculations. Forexample, in the Mgisotopic chain the admixture of neutron 2p

2h and 4p

4h configurations increases suddenly at N

=

18 [22]. Indeed, the ground state structure of 30Mg is predicted to be very strongly influenced by the intruder f p-shell configura-tions, with

75% ofthe groundstate wavefunction beingofthis nature [22].

Inorder to test thesetwo very differentpictures of the tran-sitioninto the IoI the structuraloverlaps between the 31Mg and 30Mgstatesareofcriticalimportance.Todate,however,thereare onlyindirectestimates,basedonprotonresonantelasticscattering on 30Mg [23]. In the present work, intermediate energy single-neutronremovalfrom31Mgisinvestigated.Inadditionto provid-ingameasureoftheoverlapsbetweenthe31Mggroundstateand thelevelspopulatedin30Mg,the spinsandparitiesofpreviously knownandnewlyobservedstatesarededuced.

The experiment was performed at the GANIL facility where a high intensity 36S primary beam (77.5 MeV/nucleon) was em-ployed,inconjunctionwiththeSISSIdevice[24].A beamanalysis spectrometerdelivered asecondary beamof31Mg(55.1 MeV/nu-cleon)witharateof

55 pps. Thesecondarybeambombardeda carbontarget (thickness171 mg/cm2)andthebeam-likeresidues wereanalysedaccordingtomomentumusingtheSPEG spectrom-eter[25] andidentified inmassandcharge usingstandard



E-E-TOFtechniques.

The

γ

-rays emitted by the beam-like residues were detected usingan array of 8 EXOGAM Ge clover detectors [26] that were arrangedsymmetricallyintwo rings,eachof4detectors,atpolar angles of45◦ and135◦ withrespect to the beamaxis. The full-energypeakefficiencyforthearray,afterimplementingadd-back, wasmeasuredtobe 3

.

3

±

0

.

1%at1.3 MeVandtheenergy resolu-tion,afterDopplercorrection,was 2.7%.A morecompleteaccount oftheexperimentaldetailsmaybefoundinRef. [27].

The inclusive cross section for single-neutron removal from 31Mg was determined to be 90

±

12 mb where the error arises principallyfromtheuncertaintyintheintegratedsecondarybeam intensity.The

γ

-rayspectrum,foreventsobservedincoincidence with30Mgresidues,isshowninFig.1,afterDopplerandadd-back

Fig. 1. (Coloronline.) Dopplercorrectedandadd-backreconstructedγ-rayenergy spectrum(Eγ >500 keV)incoincidencewith30Mg.Theoverallfit(redline) in-cludesGeant4generatedlineshapesforeachtransition(blackhistograms)andan exponentialbackground(bluedashedline).Theinsetsshowthedetailsofthe re-gionsfrom850to1100 keVand1575to2175 keV.

Fig. 2. (Color online.) Spectrum for the forward angle EXOGAM detectors for Eγ < 500 keV.Thegreyhistogram isthe simulatedlineshapefor the0+2 →2+1 decay–Eγ=300±5 keV.Theredshadingreflectstheuncertaintyinthehalf-life –3.9±0.5 ns [19].

correctionswere applied.Nineknown transitions[28,21,29] were observed.TheenergiesandintensitiesarelistedinTable1andthe deduceddecayschemeshowninFig.3.A furtherweak,previously unreported transition, which is not in coincidence (within the statistics)withanyother

γ

-rayline,wasidentifiedat1660(2) keV. The

γ

-ray energyspectrumwas fitted withlineshapes generated for each transition using Geant4 [30], plus a smooth continuum background.

Below 500 keV, no

γ

-ray lines were observed other than an asymmetric peak at

300 keV corresponding to the known 306 keVtransitionfromtheisomeric0+2 1789 keVleveltothe2+1 state (half-life3.9(5) ns[19]).Thelineshape fortheisomeric de-cay was simulated (Fig. 2) using Geant4andtaking intoaccount the half-life and the 30Mg post-target velocity (

β

=

0

.

303). The analysis employed only the data acquired with the forward four detectorsasthecorresponding lineshapeexhibitedparticular sen-sitivitytothelifetime.

The30Mgleveland

γ

-decayschemeinFig.3isinaccordwith previous studies [28,21,29], withthe exception oftwo previously reported transitionsat 990 keVand 1060 keV[21] forwhich no

(4)

Fig. 3. Levelschemeof30Mgobtainedinthepresentwork.Thewidthsofthearrows reflecttheabsoluteintensitiesofthetransitions.Thespin-parityassignmentsabove 2 MeVarethosededucedhere(seetextandTable1).

evidencewas found inthepresentwork (insets Fig.1) orindeed inpreviousstudies[28,29].The

γ

-rayintensitiesweredetermined byusingthelineshapes fromthesimulationsandthencorrecting thecountsinthefullenergypeakfortheefficiencyoftheGearray. Thebranchingratioforthedirectpopulationofeachlevelviathe neutron-removalfrom31Mgwasobtainedbygatingongamma-ray energyandwithfeedingcorrectionstakenintoaccount.Forthe0+2 isomeric state, thedirect feedingwas deduced fromthe gamma-ray decay via the E2 radiative transitionsince the ratio E0/E2is verysmall(

1

.

4

×

10−2),giventhepartiallifetimeoftheE0 de-cay(

τ

(

E0

)

=

396 ns [20]).Theexclusivecrosssectionforeachstate istheproductofthedirectbranchingratioandtheinclusivecross section.TheresultsareincludedinTable1.

Thecrosssection,

σ

1n,toremove neutrons(n



j)froma pro-jectile of mass A populating final states J π may be expressed theoreticallyas[31],

σ

1n

=



nj



A A

1



N C2S

(

,

n



j

)

σ

sp

(

n



j

,

Seffn

),

(1)

where

σ

sp isthesingle-particlecrosssection,

[

A

/(

A

1

)

]

N isthe center-of-mass correction (N

=

2n

+ 

) [32], and Sneff

=

Sn

+

Ex istheeffectiveseparationenergy(Sn

(

31Mg

)

=

2

.

310

±

0

.

005 MeV [33])withEx theexcitationenergyofthestateintheA-1system.

Thesingle-particlecrosssectionsandmomentumdistributions were computedusing the eikonal formalism [34–36]. The poten-tialsfortheneutron–target andcore–targetinteractionswere de-rivedusingtheJeukenne,LejeuneandMahaux(JLM)[37] nucleon– nucleon effective interaction. The wavefunction of the removed neutron was calculated in a Woods–Saxon potential where the depth was adjusted to reproduce Sneff. The Woods–Saxon radius wasconstrainedusingSkyrmeHartree–Fockcalculations(Sk20 in-teraction)andthediffusenesssetto0.7 fm.The12Ctargetnucleus was taken to have a Gaussian matter density witha root-mean-squareradiusof2.32 fm.

Compilations of the results of intermediate-energy single-nucleon removal suggest that there is a systematic variation in theratioofthe experimentalandtheoretical crosssections–the so-called quenching factor, Rs [38] – depending on the relative bindingenergiesoftheneutronandproton[39].Astheexact ori-ginsofthisquenchingremaintobe properlyelucidated andmay well involve a combination of the structure inputs and reaction

Fig. 4. (Coloronline.) Exclusivemomentumdistributionsderivedforstatesin30Mg, labelledbytheexcitationenergyinkeV,comparedtoeikonal-modelpredictions; fitswereformomentaabove8750MeV/c(seetext).

theory,no attemptismadeheretorenormalisethe experimental spectroscopicfactors.Inadditionitmaybe noted,thatthe Seffn of the levels populated herecorrespond to Rs

0.85–0.90, andany correction, ifvalid, wouldbe smallerthan thepresent uncertain-ties.

The exclusive longitudinal momentum distributions extracted for the ground and excited states are presented in Fig. 4. The ground state distributionwas obtained fromthe inclusiveresults bysubtracting,withappropriate weighting,themomentum distri-butions for the observed excited states. The theoretical momen-tumdistributionsderivedfromtheeikonalmodelcalculations[34] werefoldedwiththeexperimentalresolution(FWHM

=

75 MeV/c) andarecomparedtotheexperimental resultsinFig.4wherethe overallnormalisationhasbeenadjustedtoprovidethebest possi-ble description.3 (Table 1). In orderto avoidanybias from dissi-pativeprocessesinthereaction[40] whicharenotincorporatedin theeikonalmodelling,thetheoreticallineshapeswerecomparedto thedataonlyformomentagreaterthan8750 MeV/c,sincethe

in-3 Webelievethatthisispreferabletothecommonlyadoptedprocedurewhereby thetheoreticallineshapesarenormalisedtothepeakoftheexperimental distribu-tion.

(5)

Table 1

Resultsforsingle-neutronremovalfrom31Mg.Theobservedlevels(E

x),transitionenergies(Eγ),intensities(Iγ),directfractionalpopulation(b)andcorrespondingcross sections(σ1n)arelisted.Theorbitalangularmomentum()oftheremovedneutron,thecorrespondingchi-squaredperdegreeoffreedom(χ2),inferredspin-parity ( Jπ),theoreticalsingle-particlecrosssection(σsp)andthededucedspectroscopicfactorC2Sexparealsoprovided.

Ex [MeV] Eγ [keV] Iγ (%) b (%) σ1n [mb]  χ2/ν Jπ σsp [mb] C2S expa 0.0 – – 28.3(39)b 25.5(48)b 0 2.9 0+ 56.4 [0.42(8)]b 1.482(2) 1482(2) 57.0(28) 12.2(33)b 11.0(33)b 2 3.0 2+ 23.4 [0.44(13)]b 1.782(5) 300(5) 8.6(13) 8.6(13) 7.7(15) 0 0.5 0+ 36.9 0.20(4) 2.467(3) 985(2) 8.4(5) 8.4(5) 7.6(11) 1 1.0 (2)− 32.8 0.21(3) (2) (1.6) 3.298(3) 1816(2) 13.0(8) 7.6(8) 6.8(11) 3 1.9 (3)− 17.6 0.35(6) (2) (2.8) 3.380(3) 1898(2) 4.2(4) 2.8(4) 2.5(5) –c 3.457(3) 1975(2) 10.6(6) 10.6(6) 9.5(13) 2 0.8 (2)+ 18.7 0.48(7) (1) (2.2) 3.534(6) 3534(6) 12.3(9) 12.3(9) 11.1(16) 1 1.9 (1−) 28.9 0.35(5) (2) (2.0) 4.183(3) 799(2) 1.4(1) 1.4(1) 1.3(2) –c 4.252(3) 954(2) 5.4(3) 5.4(3) 4.9(7) 3 1.4 (4)− 16.6 0.27(4) (2) (1.6) – 1660(2) 2.4(2) 2.4(2) 2.2(3) –c

a Afteraccountingforthecentre-of-masscorrection.Asystematicuncertaintyof10%relatedtothereactionmodellingisnotincludedinthequotederror[39,40]. b Upperlimitsfromobservedyields(seetext).

c Thecorrespondingmomentumdistributionscouldnotbeextracted.

clusivemomentumdistribution,aswellasthatforthegroundand 2+1 states,show evidenceoftailsatmomentabelowthisvalue.In thecasesofthelevelswithunknown spin-parities(i.e.,abovethe 0+2 state),thelineshapesforthetwo



valuesthatcomeclosestto reproducingthedataareshown.

Themostlikely



valuesfortheremovedneutronwerededuced forall excepttwo levels (3.534and4.252 MeV)according tothe smallest

χ

2

/

ν

values(Table 1). The absolutevalues of

χ

2

/

ν

re-flect, in addition to statistical variations, contributions from any imperfections in the

γ

-ray gating and background substraction, anduncertainties in the theoretical lineshapes4 asevidenced by thecomparativelypoor

χ

2

/

ν

forthe2+

1 level.

Removing a neutron from the 1s1/2 orbital in 31Mg leads to 0+ (and potentially 1+) states in 30Mg. In the case of the 0+ groundstate, the deduced spectroscopic factor of 0

.

42

±

0

.

08 is muchlargerthantheindirectestimateofImaiet al.[23],namely C2S

=

0

.

07

±

0

.

03(stat)

±

0

.

07(sys), and both of the shell model predictions discussed below (C2S

=

0

.

11

0

.

13). Given that the crosssection to the groundstate is derived assuming that all of

theyieldtoboundexcited levelshasbeenidentified (Sn

(

30Mg

)

=

6

.

35

±

0

.

01 MeV [33]),both thecrosssection andthe associated spectroscopicfactor(Table1) shouldbe consideredasupper lim-its.Indeed,highenergy(andunobserved)

γ

-rays,wouldarisefrom any1+ levels populated by 1s1/2 and/or 0d3/2 neutron removal; thesearepredictedtolie near5 MeV(Fig. 5) andcandidates are suggestedin

β

-decaymeasurements[29].

In the case of the 0+2 level, the spectroscopic factor of 0

.

20

±

0

.

04 deduced hereis,intermsofthe conventionalpicture ofanintruder-dominated2p

2h configuration,surprisinglylow.

Removinga neutronfromthe0d3/2 orbital in31Mgcan popu-late 1+ or2+ states in30Mg. The 2+1 stateis populatedstrongly here,however,theassociatedspectroscopicfactor(0

.

44

±

13)must be interpreted with caution as the deformed character of 30Mg [45] willpermit dynamicalexcitations(and de-excitations)to oc-cur during the neutron removal. CCDC-type calculations suggest that such effects willresult ina net increase in theyield to the

4 Thesemayarisefromeffectsnotincorporatedinthemodelemployedhere[41,

42],thechoiceofthemodelorformalism(see,forexample,refs. [43,44])and un-certaintiesintheparametersofthemodelitself.

2+1 state and thespectroscopic factordeduced hereshould,thus, beconsideredanupperlimit [46].

Thenext higheststatecharacterisedby



=

2 neutronremoval isfoundat3.457 MeV.Afusion–evaporationstudy[21] suggested a 4+ assignment which would, fora single-step process, require neutronremovalfromthe1g9/2 orbital.Thisisincompatiblewith anyreasonablestructurefor31Mgandwiththeobserved momen-tumdistribution.Giventhatany1+ levelsareexpected(Fig.5)at highenergy,a 2+2 assignmentismadehere, inlinewiththe30Na

β

-decaystudy[29]. The large spectroscopicfactor of0

.

48

±

0

.

07 suggestsanintruderdominatedstructure.

Negative parity states will be populated via removal of an

f p-shellneutronfrom31Mg. Significantly,thelevel at2.467 MeV

has a momentum distribution characteristic of



=

1

(

1p3/2

)

re-moval, forwhich spin-parities of 1− and 2− are possible. Given that the

γ

-decay proceeds to the 2+1 level, a 2− assignment is clearly favoured5 since a 1assignment would favour direct E1

decaytothegroundstate. Thepresenceofanegativeparitystate atsuch alowenergyissurprisinginviewoftheshellmodel pre-dictions(Fig. 5)andincomparisonwiththe correspondinglevels in26,28Mg(E

x

=

6

.

19 and5.17 MeV).

The momentum distribution for the 3.534 MeV level is com-patiblewith



=

2 or 1,andthuswithspin-parityassignments of (1,2)+ or(1,2)− for0d3/2 or1p3/2 neutronremovalrespectively. Given,however,thatthe

γ

-decayproceedsonlyviadirectdecayto thegroundstateaspinof1isclearlyfavoured.Furthermorean as-signmentof1−isstronglysuggestedsinceitwouldbethepartner ofthenearby2− stateproducedby1p3/2 removal.

Thelevelsat3.298and4.252 MeVbothexhibitmomentum dis-tributions consistentwith



=

3 neutronremoval,although inthe caseofthelater



=

2 removalisalsopossible.The



=

3 (0 f7/2) removalsuggestsspin-paritiesof3−or4−.Significantly,thelower ofthetwostatesdecaystothe2+1 statewiththeassociated transi-tionbeingE1orE3forthe3−or4−assignmentsrespectively.The lattertransitionwould,however,veryprobablybeisomericwitha lifetimeapproaching1 μs,indicatingthatthelowerlevelis3−.For thehigherlyinglevel



=

2 neutronremovalsuggestsspin-parities

5 WhereasthiscontradictsRef. [19],thefeedingin30Na

β-decayappearstobe forbidden[21,29],thusimplyingnegativeparity.

(6)

Fig. 5. (Coloronline.) Levelschemefor30MgobtainedinthepresentworkcomparedtoshellmodelcalculationsusingtheEEdf1[22] andSDPF-U-MIX[15] interactions. Spectroscopicfactors(seetextandTable1)andproposedspin-parityassignmentsareshownontheleftandrightsideoftheenergylevels,respectively.Theenergiesofthe experimentallyobservedstatesarelistedinTable1andFig.3.Theorbitalangularmomentum()fortheremovedneutronisalsoindicated:=0 (red),1 (green),2 (blue), 3 (brown),undetermined(black)–seeTable1.

of(1, 2,3)+.Such assignments would be expectedto be charac-terised byM1decays[47] tothelowlying0+and2+statesrather thantheobserveddecaytothe3.298 MeV3−level.Assuchitmay bereasonablyconcludedthatthe4.252 MeVlevelispopulatedas the4− spin-couplingpartnerofthe3− state.

Turningnowtotheinterpretationoftheresultspresentedhere, Fig.5providesacomparisonwithshellmodelcalculations6 using the recently developedEEdf1 [22] and SDPF-U-MIX [15] interac-tions. The former was derived from chiral effective field theory nucleon–nucleoninteractions, whilst the latterisan extension of theSDPF-U interaction [9] whichallows forthe mixingof

differ-entnp

nh configurations.Itshouldbenotedthatwhilethe31Mg

ground state is essentially of intruder character in both calcula-tions, the details differ markedly: 90% of the SDPF-U-MIX wave functionis2p

2h,whilst,inthecaseofEEdf1,66%is2p

2h and 29%4p

4h.

The difference between the two shell model calculations is mostapparentinthecharacterofthe30Mgstates:theEEdf1 pre-dicts the 0+1, 0+2, 2+1 and 2+2 levels to be overwhelmingly dom-inated (



70%) by intruder configurations while the SDPF-U-MIX suggestsa moreconventional situationwithonly the0+2 and2+2 stateshavingintrudercharacter (Fig.6).Incontrast,forthe nega-tiveparity f p shellstates,thetwo calculationsagree(Fig. 5)that theyshouldlieatrelativelyhighexcitationenergy(



3.5 MeV).

Focusing onthenewresults,thespectroscopicfactorsmeasure thestructuraloverlapoftheIoInucleus31Mgwithkeylow-lying levelsin30Mg.AsshowninFig.5,thespectroscopicfactordeduced herefor the 0+2 state is in very good agreement withthe EEdf1 basedpredictionandatclearvariancewiththatoftheSDPF-U-MIX (beingafactor

2weaker),suggestingtheincreasedimportanceof 4p

4h configurations.

In order to explore further the influence of 4p

4h configu-rations, calculations have been made using a three level mixing model(3LM) [48]. Inthisapproach, thestarting pointcomprised the unmixed np

nh (n

=

0

,

2 and 4) 0+ levels derived fromthe SDPF-U-MIXinteraction.Themixingwasthenvarieduntilthe ex-citationenergyofthe0+2 stateequalledtheexperimentalvalue.As

6 TheEEdf1calculationswereperformedinthesdp f modelspaceforboth pro-tonsandneutrons,whilefortheSDPF-U-MIXtheprotonswereconfinedtothesd shell.

Fig. 6. (Coloronline.) Decompositionofthewavefunctionsin30Mgforthe0+ 1,2and 2+1,2statesasderivedfromshell-modelcalculationsemployingtheEEdf1and SDPF-U-MIXinteractionsand,forthe0+1,2levels,byathree-levelmixingmodel(3LM)– seetext.

maybe seenin Fig.6,the0+2 level isstronglymixedwitha sig-nificant 4p

4h component (comparable tothe EEdf1 prediction). The spectroscopic factors derived from the overlap of the SDPF-U-MIX ground state for 31Mg with the 30Mg 0+2 state from the 3LM(C2S

=

0

.

26)isinbetteragreementwiththeexperimentthan the SDPF-U-MIX prediction.In the case ofthe groundstate, the strength (C2S

=

0

.

22) istwice that ofthe SDPF-U-MIXprediction (Fig.5).Forcompleteness,itmaybenotedthatthe0+3 levelinthe 3LM(C2S

=

0

.

15)ispredictedtolieataround3.8 MeV.

Turning to the negative parity states, the lowest in energy is the 2−, which is observed to lie well below those predicted by both theEEdf1andSDPF-U-MIXinteractions,withastrength sig-nificantlyweakerthaneitherofthecalculations.Theproposed1− spin-couplingpartnerofthe2− isfoundtoliesome1 MeVhigher inexcitationenergywithaconsiderablestrength.Theshellmodel calculations are reasonable in termsof the excitation energybut underestimate the strength by a factor

2. Finally, the 3− and 4− levels are both reasonably well reproduced in terms of en-ergybythetwocalculations.However,whilethestrengthsofeach

(7)

Fig. 7. (Coloronline.) Comparisonoftheexperimentallydeducedsummedstrength forneutron f p-shelllevelspopulatedinone-neutronremovalfrom30−32Mgwith shell-modelpredictionsusingtheEEdf1andtheSDPF-U-MIXinteractions.The ex-perimentalstrengths(pointswitherrorbars)for30,32MgaretakenfromRef. [18].

arein very goodagreement withthe EEdf1 predictions, they are considerably over-predicted by the SDPF-U-MIX calculations. In-terestingly,theN

=

20 shell gapincorporatedin theSDPF-U-MIX interactionisaround5.5 MeV,whilethatofEEdf1isonly2.8 MeV. Finally,itisinstructivetomaptheevolutionofthestrengthof the f p-shellintruderstatesacrosstheboundaryoftheIoI.Thisis showninFig.7,wherethesummedstrengthofthenegativeparity levelsobserved inthe A-1nucleipopulatedinsingle-neutron re-movalfrom30−32Mgarecomparedtotheshell-modelcalculations using the EEdf1 and SDPF-U-MIX interactions. This comparison highlightstheenhanced role playedby thecross-shellexcitations in the EEdf1 calculation, which displays a smooth evolution of structure with neutron number, whereas the SDPF-U-MIX model showsa cleartransitionat31Mg. Theintegratedexperimental in-truder strengths do not permit a definitive choice to be made betweenthetwodescriptionsof30Mgbutdotendtosupportthe smoothevolutionpredictedbytheEEdf1model.

Inconclusion,thestructure of30Mghasbeeninvestigated us-ing single-neutron removalfrom 31Mg. The results, mostnotably the relatively weak spectroscopic strength for the 0+2 state and the identification of a low lying negative parity (2−) level, are at odds with the conventional picture of the transition into the IoI.Comparisons are madewiththeresults ofshellmodel calcu-lations employing two recently developed interactions with very differentdescriptionsoftheunderlyingstructureof30,31Mg.These suggestthatthelowlyinglevelsin30Mgaredominatedbynp

nh configurations,includingsignificant 4p

4h contributions.As such the transition into the IoI at Z

=

12 appears to be considerably morecomplexandlesswelldefinedthanpreviously thought. Ide-ally, improved measurements should be made (including high-energy

γ

-raydetection)soastoclarifythedirectpopulationofthe groundand2+1 states.Inaddition,aninvestigationofthed(30Mg,p) neutrontransferreactionwouldbevaluable.

Acknowledgements

Theauthorsacknowledgethesupportprovidedbythetechnical staffofLPCandGANIL, includingthat oftheir latecolleagues and

friendsJ-M.GautierandJ-F.Libin.ThanksarealsoduetoJ. Pereira-Concaforfruitfuldiscussions.B.F.D.andM.C.Facknowledge finan-cialsupportfromtheRamónyCajal programmeRYC-2010-06484 and RYC-2012-11585 and from the Spanish MINECO grant No. FPA2015-71690-P. W.N. Catford acknowledges financial support fromtheSTFCgrantnumberST/L005743/1.Thisworkispartly sup-ported by MINECO(Spain) grant FPA2014-57196 andProgramme “Centrosde ExcelenciaSeveroOchoa”SEV-2012-0249.The partic-ipantsfromtheUniversitiesofBirmingham,Liverpool,Surreyand CCLRCDaresbury, GSI andIFIN-HH laboratoriesalso acknowledge partialsupportfromtheEuropeanCommunitywithintheFP6 con-tractEURONSRII3-CT-2004-06065.

References

[1]C.Thibault,etal.,Phys.Rev.C12(1975)644.

[2]C.Detraz,etal.,Nucl.Phys.A394(1983)378.

[3]X.Campi,etal.,Nucl.Phys.A251(1975)193.

[4]A.Poves,J.Retamosa,Phys.Lett.B184(1987)311.

[5]E.K.Warburton,etal.,Phys.Rev.C41(1990)1147.

[6]Y.Utsuno,etal.,Phys.Rev.C60(1999)054315.

[7]T.Otsuka,etal.,Phys.Rev.Lett.87(2001)082502.

[8]Y.Utsuno,etal.,Phys.Rev.C70(2004)044315.

[9]F.Nowacki,A.Poves,Phys.Rev.C79(2009)014310.

[10]N.A.Orr,etal.,Phys.Lett.B258(1991)29.

[11]X.G.Zhou,etal.,Phys.Lett.B260(1991)285.

[12]G.Neyens,etal.,Phys.Rev.Lett.94(2005)022501.

[13]M.Kowalska,etal.,Phys.Rev.C77(2008)034307.

[14]M.Kimura,etal.,Phys.Rev.C75(2007)041302(R).

[15]E.Caurier,F.Nowacki,A.Poves,Phys.Rev.C90(2014)014302.

[16]F.Marechal,etal.,Phys.Rev.C72(2005)044314.

[17]M.Petri,etal.,Phys.Lett.B748(2015)173–177.

[18]J.R.Terry,etal.,Phys.Rev.C77(2008)014316.

[19]H.Mach,etal.,Eur.Phys.J.A25(2005)s01.

[20]W.Schwerdtfeger,etal.,Phys.Rev.Lett.103(2009)012501.

[21]A.N.Deacon,etal.,Phys.Rev.C82(2010)034305.

[22]N.Tsunoda,etal.,Phys.Rev.C95(2017)021304(R).

[23]N.Imai,etal.,Phys.Rev.C90(2014)011302(R).

[24]R.Anne,Nucl.Instrum.MethodsB126(1997)279.

[25]L.Bianchi,etal.,Nucl.Instrum.MethodsA276(1989)509.

[26]J.Simpson,etal.,ActaPhys.Hung.11(2000)159.

[27]A.Banu,etal.,Phys.Rev.C84(2011)015803.

[28]P.Bauman,etal.,Phys.Rev.C39(1989)626.

[29]T.Shimoda,etal.,HyperfineInteract.225(2014)183.

[30]J.Allison,etal.,Nucl.Instrum.MethodsA835(2016)186.

[31]P.G.Hansen,J.A.Tostevin,Annu.Rev.Nucl.Part.Sci.53(2003)219.

[32]A.E.L.Dieperink,T.deForest,Phys.Rev.C10(1974)543.

[33]M.Wang,etal.,Chin.Phys.C36(2012)1603.

[34] J.A.Tostevin,computercode“MOMENTUM”,unpublished. [35]J.A.Tostevin,J.Phys.G25(1999)735.

[36]J.A.Tostevin,etal.,Nucl.Phys.A682(2001)320c.

[37]J.P.Jeukenne,A.Lejeune,C.Mahaux,Phys.Rev.C16(1977)80.

[38]A.Gade,etal.,Phys.Rev.C77(2014)044306.

[39]J.A.Tostevin,A.Gade,Phys.Rev.C90(2008)057602.

[40]E.Sauvan,etal.,Phys.Rev.C69(2004)044603.

[41]AlexanderSakharuk,VladimirZelevinsky,Phys.Rev.C61(1999)014609.

[42]E.C.Simpson,J.A.Tostevin,Phys.Rev.C86(2012)054603.

[43]F.Carstoiu,etal.,Phys.Rev.C70(2004)054602.

[44]A.Bonaccorso,Phys.Rev.C60(1999)054604.

[45]V.Christé,etal.,Phys.Lett.B514(2001)233.

[46]N.C.Summers,etal.,Phys.Rev.C73(2006)031603(R).

[47]P.M.Endt,At.DataNucl.DataTables55 (171)(1993).

Figure

Fig. 1. (Color online.) Doppler corrected and add-back reconstructed γ -ray energy spectrum (E γ &gt; 500 keV) in coincidence with 30 Mg
Fig. 3. Level scheme of 30 Mg obtained in the present work. The widths of the arrows reflect the absolute intensities of the transitions
Fig. 5. (Color online.) Level scheme for 30 Mg obtained in the present work compared to shell model calculations using the EEdf1 [22] and SDPF-U-MIX [15] interactions.

Références

Documents relatifs

The teaching process is considered from a theoretical standpoint involving three levels of description: the fundamental structures of the didactical relationship,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Keywords: climate change policy, sustainable development, prioritization, development, environmental protection, global warming.. 1 University of London, Imperial College

Here we explore the dynamical effects in the intercalation of proflavine into DNA by calculating the transmission coefficient κ -- providing a measure of the departure from

The preliminary experimental results for re- moval to the ground state and first excited state of 30 Mg are compared to the theoretical calculations in Fig.. Due to the large

parison to large scale shell model calculations reveals that a dominant amount of intruder components is needed in the 34 Al wave function to account for the ob- served large

In terms of pre- dicted levels in this energy range, the obvious candidates are the lowest 5 − and 6 − states ( Table 1 ). 4 ) and that it is fed by these higher lying negative

The mechanism involved i n this stage may be related t o the combined effect of the excessive growth of complex aggregates of vacancy-Mg pairs formed during the first