• Aucun résultat trouvé

Young's modulus of lightweight concretes

N/A
N/A
Protected

Academic year: 2021

Partager "Young's modulus of lightweight concretes"

Copied!
35
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building Research), 1958-09-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=78f0c6e6-7cc9-4aae-8cd0-6ec83c2ac210 https://publications-cnrc.canada.ca/fra/voir/objet/?id=78f0c6e6-7cc9-4aae-8cd0-6ec83c2ac210

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20338241

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Young's modulus of lightweight concretes

(2)

NATIONAL RESEARCH COUNCIL O F CANADA D I V I S I O N OF B U I L D I N G RESEARCH

YOUNGtS MODULUS O F LIGHTWEIGHT CONCRETES

bs A .G. Davenport Report No. 141 of the Division of B u i l d i n g Research O t t a w a September 1958

(3)

PREFACE

The work d e s c r i b e d i n t h i s r e p o r t was undertaken by t h e a u t h o r a s an assignment t o be c a r r i e d out during t h e

term of a summer appointment. The problem which he so c l e a r l y s e t s out i n h i s opening paragraphs was one which had a r i s e n i n t h e course of e v a l u a t i n g light-weight c o n c r e t e s i n t h e M a t e r i a l s Laboratory of t h e Division. Completion of t h e r e p o r t i n i t s p r e s e n t form was c a r r i e d out subsequently when M r . Davenport r e t u r n e d t o t h e Division t o accept a f u l l - time appointment following p o s t -graduate study.

Non-destructive t e s t i n g techniques such a s t h o s e examined i n t h i s study a r e of g r e a t i n t e r e s t i n t e s t i n g and e v a l u a t i o n work s i n c e t h e y o f f e r t h e p o s s i b i l i t y of p e r i o d i c examination of a s i n g l e specimen throughout t h e course of a n environmental c y c l i n g program. The need t o p r e p a r e a l a r g e number of specimens t o be destroyed one by one a t each t e s t i n t e r v a l i s t h u s avoided, and much time and expense saved. The n o n - d e s t r u c t i v e method must, however, g i v e some u s e f u l c o r r e l a t i o n w i t h t h e p r o p e r t y o r performance f a c t o r being assessed. The information now provided w i l l a s s i s t g r e a t l y i n determining t h e r e l i a n c e which can be placed upon r e s u l t s obtained from t h e techniques i n v e s t i g a t e d when a p p l i e d t o l i g h t -weight c o n c r e t e s .

Ottawa,

September 1958.

N.B. Hutcheon,

(4)

YOUNG'S MODULUS OF LIGHTWEIGHT CONClU3TES

A.G. Davenport

I n r e c e n t years l i g h t and medium weiyht c o n c r e t e s have beoome more and more widely used i n b u i l d i n g , Their m e r i t

l i e s not only i n e f f e c t i v e heat i n s u l a t i o n p r o p e r t i e s , b u t a l s o i n euonomy of handling and high s t r e n g t h t o weight r a t i o .

I n general, t h e s e c o n c r e t e s owe t h e i r l i g h t weight t o a l a r g e number of a i r voids. These lhay be achieved by

introducing gas i n t o the m a t e r i a l e i t h e r by chemical a o t i o n o r by mechanioal means. I n a l l c a s e s t h e proportion of void apace i s high l e a d i n g d i r e c t l y t o the higher moisture absorbency found i n most of t h e s e m a t e r i a l s .

A s the importance of t h e s e l i g h t w e i g h t m a t e r i a l s

i n c r e a s e s s o doe8 t h e need t o t e s t and e v a l u a t e t h e i r s t a b i l i t y and d u r a b i l i t y e s p e c i a l l y under conditions s i m i l a r t o the r i g o u r s of t h e Canadian climate. The most injurious c h a r a c t e r i s t i c s . o f such a climate a r e l i k e l y t o be oyoles of f r e e z i n g and thawing and w e t t i n g and drying. !Che performance of o r d i n a r y concrete and l i g h t w e i g h t c o n c r e t e s must be based, t o a l a r g e e x t e n t , on l a b o r a t o r y t e s t s designed s p e c i f i c a l l y t o reproduce t h e e f f e c t s

of these c l i m a t i c cyoles. Their e f f e c t s on concrete a r e well known; t h e y cause not only oracking and dimensional changes b u t a l s o a d e t e r i o r a t i o n manifested by a change i n e l a s t i c p r o p e r t i e s . Henoe a measurement of the e l a s t i c p r o p e r t i e s i n d i c a t e s g e n e r a l l y

t h e amount o f damage t o the m a t e r i a l caused by repeated c y c l e s of f r e e z i n g and thawing.

It i s i n t h i s type o f t e s t t h a t the dynamic a s opposed t o s t a t i c measurements of the e l a s t i c moduli have come i n t o t h e i r own, There a r e two such methods commonly i n use. The f i r s t c o n s i s t s e s s e n t i a l l y of measuring the v e l o c i t y of an e l a s t i c wave passing through the m a t e r i a l (1). The Young's modulus of t h e m a t e r i a l i s t h e n given by t h e equation

where E

=

Young's modulus

? = the d e n s i t y o f the m a t e r i a l

V = the v e l o c i t y of the wave so found

u = P o i s s o n f s r a t i o

One i n s t r u m e n t with which the v e l o o i t y can be d i r e c t l y measured

(5)

The second method c o n s i s t s of measuring t h e r e s o n a n t frequency of a prism made of t h e m a t e r i a l , by means of an o s c i l l a t o r of v a r i a b l e frequency and a pickup. The Young's modulus when t h e mode of v i b r a t i o n i s l o n g i t u d i n a l i s g i v e n by (2)

E

=

DWn 2

where D i s a o o e f f i c i e n t depending on t h e shape, dimeneiona and mode of v i b r a t i o n of t h e prism

W i s the weight of t h e specimen and n i s t h e r e s o n a n t frequenoy.

A s i m i l a r e x p r e s s i o n e x i s t s f o r t h e t o r s i o n a l modulua.

With o r d i n a r y dense aggregate c o n c r e t e t h e s e methods of t e s t i n g have c e r t a i n advantages: the t e s t s a r e r a p i d and simple and do not i n t e r r u p t f o r long t h e c y c l e s of e i t h e r w e t t i n g and d r y i n g o r f r e e z i n g and thawing t o which t h e samples a r e being

subjected; and t h e a t r a i n a imposed on t h e sample a r e i n f i n i t e s i m a l and cause no damage t o the m a t e r i a l ' s s t r u c t u r e , a s might s t a t i c t e s t s . Conorete i t s e l f i s s u f f i c i e n t l y homogeneous and i s o t r o p i o

(provided t h e sample i s l a r g e enough) t h a t t h e t h e o r e t i c a l

e q u a t i o n s f o r the frequency of a c y l i n d e r o r beam o f homogeneous

i s o t r o p i a m a t e r i a l a p p l y adequately and t h e v a l u e s of the moduli so obtained a r e b o t h c o n s i s t e n t and convincing.

Recently t h e d u r a b i l i t y and s t a b i l i t y of l i g h t w e i g h t m a t e r i e l s have come under d i s c u s s i o n and t h e q u e s t i o n h a s been

asked

-

can dynamic t e s t i n g be used t o t h e same advantage i n t e s t i n g l i g h t w e i g h t m a t e r i a l a a s i t i s i n t e s t i n g o r d i n a r y dense aggregate c o n c r e t e ?

The purpose of t h e experiments d e s c r i b e d i n t h i s paper i s t o answer t h i s question.

One of the major d i f f e r e n c e s i n t h e p r o p e r t i e s of dense and l i g h t w e i g h t c o n c r e t e s i s t h e i r water absorbency; l i g h t w e i g h t c o n c r e t e s absorb up t o twenty times a s much p e r u n i t volume

a s dense aggregate conorete. Since both f r e e z i n g and thawing, w e t t i n g and drying t e s t s i n e v i t a b l y involve the presence of moisture i n l a r g e q u a n t i t i e s , t h e experiments d e s c r i b e d h e r e were almost e n t i r e l y concerned with the a c t i o n of t h i s absorbed water on t h e a p p a r e n t dynamic moduli of t h e m a t e r i a l . S t a t e d more e x p l i c i t l y , t h e q u e s t i o n s t h e s e experiments s e t o u t t o answer a r e :

(6)

1, How does absorbed water a f f e c t the apparent dynamic moduli of l i g h t w e i g h t concretes c a l c u l a t e d from t h e observations, assuming t h a t the m a t e r i a l remains i s o t r o p i c and homogeneous ?

2. I s dynamic t e s t i n g a s u i t a b l e method f o r determining the q u a l i t y of mot s t l i g h t w e i g h t c o n c r e t e s

EXPERIMENTAL PROCEDURE I n t r o d u c t i o n

I n order t o answer t h e s e q u e s t i o n s f o u r t y p i c a l and oommonly used l i g h t w e i g h t concrete m a t e r i a l s were selected. From each of t h e s e m a t e r i a l s e i t h e r e i g h t ( o r t e n ) a c c u r a t e 1 dimensioned t e s t specimens were made, four being 6-in. by 2.f-in. diameter c i r o u l a r c y l i n d e r s and four ( o r a i x ) being 16-in, by 4-in, by

3-in,

beams.

The amount of moisture i n lhe speoimens was c o n t r o l l e d and v a r i e d by vacuum s a t u r a t i o n o r a l t e r n a t i v e l y , by drying i n a room a t a c o n s t a n t 10 per c e n t humidity; thus any d e s i r e d degree of s a t u r a t i o n could be obtained.

The dynamic e l a s t i c moduli f o r eaah specimen and each moisture content were determined by the t m methods of dynamic

t e s t i n g already desaribed: t h e v e l o c i t y of a compression wave was measured; then the resonant frequencies of t h e prismal

specimens were measured i n the l o n g i t u d i n a l t r a n s v e r s e and

torsional modes of v i b r a t i o n , I n o a l c u l a t i n g t h e e l a s t i c moduli from t h e s e measurements it was assumed t h a t t h e equations r e l a t i n g t o homogeneous i s o t r o p i c media were applicable.

S t a t i c t e s t a over a s h o r t range of s t r e s s were a l s o conduoted on the

6-

by 2.8-in, diameter o y l i n d e r s i n order t o determine t h e s t a t i c Young' s modulus corresponding t o the

dynamio modulus f o r each moisture content; t h i s , t o some e x t e n t , provided a r e f e r e n c e t o which the dynamic modulus could be

r e l a t e d o Materials

Since t h r e e of the f o u r m a t e r i a l s used i n these experiments were p r o p r i e t a r y they a r e r e f e r r e d t o by the code l e t t e r s H, A, S and V. Each of these i s now described. Material H

-

This i s an expanded ahale aggregate of b o t h f i n e and coarse grades mixed t o g e t h e r w i t h p o r t l a n d cement i n t h e proportions by weight of per c e n t cement,

37

per c e n t f i n e and 22 p e r c e n t coarse aggregate. The water/cement r a t i o was

(7)

.&

y i e l d i n g a slump on a 12-in. cone o f

l/4

in. The specinlens were very c a r e f u l l y made i n tho l a b o r a t o r y and every p r e c a u t i o n was taken t o ensure uniform c o n s i s t e n c y w i t h i n and b o h o e n

specimens. The boams viero c a s t i n moulds and the c y l i n d e r s oored w i t h a diamond d r i l l from l a r g e r c y l i n d e r s and c u t a t the

ends w i t h a diamond saw. The d r y d e n s i t y of the m a t e r i a l was about 1 0 5 lb/cu f t. Specimens were cured f o r 28 days a t 100 p e r oent R o H . before t e s t i n g . Specimens used i n t h e t e s t were l a b e l l e d :

H-2B)

16

x

4

x

+in.

beams H- C )

6-

x

c y l i n d e r s 2.8-in. d i a . M a t e r i a l A

-

This i s a p r o p r i e t a r y c e l l u l a r c o n c r e t e c o n t a i n i n g

a considerable q u a n t i t y o f sand. The m a t e r i a l h a s a c m r a e f i n i s h and each p r e c a s t block ha8 t h e c h a r a c t e r i s t i c of being denser a t t h e bottom than t h e top. This f a c t o r was r e f l e c t e d i n t h e moduli; specimens made from the bottom p a r t of the block y i e l d e d a h i g h e r modulus. Specimens were c u t and cored from p r e c a s t blocks. The dry d e n s i t y of t h e m a t e r i a l was about 80 lb/cu f t .

Specimens used i n t h e experiments were l a b e l l e d :

A-1B ) A-1C )

A - 2 ~ )

16

x

4

x +in. A-2c) 6-in. x 2,8-In. d i a .

beams c y l i n d e r s

A-

*-$I

A- C )

M a t e r i a l S

-

This i s a p r o p r i e t a r y p r e c a s t c e l l u l a r c o n c r e t e which i s autoclaved d u r i n g manufacture w i t h much t h e same

appearance a s foam rubber. Tho d r y d o u s i t y of tho m a t e r i a l was about 34 lb/cu f t . A s w i t h m a t o r i a l A, t h e speclmons were c u t from commercially manufactured blocks. The specimens prepared f o r t h e experiment a were l a b o l l o d :

S-1B) S-1C )

S-2B)

16

x

4

x 3-in. S - 2 ~ ) 6-in. x 2.8-ine d i a .

boams c y l i n d o r s

SL. C )

h f i t e r i a l

--

V

-

This c o n s i s t s of a s t r o n g c o n c r e t o mix c o n t a i n i n g expanded vermiculite as t h e ag,cysgato. Tho sp3cirm1an=l t-;oro m d o i n the l a b o r a t o r y under c a r e f u l c o n t r o l . Tho voluzotric! propor- t i o n - of tha mix wore 1 p a r t c o m n t t o

4

p n r t g oxpanr2ocl v o r m f c u l i t e

(8)

t o n e a r l y 2 p a r t s (1.83) water. The mix i s very sloppy and h a s the appearance and consistency of watery oatmeal porridge.

When the m a t e r i a l d r i e s pores a r e l e f t i n the spaces previously occupied by the excess water. The d r y d e n s i t y of the m a t e r i a l was about

35

lb/cu f t , Specimens were cured 28 days b e f o r e

t e s t i n g , and those used i n the experiments were l a b e l l e d :

V - 1 ~ ) v-2c )

V-2B) V-3C) b i n .

x

2.8-in. dia.

16

x

4

x

+in. V-5C ) c y l i n d e r a

V- bearna V - ~ C

A much weaker mix of v e r m i c u l i t e was a l s o made w i t h 1

p a r t cement t o 8 p a r t s v e r m i c u l i t e

.

Preliminary t e s t a t o o b t a i n t h e dynamic modulus were unsuccessful, however, and t e a t s were discontinued.

Method of S a t u r a t i o n

Specimens were t e s t e d over a s wide a range of moisture c o n t e n t s a s p o s s i b l e . To begin w i t h t h e specimens were d r i e d i n an atmosphere of 10 p e r c e n t R.H. and when t h e i r weights had s t a b i l i z e d they were considered dry; t h i s r e p r e s e n t e d t h e nominal d r y weight, and t h e amount of m a l ~ t u r e introduced t o

t h e specimen was c a l c u l a t e d from it.

To achieve maximum s a t u r a t i o n specimens were placed i n water under vacuum. The apparatus c o n s i s t e d of a 18-in. by 6-in. d i a . c y l i n d r i c a l p l e x i g l a s s c o n t a i n e r connected t o an a s p i r a t o r oapable of maintaining a vacuum of 2 4 in. of mercury. One end of the c y l i n d e r was cemented i n p o s i t i o n and t h e o t h e r end was removable t o allow p l a c i n g of the specimens. Each specimen was placed i n s i d e the c y l i n d e r and covered w i t h water; the end was then replaced and t h e a i r pumped out by t h e a s p i r a t o r . Specimens were under vacuum f o r about 30 minutes, and t h e n l e f t t o soak under atmospheric pressure. Several c y c l e s of t h i s evacuation procedure soinetimes induced the specimens t o absorb g r e a t e r q u a n t i t i e s of water.

After t e s t i n g i n a s a t u r a t e d oondition, the specimens were d r i e d i n s t e p s under room conditions; a t each s t e p they were placed i n sealed polyethylene bags f o r two days ( t o permit t h e moisture t o d i s t r i b u t e i t s e l f evenly) and t e s t e d .

The d i f f e r e n t s a t u r a t e d d e n s i t i e s of the c y l i n d e s s and beams ( ~ a b l e s 111

-

V I ) suggested t h a t t h e r e was probably a moisture g r a d i e n t through t h e specimens which p e r s i s t e d , even

(9)

a f t e r a l l o w i n g two days f o r the m o i s t u r e regime t o s t a b i l i z e . T h i s uneven d i s t r i b u t i o n of m o i s t u r e could a f f e c t t h e inornont of i n e r t i a of the a p o c i m s n , an i m p o r t a n t q u a n t i t y i n t h o c a l c u l a t i o n o .

Dynamic T e s t A p p a r a t u ~

-~

-

---

and Mothod Soniscopo

This a p p a r a t u s e n a b l e s t h e d i r e c t mea suremont of the

r a t e of p r o p a g a t i o n of a n e l a s t i c In?avo (1)

.

A11 e x c i t o r ,

c o n s i s t i n g of a b a t t s r y of p l e z o - o l o c t r i c elements, I s p e r i o d i - c a l l y e x c i t e d by e l e c t r i c impulses. The r e s u l t i n g p u l s o i s t r a n s m i t t e d t o t h e speuimon through a housing f i l l ~ d w i t h o i l and f i t t o d w i t h a r u b b e r diaphragia; t h i s i s p r e s s e d againfit

the f a c e of the sample under t e s t . Tho time lapse between t h e d e p a r t u r e of a n impulgo and i t s a r r i v a l a t a pick-u? f i t t o d a t t h e o t h e r end, i s measwed by o b s e r v i n g the pick-up s i g n a l superiniposod on a time marker on t h e s c r e e n of a c a t h o d e r a y o s o i l l o g r a p h .

A t y p i c a l response s i g n a l on t h o o s c l l l o g r a p h . i s sketched

i n

Fig. 8. The g e n e r a l c h a r a c t e r i s t i c s c o n s i s t of a sharp i n i t i a l paak

-

n o t necessarily of l a r g e amplitude

-

follotved by a n e l t s r of wave p a t t e r n s o f v a r i n and seoniingly chaotic amplitudes; the= represent shear and t o r s

9

ona

$1

waves, surface waves, r e f l e o t e d waves and p o s s i b l y echo waves superimposed on one

a n o t h e r . According t o t h e t h e o r y , however, o n l y t h e v e l o c i t y o f t h e wave f r o n t , i.e., of t h o d i r e o t l o n g i t u d i n a l wave, which

i s r e p r e s e n t e d by t h e f i r s t i n i t i a l peak, i s of i n t e r e s t . The measurements a r e t a k e n i n tmo p a r t s . F i r s t t h e d e l a y due t o r e t a r d a t i o n of t h e e r n i t t o r and pick-up must be measurod, Thls i s done by p l a c i n g t h e r u b b e r diaphragao of t h e e m i t t o r and pick-up f a c e - t o - f a c e and measuring t h e timo

d e l a y of t h e s i g n a l p a s s i n g from one t o t h e o t h o r . The specimen

i s next p l a c e d betrreen t h e two trrjnnduuors and t h o t o t a l timo f o r t h e wave t o t r a v e l t h r o u ~ h t h e spocimon and t h o t r a n s d u c e r s

i s measurod. Tho time t h e wave f r o n t t a k e s t o t r a v e l t h r o u g h t h e specimon i t s e l f i s t h o n t h o d i f f e r o ~ ~ c s b e t n o e n the t c o measurements.

To o n s u r e t h a t t h e p a t h l e n g t h t h r o u g h t h e t r a n s d u c e r s was t h e same, vrith and w i t h o u t t h o apecimona, a j i g nas dovised

t o d e p r e s s t h a d l a p h p a ~ n s e q u a l l y onch ti123. This c o n s i s t o d of

a s l i d i n g c a s e f o r t h e pick-up, h o l d i n p l a c e by a l o n g scron.

(10)

from t h e e m l t t o r l For each monsuremont tho s c r e n was t u r n a d a f i x e d nunbor of times from t h o p o s i t i o n where t h e diaphragms were j u s t i n c o n t a c t . C a l i b r a king i s done w i t h tho diaphragms depressed t h e same nur~lber of s c r e n t u r n s . The screw was t u r n e d enough i n i t l a l l y t o pi-oduco a s t r o n g s i g n a l on t h r j s c r e e n and

i t w a s t h e n kept c o n s t a n t .

C a l i b r a t i o n of tho t i n e marker n n a dons by comparing t h e r e a d i n g i n seconds on t h e d i a l 175th a c a l i b r a t i o n s i g n a l on the screen.

Resonant Frequency

This a g p a r a t u s e n a b l e s t h e r e s o n a n t f r e q u e n c i e s of t h e t h r o e p r i n c i p a l modes of v i b r a t i o n of a prism t o be measured,

namely, t h e l o n g i t u d i n a l , t r a n s v e r s e and t o r a i o n a l o Tho a p p a r a t u s c o n s i s t s of a v a r i a b l e o s c i l l a t o r r a n g i n g from 1 0 t o 10,000 c p s f i t t o d t o a r e o o r d i n g head f o r a phonograph. A t the r e c e i v i n g end t h e a p p a r a t u s c o n s i s t s of a c r y s t a l type pick-up connected t o t h e "Y" p l n t e s on a cathode r a 7 o s c i l l o g r e p h . An a l t e r n a t i n g

p o t e n t i a l i s a p p l i e d t o t h e " X 1 p l a t e s of t h e o s c i l l o g r a p h g i v i n g a h o r i z o n t a l band on t h e s c r e e n , t h e amplitude of whioh i s

p r o p o r t i o n a l t o t h e amplitude of t h e s i g n a l from tho piok-up.

A t a r e s o n a n t frequency of tho spooimen t h e amplitude of tho band on t h e sureen i n c r e a s o s enormously. I n tho c a s e of t h e specimona t e s t e d , t h e pealcs of t h e fundalnontal r e s o n a n t f r e q u e n c i e s were c l e a r l y d e f i n e d i n a l l modos w i t h one excoption. The f r e q u e n c i e s f o r t o r s i o n a l and t r a n s v e r s e modos f o r t h e c a s e of t h e

6-

by 2.8-in d i a

.

c y l i n d e r s prac t i c n l l y c o i n c i d e d o r v e r e c l o s e , depending on tho r e l e v a n t value of dynamic Poissont s r a t i o , This l e d t o a c o n f u s i n g number of "pseudo-peaks" i n t h e nsighbourhood of t h e s e f r e q u a n c i e s . I n o t h o r c a s e s , however, the r e s o n a n t frequencies

oould be e s t i m a t e d t o t h e o r d e r of about 1 p e r c e n t o r more. The p o s i t i o n s used f o r applying t h e e x c i t o r t o o b t a i n t h e d i f f e r e n t modes of e x c i t a t i o n a r e i l l u s t r a t e d

i n

Fig.

9.

I n t h e s e

experiments t h e weights of t h e e x c i t o r and pick-up heads were s u f f i c i e n t t o m a i n t a i n an i n t i m a t e c o n t a c t throughout v i b r a t i o n .

A l t e r n a t i v e equipment t o the o a c i l l o g r a p h f o r d e t e c t i n g t h e pick-up s i g n a l s i s a s e n s i t i v e galvanometer. Reading t h i s

instrument, however, t o n d s t o be much l e s s i n t e r e s t i n g than viewing t h e p a t t e r n s on t h o s c r e e n a s t h e p a t t e r n i t s o l f o f t e n h e l p s t h e o b s e r v e r t o decide whether h i s o b s e r v a t i o n i s r e l e v a n t t o t h e experiment o r whether i t i s , a s was experienced, t h e v i b r a t i o n of a water tap.

(11)

S t a t i c Teot Method C__

Tho spocimons dosigned f o r theso t e s t s mere tho

6-

by 2e8-inr d i a . c y l i n d o r s , Their onds noro c u t a s squarb and plane a3 p o s s i b l e w i t h a diamond nai-1 and, although f a r from i d o a l ,

thoy gave r e a s o n a b l y c o n s i z t o n t r o s u l t s , A s the a d d i t i o n a l refinomont of capping tho spocimons might e a s i l y have a f f o c t e d

t h e dynamic t o s t s i t was n o t dono.

A Baldr~in-Southvrark h y d r a u l i c t e s t i n g machino was used f o r l o a d i n g tho c y l i n d o r s i n co~npression. A s t a n d a r d j i g f o r t e s t i n g 12- by 6-in. d i a . c y l i n d o r s over a n 8-inb gaugo l e n g t h was adapted f o r t o s t i n g t h e

6-

by 2,8-in. d i a , c y l i n d o r s ovor

t h e i r e n t i r o l e n s t h e Tho j l g had a mochanisrn t h a t componsatod f o r e o c e n t r i c s t r a i n i n g and oncrbled a n avorago s t r a i n rnonsurcjmont

over tho e n t i r o circumforonco t o bo rocordod on ono oxtonaomn3tor.

The extensomstor used w a s t h e differential transformor typo which mads i t p o s s i b l e t o r e c o r d a t r o ~ s / a t r a i n curves f o r t h o spocimons on t h e autographic r e c o r d o r of t h o t e s t i n g machino.

Various f a c t o r e provented tho e x a c t r e s u l t s r e q u i r e d from being obtalnod from the s t a t i c t e s t s . The l i m i t a t i o n s o f

the t e s t i n g machinos preventod high m a g n i f i c a t i o n s of nmll

s t r a i n a from boing talren on the drum r e c o r d e r and, h a d , t h e s o been p o s s i b l e , t h o bedding-do:-~n e f f e c t of t h o p l a t e n s of t h e machino on

the c y l i n d e r ends would n o t have j u s t i f i e d t h o i r use. The e f f e c t and e x t e n t of the bodding-dorm can be seen from t21e i n c r e a s e

i n

g r a d i e n t w i t h i n c r e a s o i n s t r e s s on t h e s t r e s s / s t r a i n curves near t h e o r i g i n (Figs. 7, 8,

9 ) .

This c h a r a c t e r i s t i c was u n d e s i r a b l e . I n s t e a d of o b t a i n i n g t h e modulus a t t h e o r i g i n i t was necessary t o be c o n t e n t with the modulus of a f i n i t o p o r t i o n of the curve anay from the o r i g i n which was p r a c t i c a l l y s t r a i g h t , Thosa moduli d i d , hovevar, give reasonably c o n s i s t e n t end conv9.noi.ng r e s u l t s a s can be sson from t h e curves ( F i g s , 7a, b, c ) .

A c e r t a i n amount of the beddin tn e f f e c t was e l i m i n a t e d by l o a d i n g t h e specimen s e v e r a l times

PodoVr

u s u a l l y t h r e e ) u n t i l two i d e n t i c a l p l o t s wero obtained. But f o r t h e 1017 ~ t r e o s e a usod even

t h e f r i c t i o n of t h e b a l l s e a t i n g on tho p l a t o n a f f o c t o d r o s u l t s

i f i t was not c a r e f u l l y a d j u s t e d t o meet t h e c y l i n d e r squarely.

C a l c u l a t i o n s

( a ) Pulse VolociQ

Using t h e exprbaosion a l r o a d y givon i n oquetion (1) f o r

t h e group velclci t y of a n e3.a s t i c viave through n oorai-inf i n i t o , i s o t r o p i c homogeneous niedi~un i s

E

--

-

3

-

( l t - 0.- --.-.-.-- (1.

'-.

.?a

(12)

For 16-in. beams

where : t = pulse time i n set

W

?

= Q 0002205 ~ b / c u in . 1 6 x 4 ~ 3 '

336T

V::'here : Wg = w t i n grams

=

(.002205 l b ) Hence E

-

-

.002205 x

1.6~

x

1012 dyn 16 x h x j x 3 6 6 . 4

x R x $

Where: R = (1 + a ) ( 1 1_1

-

20) (1

-

a1 F o r

6-

b G 8 - i n . d i e . o y l i n d e r s

v

=

lab in/aec t E = $ x R Values of R a r e t a b u l a t e d f o r

The v a l u e s f o r a used i n t h e c a l a u l e t i o n s of Edm a r e approximately those found by t h e r e s o n a n t frequency technique, f o r t h e r e s p e o t i v e moisture c o n t e n t s . The r e l a t i o n s h i p used f o r c a l c u l a t i n g a is

E

a = r G m l

(13)

TABLE I

( b ) Resonant Freguencx

For the o a l o u l a t i o n of Edyn from the resonant froquoncy of prisms the values of the oonstanta dorived by P i c k e t t ( 2 ) a f t o r

Goons and Timoshonlro. Throe a r e used,

( a ) Longi-tudinal Modo

-

E 2

dsn

=

Whore: E

d3-n

=

dynamlc Younats modulus i n p a l

W a W t of specimen i n grams

Q

n = fundamonto1 rosonant frsquonay

L

L

D ;..01318 - - a

dZ

f o r o y l i n d ~ r a

=

.OlO35

w

f o r priom

( 6 )

L, b, t e r e length, breadth a n d dcpth of prism. d i s diameter of oylindor

(14)

For

6-

by 2,8-in,

-

d i a c y l i ~ t c l ~ r ~

-

( d ) Transvorso Modo

For 16 by 3 by

k-in.

priona

~3

Edsn

=

.00245 x

7

b t

x

T

x

.002205

x

w g d

p s i

K

Where: T dependo on a end

1

For 3 d n . plano

=

.2

a05

x

10-4

x

T

x

wg.n2 psi K

3

-

L 3.464

x

16

*0542

Where : K r a d i u s of i n e r t i a . For

4.-1n.

plano

(15)

From P i c k e t t @ a ( 2 ) curves o f T a g a i n s t

$

the f o l l o w i n g

a r e obtained:

( e ) Toreionel Mode

For

16

by

3

by

4-in.

beams

a/b

+

b/a Where:

R

=

-

a

6

2.52

($12

+ e21 ( 8 ) P 1.282 g

=

g r a v i t a t i o n a l a c c e l e r a t i o n For

6-

by 2.8-in. d i a . a y l i n d e r a In the a a l o u l a t i o n s h e e t s P o i s s o n ~ a r a t i o i s c a l o u l a t e d from the mean value o f E

dyn from the three modea o f v i b r a t i o n and

E

GdYn by the f o l l o w i n g r e l a t i o n s h i p : e

=

-

1

(16)

Sample T e s t

To e x p l a i n more f u l l y t h e t e s t w o c e d u r e adopted and t h e d e r i v a t i o n of t h e moduli, t h e s e r i e s of experiments conducted

on one specimen i s d i s c u s s e d , The specimen s e l e c t e d f o r d i s c u s s i o n Is S

-

1 C which i s a 2 by 2.8-in. d i a , c y l i n d e r s made of m a t e r i a l S. Some of the t e s t r e s u l t s f o r t h i s specimen a r e given i n Table I1

.

This specimen was l e f t i n a room a t 1 0 per c e n t r e l a t i v e humidity l o n g enough t h a t t h e r e was no f u r t h e r d r y i n g e v i d e n t

from d a i l y weighings. I t s d r y weight was

3 l 4

grams. When t e s t e d dynamically i n l o n g i t u d i n a 1, t r a n s v e r s e and t o r s i o n a l modes i n the manner i n d i u a t e d

i n

Fig.

9

t h e f i r s t n a t u r a l f r e q u e n c i e s were found

t o be 5280, 3080 and 3300 ups r e s p e a t i v e l y . S u b s t i t u t i n g Wg

=

3l.4

and n

=

5280 i n t o e q u a t i o n ( 8 ) g i v e s

=

.222 x

10-4

x

3 4

x 5 2 8 0 ~ ,

= .l94

x

lo6

p s i f o r t h e l o n g i t u d i n a l mode. S u b s t i t u t i n g W g =

3 4

and n

=

3300 o p s i n t o e q u a t i o n

(4)

g i v e s Gdyn

=

.223 x

lon4

x

3 4

x 33002

Henoe Poiaaonta r a t i o i s given by e q u a t i o n

(4)

For t h e o y l i n d e r 1

.117

and hence T

=

2.02. Hence, i n

1

t h e t r a n s v e r s e mode the dynamic Young18 modulua I s o b t a i n e d by

s u b s t i t u t i n g W

=

9.4,

n

=

3080 and T

=

2.02 i n t o e q u a t i o n ( 1 2 ) l3

1:

6

The two v a l u e s o f the mod l u s

,

.I93

x

lo6

and

.l94

x 1 0 are

(17)

The time taken by the f a s t e s t wave t o t r a v e l through the specimen w a s found by means of the nsoniscopew t o be 84.8 micro- aeconda. Using the value of Poissonts r a t i o determined by the resonant frequenu technique, the value of R

=

.818, Substituting

w€J

= 314,

t

=

84.

i!

i n t o equation

( 3 )

gives

6

a208 x 10 psi.

Thia value i s reaorded i n Table 111.

The s t a t i o t e s t yielded the curve shown i n Fig. 7b. whioh i s taken d i r e c t l y from the s t r a i n recorder. The modulus aaloulated over the s t r a i g h t p o r t 1 n of the aurve between a load of 150 l b

8

and 500 l b i s

.233

x 10 psi.

This ooncludes a l l t e s t a f o r t h i s specimen a t t h i s moisture oontent. The speaimen was then s a t u r a t e d , allowed t o stand f o r

a

f e w days i n a sealed bag aontaining exaess water and again t e s t e d

i n an i d e n t i a a l manner. The speoimen was then dried i n the a i r , allowed t o atand f o r t e n days i n a sealed oontainer t o allow moisture d l a t r i b u t i o n , and again tested. This procedure waa

oontinued u n t i l the specimen was dry again and the modulus i n the dry s t a t e waa measured and recorded a s a check on the value i n i t i a l l y determined.

This was repeated for a l l the specimens of eaoh material and the r e s u l t s were p l o t t e d for eaoh speaimen and the average

(Figs. 1,

3

and

5 )

.

It i s t o be noted t h a t i n a l l oaluulat ion8 the t o t a l weight of the sample including water was used i n the o a l a u l a t i o n of the moduli. Figures 2 and

4

show the changes i n Poiasonfa r a t i o f o r materials A and S respeatively. Figure

6

ahows both the ohanges i n the wave v e l o a i t y aa the moisture content

inareasea, and the velooity of sound i n water*

Tablee I11 t o

VI

reoord the numerical r e a u l t a obtained i n the experiments f o r the dry and s a t u r a t e d conditions; a l l i n t e r - mediary degrees of s a t u r a t i o n a r e omitted but may be abstraoted

froin t b p o i n t s given on the^ graphe.

ANALYSIS

AND

DISCUSSION OF FESULTS Introduo t i o n

I n t h i s eeution the r e s u l t s of these experiments (shown . o a l l y i n ~ i g s . 1 t o

6 )

a r e discussed. AII examination of the

8 ahows t h a t the q u a l i t a t i v e correspondenae between t h e curves

for-eaah apeoimen of each m a t e r i e l l a good; there a r e , however, unexpea ted divergences be tween the moduli de terminsd by the three d i f f e r e n t methods. It i s the purpose now to explain these i n a manner more speaula t i v e than comprehensive.

(18)

D i f f e r e n c e s Betwoen t h e S t a t i c and Dynamic filoduli

The fundamental differences betweon what a r e termed t h e s t a t i c and dynamic moduli l i e i n the amount and r a t e of s t r a i n i n g t h e t t a k e s place. I n t h e dynamic t e s t s t h a t a r e d e s c r i b e d h e r e , the a t r a l n a involved aye almost i n f i n i t e s i m a l and tho r a t e s of a t r a i n i n g a r e i n s t a n t a n e o u s o r a d i a b a t i c , I n t h e s t a t l c t e s t s ,

however, t h e s t r a i n s n e o e s s a r y f o r deterlnScing th3 modul~is a r e i n e v i t a b l y much l a r g e r and t h e r a t e of s t r a i n i n g much slower ( o r i s o t h e r m a l )

-

slow enough t o permit p l a s t i c deformations t o

occur. I f , however, t h i s r a t e of l o a d i n g i n t h e " s t a t i c " t e s t i s i n c r e a s e d and the s t r a i n s decreased t h e modulus t h u s determined should approach i n c r e a s i n g l y c l o s e r t o t h e d namic modulus. For o r d i n a r y dense aggregate c o n c r e t e P h i l l e o

( 3

9

s t a t o d t h i s t o be t h e case: t h e r a t i o of dynamic ( r e s o n a n t ) modulus t o s t a t i c modulus decreased from

1.3

f o r a very slovr l o a d i n g r a t e t o 1.07 f o r t h e f a s t e s t r a t e o b t a i n a b l e . He a l s o found t h a t t h e s e r a t i o s were l e s s f o r a l i g h t e r c o n c r e t e u s i n g a s h a l e aggregate.

These d i f f e r e n o e s probably a r e a l l dependent t o some degree on a oombination of t h e thermal and p l a s t i c p r o p e r t i e s of t h e m a t e r i a l . I n t h e p r e s e n t s e r i e s of experiments t h e d i f f e r e n o e s between tho moduli f o r the v a r i o u s m a t e r i a l s i n t h e d r y s t a t e a l s o a r e n o t very g r e a t ( F i g s . 1,

3,

5 )

and those t h a t do e x i s t a r e probably completely accountad f o r by t h e s e f a c t o r s . They do n o t , however, account f o r t h e l a r g e d i f f e r e n c e s between t h e moduli which a r i s e when t h e moisture i s introduued i n t o t h e specimen.

D i f f e r e n c e s Between t h e Dynamic Moduli

I t i s d i f f i c u l t t o account f o r t h e s e d i f f e r e n o e s . F r o m

Figs. 1,

3

and

5

i t i s e v i d e n t t h a t when moisture i s i n t r o d u c e d i n t o t h e s e specimens the dyanmic "pulsotl modulus d e p a r t s from t h e

"resonant" modulus i n some c a s e s ( m a t e r i e l S f o r example) d r a s t i c a l l y , and t h a t t h e s i m i l a r i t y between t h e moduli which e x i s t e d i n t h e

d r y s t a t e , c e a s e s o The answer t o t h i s must hinge l a r g e l y on the

d i f f e r e n t mechanisms used i n t h e t e s t i n g . On the one hand, t h e modulus determined by measuring the n a t u r a l frequency of a

prism depends on an average moduhis and average weight of a c r o s s - s e c t i o n . I f the m a t e r i a l i s n o t homogeneous tho modulus d e r i v e d from t h e n a t u r a l frequency w i l l s t i l l be an i n d i c a t i o n of t h i s

average modulus f o r t h e con jugato m a t e r i a l . Any d i s c r e p a n o i e s which occur i n t h i s average modulus w i l l be due p r i n c i p a l l y t o two causes: l a r g e changes i n t h e damping c h a r a c t e r i s t i o s of t h e

m a t e r i a l ; and l a r g e changes i n P o i s s o n ' s r a t i o . I t i s c l e a r from t h e equatiions f o r r e s o n a n t frequency

( 5 ,

9 and

13),

however, t h a t t h e l a t t e r cause w i l l only a f f e c t t h e frequency i n t h e t r a n s v e r s e mode. An i n c r e a s e i n e i t h e r t h e damping o r P o i s s o n t s r a t i o w i l l

(19)

and the e l a s t i c modulus. Both t h e s e e f f e c t s w i l l be s l i g h t ( u n l e s s , i n t h e one c a s e , t h e damping i s l a r g e ) . No amplitude measurements were made i n the p r e s e n t experiments and i t i s n o t p o s s i b l e t o s t a t e e i t h e r the magnitude of the damping c o e f f i o i e n t o r t h e changes which may have occurred. I t was n e c e s s a r y there- f o r e , t o assume i n t h e frequency e q u a t i o n s t h a t the damping waa always n e g l i g i b l e .

Except f o r m a t e r i a l A ( F i g , 1) t h e r e s o n a n t moduli f o r the m a t e r i a l s t e s t e d appear t o be f a i r l y c o n s t a n t and i n

comparatively c l o s e agreement with t h e s t a t i c moduli (Figs.

3

and

5 ) .

A p o s s i b l e conclusion i s t h a t t h e r e s o n a n t frequenoy technique g i v e s a s a t i s f a c t o r y i n d i o a t i o n of t h e e l a s t i c

c o n d i t i o n of t h e l a s t two m a t e r i a l s S and V. For m a t e r i a l A

t h e r a p i d i n c r e a s e i n r e s o n a n t modulus w i t h moisture c o n t e n t aompared w i t h the s t a t i c modulus which remains r e l a t i v e l y

conatant (Fig. 1) i s something of a enigma: when the e f f e c t of moisture on t h e p u l s e v e l o c i t y modulus i s considered f u r t h e r t h e behaviour of t h i s m a t e r i a l appears t o be d i s s i m i l a r t o t h a t of e i t h e r m a t e r i a l S o r V. The e x p l a n a t i o n may l i e i n t h e f a o t t h a t m a t e r i a l A i s d i s t i n c t l y g r a n u l a r whereas m a t e r i a l s S and V a r e more s o l i d ma t e r l a l s .

I n c o n t r a d i s t i n c t i o n t o t h e modulus determined by t h e r e s o n a n t frequency technique, t h e "pulse v e l o c i t y " modulus i s

n o t n e c e s s a r i l y a n "average" modulua of t h e m a t e r i a l . The wave whose v e l o c i t y i s measured i s t h e one which t a k e s t h e l e a s t time t o t r a v e r s e the intermediary m a t e r i a l betwoen the e x c i t o c and piok-up. I t i s impossible t o measure a n "average" wave v e l o c i t y

o r t o d l s t i n g u i s h such a wave from the w e l t e r of extraneous echo waves, s h e a r waves, e t c . which f o l l o w i n the wake of t h e f a a t e s t wave.

I n a m a t e r i a l which i s n o t homogeneous, a s i s t h e caae h e r e , i t i s u n l i k e l y t h a t the p a t h taken by t h i s f a s t e s t wave I s a s t r a i g h t l i n e . I n e v i t a b l y i t w i l l t r a v e l mainly through t h e m a t e r i a l through which i t s v e l o c i t y i s f a s t e s t . Thus t h e p u l s e modulus may t e n d t o be n o t i c e a b l y g r e a t e r ; t h i s was found i n a l l c a s e s ( F i g s , 1,

3,

5 ) .

If t h e r e a r e v o i d s i n t h e m a t e r i a l t h e wave must circumvent t h e s e . F'urthermore t h e p a t h taken by t h i s wave w i l l change e v e r y time t h e c o n s t i t u t i o n of the m a t e r i a l changes. Thus t h e f i r s t e f f e c t 0.f the i n t r o d u c t i o n of moiature i n t o the specimen i s t o change t h e p a t h along which the f a s t e s t wave t r a v e l s . The a d d i t i o n of moisture can only s h o r t e n t h i s

p a t h of l e a s t time. This does not mean, however, t h a t tho time taken by t h e f a s t e s t wave t o t r a v e r s e t h i s p a t h i s s h o r t e r ,

because t h e a d d i t i o n a l mass introduoed, o r some of it, a l s o must be a c c e l e r a t e d i n the van of the propagated wave.

(20)

Here, a f u r t h e r quostion a r i s e s . Does t h e a d d i t i o n a l moisture a c c e l e r a t e a s i f i t mere an i n t o g r a l p a r t of t h e

m a t e r i a l ? Probably not s i n c e t h e " e f f e c t i v e i n o s t i a l masstt t o be a c c e l e r a t e d by the wave T s probably l e s s than t h o t o t a l mass of m a t e r i a l and moisture combined* I n a sense tho moisture may "slopt1 around i n t h e void spaceas Also, tho a d d i t i o n of moisture both i n a c t i n g a s a l u b r i c a n t botveen g r a i n s o f the m a t o r i a l and i n t h e a c t i o n of f l u i d p r e s s u r e i n p o r e s and voids may e f f e c t i v e l y i n c r e a s e t h e value of P o i s s o n t s r a t i o of t h e m a t e r i a l a s a whole. This incretise was found during t h e s e experiments a s i n d i c a t e d i n F i g s * 2 and

4,

I f the Young' a modulus and densf t y remain t h e same an i n c r e a s e i n P o i s s o n l s r a t i o would i n c r e s s e t h e v e l o c i t y of t h e wave a s can be seen from e q u a t i o n (1).

Thus, i t may be argued t h a t ,the a d d i t i o n of moisture may have the following e f f e c t s on t h e pulse v e l o c i t y and the modulus

derived from it:

( i ) reduce the p a t h l e n g t h and thua tend t o i n c r e a s e t h e apparent v e l o c i t y of t h e wave and consequently t h e modulua;

( i i ) i n c r e a s e t h e " e f f e o t i v e i n e r t i a l mass" but n o t . b y t h e f u l l amount of the moisture added s i n c e a l l the moisture may not move i n t e g r a l l y w i t h the m a t e r i a l . This mean8 i t may not be necessary f o r a l l the moisture t o be

a c c e l e r a t e d t o permit passage of t h e wave. This would tend t o reduce t h e v e l o c i t y of t h e wave and i n c r e a s e t h e modulus i f the t o t a l mass of m a t e r i a l and moisture were used i n T t s c a m t i o n i n s t e a d of the " e f f e c t i v e

i n e r t i a l mass1' which would be l e s s ;

(iii) i n c r e a s e t h e value of P o i s s o n t s r a t i o ; t h i s tends t o i n c r e a s e the v e l o c i t y .

Figure

6

shows the p u l s e v e l o c i t y changes brought about by the i n t r o d u c t i o n of moisture i n t o t h e m a t e r i a l * M a t e r i a l A

specimens behave d i f f e r e n t l y t o those of m a t e r i a l s V and 9. This

i s a f u r t h e r i n d i c a t i o n t h a t m a t e r i a l A r e a c t s i n a d i f f e r e n t

q u a l i t a t i v e manner t o e i t h e r of t h e o t h e r two m a t e r i a l s * The f a c t t h s t t h e derived moduli f o r both dynamic methods a r e e s s e n t i a l l y s i m i l a r f o r low moisture c o n t e n t s . ( ~ i g , I ) may i n d i c a t e t h a t the a d d i t i o n of moisture a f f e c t s the mechanism of both measuring

techniques i n a s i m i l a r way. Perhaps t h e I n i t i a l l y absorbed water f i l l s spaces be tween g r a i n boundaries and provides impac t - f r e e and p u r e l y e l a s t i c transmission of a wave v~hlch i s n o t o b t a i n e d i n s t a t i c t e s t s . A t any r a t e t h e m a t t e r i s a n i n t e r e s t i n g s u b j e c t f o r specula t i o n .

(21)

M a t e r i a l s S and V on t h e o t h e r hand i n d i c a t e a g r a d u a l d e c r e a s e i n p u l s e v e l o c i t y w i t h i n c r e a s e i n m o i s t w e c o n t e n t ; t h e modulus shovrs a r a p i d i n c r e a s e , These c h a r a c t e r i s t i c s may w e l l be m a n i f e s t a t i o n s of tho t h r e e e f f e c t s ( i ) ( i i ) ( i i i ) ,

e s p e c i a l l y ( i i ) , I t i s n o t i c e d t h a t t h e v e l o c i t y of sound i n w a t e r i s v e r y c l o s e t o t h a t of t h e m a t e r i a l s i n t h o i r dry s t a t e :

t h i s may have c o n s i d e r a b l e i n f l u e n c e on t h e performance, I t does however i n d i c a t e once moro t h a t the p u l s e v e l o c i t y may n o t be a s u i t a b l e method of t e s t i n g t h i s m a t e r i a l i f moisture i s

p r e s e n t . I n t h e dry s t a t e , however, t h e modulus it y i e l d s , a l t h o u g h s l i g h t l y h i g h e r t h a n e i t h e r t h e s t a t i c o r r e s o n a n t modulus, i s commensurate w i t h both.

CONCLUSIONS

(1) For m a t e r i a l s S and V t h e r e s o n a n t f r e q u e n c y and s t a t i a moduli a r e v e r y c l o s e and v i r t u a l l y c o n s t a n t a t a l l m o i s t u r e

c o n t e n t s . For t h i s r e a s o n t h e r e s o n a n t frequency technique would appear t o be very s u i t a b l e f o r determining t h e appapent e l a s t i c modulus o r c o n d i t i o n of e i t h e r of t h e s e m a t e r i a l s .

(2 For m a t e r i a l A, a l t h o u g h t h e moduli f o r t h e m a t e r i a l i n t h e d r y s t a t e a r e v e r y c l o s e ( t h e p u l s e v e l o c i t y b e i n g g r e a t e r t h a n e i t h e r t h e r e s o n a n t o r t h e s t a t i o modulus and t h e r e s o n a n t b e i n g g r e a t e r t h a n t h e s t a t i c ) t h e a d d i t i o n of m o i s t u r e produoes a wide divergence between the dynamic and s t a t i c moduli. Dynamic t e s t i n g , t h e r e f o r e , may n o t be a s u i t a b l e method f o r t e s t i n g t h i s m a t e r i a l , even though t h e p u l s e v e l o c i t y a p p e a r s t o be s u b s t a n t i a l l y c o n s t a n t once t h e specimen becomes damp.

( 3 )

The behaviour of m a t e r i a l H i s s i m i l a r t o t h a t of o r d i n a r y dense a g g r e g a t e conorete. A s l i g h t r i s e i n t h e dynamio moduli i s r e c o r d e d i n t h e s a t u r a t e d c o n d i t i o n .

(4)

A r e s u l t a l r e a d y found f o r o r d i n a r y dense a g g r e g a t e

c o n c r e t e was found i n t h e s e experiments a l s o . This w a s t h a t the v a l u e of Poissonc s r a t i o ( c a l c u l a t e d from t h e found v a l u e s of

t h e t o r s i o n a l and Youngts moduli u s i n g t h e u s u a l i s o t r o p i c e l a s t i o e q u a t i o n s ) i n c r e a s e s w i t h i n c r e a s e i n m o i s t u r e c o n t e n t

(22)

Ref e r e n ~

1. Parker, W.E. Pulse v e l o c i t y t e s t i n g of concrete.

Proceedings, American S o c i e t y f o r Testing M a t e r i a l s ,

Val.

53,

1953,

P. 1033-1043.

2. P i ~ k e t t , Gerald. Equations f o r computing e l a s t i c c o n s t a n t s from f l e x u r a l and t o r s i o n a l r e s o n a n t f r e q u e n c i e s of v i b r a t i o n of prisms and c y l i n d e r s . Proceedin s,

American S o c i e t y f o r T e s t i n g M a t e r i a l s , Vol.

&5, 1945.

3.

P h i l l e o , ROE. Comparison of r e s u l t s of t h r e e methods f o r determlning Young1 a modulus of e l a s t i c i t y of concrete. Journal of Amerioan Concrote I n s t i t u t e , vol. 26, no.

5,

January

1955.

p.

461-69.

Amerioan S o c i e t y f o r T e s t i n g Materials, Tentative method of t e s t f o r fundamental, t r a n s v e r a e , l o n g i t u d i n a l , and t o r s i o n a l

f r e q u e n c i e s of concrete specimens, ASTM Designation, C-21$-T,

9p

A u s t r i a n Building and Concrete magazine, U l t r a s o n i c t e s t i n g o f m a t e r i a l s w i t h s p e c i a l c o n s i d e r a t i o n o f concrete, March

1955.

Kluge, R.W., M O M . Sparka and E.C. Tuna. Lightweight aggregate

concrete. Journal of t h e American Concrete I n s t i t u t e , vol. 20,

no*

9,

May

1949.

Mitchell, L O J o Some experiences i n dynamic t e s t i n g of m a t e r i a l s . Presented a t annual meeting o f Highway Researoh Board, January 12 t o

15,

1954.

1 6 ~ .

R ,I.L,E.M. S p e c i a l i s s u e on " v i b r a t i o n T e s t i n g of Conoreten.

M O O

15,

August

1953.

Watstein, D. P r o p e r t i e s of conoreto a t h i g h r a t e s o f loading. American S o c i e t y f o r T e s t i n g M a t e r i a l s p r e p r i n t 93b,

1955,

(23)
(24)

TABLE IV

(25)

c D C O . o C 0 m m e N "?'%??

2Z%

%<'%? d d d d O N O d I C O O d 'i's's's d 44'0,'? CUOEON u \ 9 m.0

%

C " . .

3

.

s2s2

<??? 0 0 0 0 o o d m

2"&X

m a

d922

r'.%'S% d r( 0 0 0 0 P-coco d F ? N ( U 3 m m m m m m o N mmm

%949

d 0 0 0 0 m o 0 0 m e m \o mmm N I C d V W m d o 0 0 r l d r l r l

A

v v v o r l m d N c ~ r l h l l l l

ga&"***

ICN d 9 C".? d d NIC NCO %2 d m 99 d d

z's!

9'". d m 99 ntw

. .

8

%W

B

2s22

-

i2

m o rn d o T's

28%3-

0 Q'D'O d d e n dlc COO\oco O O Q I C COICICCO m a m a

v.

0 0 0 0 I C s d m m o F?m OICUCUN F2

%$

d&3

m m m m a B d ~ * \ ; f 0 1 1 1 4 4 4 q 4 4 m o m m COO no 3 x 2

s2sc

22%2 d

zss2

?2%2 d

296.3

o AQ-3CO 9 P - 9 I C

M Z %

mlCICm

..

0 . ~ D ~ C O S 9 c o C O 9 d d d d

'?

0 d K

9

a 0 z U 4 .P m +1 Cn R 0 - "4

2:

:

-

2

U P O Q C m k a Q c-l- rG

.

0 o m m n A N N d C".'".?'". \D I mt-mm o r( . . . a Q

-

K d

3

0 4

"

k

m 9 0 0 0 0 s d m c o M i l

J2sA

tz a 0 0 0 0 m c o a 3 ~

$%in

;

. .

.

.

d %3

%%

r',?E;'? rl 0 0 0 0 a m \o

2

~

3

~

'8. N O 0 o l c m QICCOIC

A m x ~

d k l l l l l--sQ*444 u a I

3

I C N d 0 d v \ N o . . . H 0 Eld

E"

~ ra l

5

9 I m e n rn W W d P: K I ID we 0 c mmcl 9 I mICICn m N mm K b d o l a c 4 C a

3 2 %

0 5 c A - h Cc

5

rl

5

c

8

.,I

ii

m

....

0 0 0 0 N m N N O O ( U d

a a s x

R I l I I l a'4-444 a

(26)

TABLE V I

(27)

6" x 2 . 8 " DIAM. CYLINDERS 16"x 4 . ~ 3 " BEAMS

GRAMS OF WATER PER CU IN. GRAMS OF WATER PER CU IN.

LEGEND :

-m- RESONANT FREQUENCY

4- PULSE VELOCITY

-*- STATIC

FIGURE I

VARIATION OF YOUNG'S MODULUS FOR MATERIAL A WITH MOISTURE CONTENT DETERMINED BY THREE DIFFERENT METHODS. me * - s L s T ,,,

(28)

F I G U R E 2

2

3

4

5

6

GRAMS OF

WATER PER CU IN.

VARIATION O F

POISSON'S

R A T I O FOR M A T E R I A L A

WITH MOISTURE C O N T E N T ,

(AVERAGE O F

4 -

6'k 2 . 8 ' ' D I A M E T E R C Y L I N D E R S . )

(29)

6" x 2

-

8" DIAM. CY LlNDERS 16" x 4 " x 3" BEAMS

.

"

0 2 4 6 8 1 0 1 2 1 4

GRAMS O F WATER PER CU IN.

0 2 4 6 8 10 12 14 GRAMS OF WATER PER CU IN. LEGEND :

-rn- RESONANT FREQUENCY

-A- PULSE VELOCITY -0- STATIC

FIGURE 3

VARIATION OF YOUNG'S MODULUS FOR MATERIAL S WITH MOISTURE CONTENT DETERMINED BY 3 DIFFERENT METHODS. D 1 R W T C I P Y W L

(30)

m

RESONANT FREQUENCY I // G S /* c

-

m

0 2 4 6 8 10

GRAMS OF WATER PER CU IN.

FIGURE 4

VARIATION OF POISSON'S RATIO WITH

MOISTURE CONTENT.

(31)

6 " x 2 . 8 " DIAMETER CYLINDERS

0 2 4 6 8 10 12 14 16

BEAMS

GRAMS OF WATER PER CU IN. GRAMS OF WATER PER CU IN.

-.-

RESONANT FREQUENCY,

--

PULSE VELOCITY, -*- STATIC

FIGURE 5

VARIATION OF YOUNG'S MODULUS OF MATERIAL V CONCRETE WITH MOISTURE CONTENT DETERMINED BY THREE DIFFERENT METHODS

(32)

2

4

6

8 10

GRAMS

O F

WATER

PER

CU

IN.

LEGEND:

BEAMS

---H---

CYLINDERS

-X-

FIGURE 6

VARIATION O F V E L O C I T Y O F SOUND W I T H

M O I S T U R E C O N T E N T FOR M A T E R I A L A,-

M A T E R I A L S AND M A T E R I A L V.

(33)

FIGURE 7 0 MATERIAL A (MOISTURE CONTENT -DRY) 6 0 0 5 0 0 4 0 0 3 0 0 2 0 0 100 0

EACH HORIZONTAL DIVISION = -001"

FIGURE 7 b MATERIAL S (MOISTURE CONTENT - DRY)

6 0 0

0

EACH HORIZONTAL DIVISION = .001"

FIGURE 7c MATERIAL V (MOIST. CONT. 25% SATURATED)

6 0 0

0

EACH HORIZONTAL DIVISION = .OOll'

FIGURE 7 TYPICAL STRESS STRAIN CURVES FOR TEST CYLINDERS. ( 2 . 8 " DIA x 6 *

,

AREA OF CYLINDER

(34)

FIGURE

8

TYPICAL RESPONSE CURVE ON

SONISCOPE.

STROBE ADJUSTED TO COINCIDE

WITH

WAVE

FRONT. TIME DELAY MEASURED

ON D I A L .

(35)

*I I -'

L O N G I T U D I N A L

I /

*

T R A N S V E R S E

TORSIONAL

F I G U R E 9

SHOWING

THE

DIRECTIONS I N WHICH

E X C I T E R

AND P I C K - U P SHOULD

BE

APPLIED

T O S P E C I M E N T O OBTAIN

RESONANCE I N A SINGLE

MODE O F

VIBRATION.

Figure

TABLE IV
FIGURE  7 b   MATERIAL  S  (MOISTURE  CONTENT  -  DRY)  6 0 0

Références

Documents relatifs

This study examines the international climate policy process and overlapping national policy processes in the United States, Japan, and the Netherlands through the lens

Los gestores directos eran en su mayoría actores locales, empresas y la sociedad civil, mientras que los gestores indirectos eran a menudo organizaciones de alcance nacional y

A ce titre et compte tenu de l’importance de l’investissement dans le monde moderne, les pays développés et ceux en voie de développement tendent à promouvoir le volume

We first consider the information gathering problem, and plot peak and average age for all the proposed trajectories of the mobile agent: the Metropolis-Hastings randomized trajectory

These include: better integration among housing market sub-models, such as predictors of residential mobility becoming determinants of choice set formation; explicit modeling of

Dans bien des cas d'après les enquêtés, les produits de terroir se distinguent par leur qualité organoleptique : ainsi le litchi Thieu de Thanh Ha est réputé &#34;plus sucré, et

ficus‐ indica seeds, in this study cakes resulting from the pressing were macerated in ethanol and then a Supercritical Antisolvent Fractionation (SAF) technique was used for

( دﺎﺼﻴ يذﻝا ئرﺎﻘﻝﺎﻓ نّﻜﻤﺘﻴ ﻻ لﺎﺜﻤﻝا لﻴﺒﺴ ﻰﻠﻋ ﺔﺘوﺤﻨﻤﻝا تﺎﻤﻠﻜﻝا ﻩذﻫ ف ﺎّﻤﻤ ،ﺎﻬظﻔﻝ نﻤ ﺎﻫﺎﻨﻌﻤ كاردإ ﻪﻴﻠﻋ رّذﻌﺘﻴ ﻲﻝﺎﺘﻝﺎﺒو ،ﺎﻬﻨﻤ تذﺨُأ ﻲﺘﻝا ﺎﻬﻝوﺼأ ﺔﻓرﻌﻤ نﻤ