• Aucun résultat trouvé

Maintaining parallel flows in microsystem during solvent extraction of concentrated Uranium(VI) solutions a solution for the screening of extractive molecules

N/A
N/A
Protected

Academic year: 2021

Partager "Maintaining parallel flows in microsystem during solvent extraction of concentrated Uranium(VI) solutions a solution for the screening of extractive molecules"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: cea-02438340

https://hal-cea.archives-ouvertes.fr/cea-02438340

Submitted on 14 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Maintaining parallel flows in microsystem during solvent

extraction of concentrated Uranium(VI) solutions a

solution for the screening of extractive molecules

J-P. Jasmin

To cite this version:

J-P. Jasmin. Maintaining parallel flows in microsystem during solvent extraction of concentrated Ura-nium(VI) solutions a solution for the screening of extractive molecules. BIT’s 5th Annual Conference of AnalytiX 2017, Mar 2017, Fukuoka, Japan. �cea-02438340�

(2)

Jean-Philippe JASMIN

Den—Service d’Etudes Analytiques et de Réactivité des

Surfaces (SEARS), CEA

jean-philippe.jasmin@cea.fr

MAINTAINING PARALLEL FLOWS IN

MICROSYSTEM DURING SOLVENT EXTRACTION

OF CONCENTRATED URANIUM(VI) SOLUTIONS:

A SOLUTION FOR THE SCREENING OF

EXTRACTIVE MOLECULES

(3)

THE PUREX PROCESS

PUREX: Plutonium and Uranium Recovery Extraction

 Recycling part of the spent nuclear fuel  Uranium and plutonium

 Based on liquid–liquid extraction ion-exchange Nuclear plant purpose

(4)

NEW EXTRACTIVE MOLECULES REQUIREMENT

TBP: Historically used Monoamide: next generation of extractive molecules

 CHON principle respected  Incinerable

 Easy U/Pu separation  Highly effective

 Phosphorous atom

 Degradation products hardly manageable  Redox U/Pu separation

Assets and drawbacks: Assets and drawbacks:

Extractant U/Pu Settling Separation [HNO3]=5 M Monoamide + U/Pu [HNO3]= 5 M U/Pu Organic phase Monoamide tested

Current screening procedure :

Screening procedure of the monoamide is fastidious and costly due to:

• synthesis, • purification,

• use of radiochemicals

(5)

OBJECTIVES

(REACH) Volumes Product waste Operator exposure Costs

Classic hydrodynamic

principles conserved

[1] [1] Whitesides, Nature, 2006, 442, 368-373

Microfluidics for the screening

Conception of a uniquescreening tool for the monoamides

featuring:

• Few manipulations

• Low amount of reagents (radionuclides and extractant) • Limited generated wastes

(6)

EXPERIMENTAL SET-UP

Outlets Microsyringe pump

Syringe

Microchip

PEEK Capillaries Y–Y shaped microchip

Parallel flow

Resistance toward corrosive products (concentrated acid, solvents, radionuclides)

High interfacial area A’ = A/V = 104m-1  Channel geometry

Height H = 100 µm Width W = 40 µm Length L = 12 cm  Pyrex glass microchips (IMT, Japan)

Phase separation

Interface

Parallel flows

Centered interface Phase separation Experimental conditions

𝒕𝐚𝐪 = 𝒉 𝑾 𝑳 𝑸𝐚𝐪

(7)

HYDRODYNAMICS CONTROL FOR ONE CHEMICAL SYSTEM

[U(VI)] = 10-4 M in [HNO

3] = 3 M / µaq = 1,22 ± 0,01 mPa.s

Flow patterns of the biphasic system

30 % TBP in n-dodecane (v/v) / µorg = 1,97 ± 0,01 mPa.s

𝑈𝑂

22+

+ 2𝑁𝑂

3

+ 2𝑇𝐵𝑃 → 𝑈𝑂

2

𝑁𝑂

3 2

. 2𝑇𝐵𝑃

Extraction equilibrium Non-centered interface Centered interface Instable flows Good separation

𝑸

𝐨𝐫𝐠

𝐐

𝐚𝐪

µ

𝐚𝐪

µ

𝐨𝐫𝐠

Simple case: U-TBP reference chemical system

 Only one extractant

 Low concentration of uranium  Viscosities unchanged

(8)

| PAGE 7

Qorg Qaq ≈

µaq

µorg 𝐼𝑛𝑙𝑒𝑡

SPECIFICITY OF HYDRODYNAMICS CONTROL FOR THE

SCREENING OF EXTRACTANTS

[8] Maruyama et al., Analyst, 2004, 129, 1008-1013 [9] Ban et al., J Nucl Sci Tech, 2011, 48, 1313-1318

Partition-wall

Shallow microchannel Deep microchannel

More difficult, if:

 Several extractants with different viscosities

 the viscosities evolve along the stream because high concentrations

Partition walls[8] Asymmetrical chip[9]

W1 W2 Commercial microchip Outlets Limitations:Challenging conception

Impact on the interfacial area

Specific geometry for one chemical system

Lorg,Outlet Laq,Outlet Qorg Qaq ≈ µaq µorg 𝑂𝑢𝑡𝑙𝑒𝑡× 𝐿aq 𝐿org 𝑂𝑢𝑡𝑙𝑒𝑡

(9)

STRATEGY

Main requirement for the screening tool:  Same device for a wide range of molecules  Screening with high U and Pu concentrations

( ≥ 10 g/L)

 Each molecule owns a specific viscosity  The viscosities evolve between inlets and the

outlets

Main challenges

Conception strategy for the screening tool:

N O N O N O N O N O N O N O N O

Molecule MOEHA DEHDMBA

Formula Viscosity at 1.4 M in THP (mPa.s) 4.02 ± 0.01 8.04 ± 0.01

 Two monoamides known for their respectively low and high viscosities were used

 U(VI) in [HNO3] = 5 M

 [Monoamide] = 1.4 M in THP

Two objectives:

 Parallel flows and centered interface for any

monoamide

 Compare the efficiency of the monoamides

𝑈𝑂22++ 2𝑁𝑂

3−+ 2𝑚𝑜𝑛𝑜𝑎𝑚𝑖𝑑𝑒 → 𝑈𝑂2 𝑁𝑂3 2. 2𝑚𝑜𝑛𝑜𝑎𝑚𝑖𝑑𝑒

Extraction equilibrium

Parameters

Screening tool specifications

(10)

STRATEGY

Determination of a common hydrodynamic protocole for monoamides

Common Contact time:

𝒕𝐚𝐪 =𝒉 𝑾 𝑳𝑸

𝐚𝐪

Common Length ratio:

𝑳aq 𝑳org

𝑶𝒖𝒕𝒍𝒆𝒕

Flow rate ratio Range:

𝑸𝐨𝐫𝐠 𝐐𝐚𝐪

Inlet stream control Outlet stream control

Mass transfer control

Qorg Qaq ≈ µaq µorg 𝑂𝑢𝑡𝑙𝑒𝑡 × 𝐿aq 𝐿org 𝑂𝑢𝑡𝑙𝑒𝑡 Qorg Qaq ≈ µaq µorg 𝐼𝑛𝑙𝑒𝑡 Specific Flow rate

𝐐

𝐨𝐫𝐠

µ

𝐨𝐫𝐠

(11)

0,0 0,5 1,0 1,5 2,0 0 50 100 150 200 µaq (m P a .s) [U(VI)]aq,Initial(g.L-1)

1st step: Determination of the suitable flow rate ratio

 With the aqueous and organic phase initial viscosities: µ𝐚𝐪

µ𝐨𝐫𝐠 𝑰𝒏𝒍𝒆𝒕

𝑸𝐨𝐫𝐠 𝐐𝐚𝐪 𝑰𝒏𝒍𝒆𝒕

Any inlet flow rate ratiocan be determined knowing the organic phase viscosity Evolution of the aqueous phase viscosity [HNO3] = 5 M with [U(VI)].

𝟒. 𝟎𝟐 ≤ µ𝐨𝐫𝐠 ≤ 𝟖. 𝟎𝟒 mPa.s

MICROFLUIDIC SCREENING TOOL FOR MONOAMIDES

Flow rate ratio Range:

𝑸𝐨𝐫𝐠 𝐐𝐚𝐪 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0 20 40 60 80 μaq /μorg ≈ Qorg /Q aq [U(VI)]initiale(g/L)

Evolution of the aqueous flow rate ratio for MOEHA and DEHDMBA at 1.4 M with [HNO3] = 5 M depending on [U(VI)].

(12)

2cd step: Determination of the suitable Outlet length ratio

 With batch experiments according to:

The outlet length ratio is determined with the batch extraction yields

Monoamide MOEHA DEHDMBA

µ𝒂𝒒 µ𝒐𝒓𝒈 𝑰𝒏𝒍𝒆𝒕 Qorg Qaq 0.34 0.17 µaq µorg 𝐎𝐮𝐭𝐥𝐞𝐭 0.20 0.07 𝑳𝒂𝒒 𝑳𝒐𝒓𝒈 2.5 1.7 𝑸𝐨𝐫𝐠 𝐐𝐚𝐪

µ𝐚𝐪 µ𝐨𝐫𝐠 𝑶𝒖𝒕𝒍𝒆𝒕

×

𝑳𝒂𝒒 𝑳𝒐𝒓𝒈 0 5 10 15 20 25 30 0 20 40 60 80 100 µorg (m P a .s) [U(VI)]org(g.L-1)

Evolution of the organic phases viscosities with [U(VI)] in the organic phase after extraction, Vorg/Vaq= 1, T = 293 K. [DEHDMBA]

= 1.4 M (red) and [MOEHA] = 1.4 M (green), (diluted in THP)

0,0 0,5 1,0 1,5 2,0 0 50 100 150 200 µaq (m P a .s) [U(VI)]aq(g.L-1)

Evolution of the aqueous phase viscosity [HNO3] = 5 M with [U(VI)].

| PAGE 11

MICROFLUIDIC SCREENING TOOL FOR MONOAMIDES

Common Length ratio:

𝑳aq 𝑳org 𝑶𝒖𝒕𝒍𝒆𝒕 𝑽𝐨𝐫𝐠 𝑽𝐚𝐪

=

𝑸𝐨𝐫𝐠 𝐐𝐚𝐪

(13)

 With solvent extraction experiments in microsystem with:

Equilibrium reached in 3 seconds

or with a maximum flow rate of Q

aq

= 0.3 mL.h

-1

0 20 40 60 80 100 0 1 2 3 4 5 RU, D E H D M B A , 12 cm (20 g. L -1) ( %) taq(s) 0 20 40 60 80 100 0 1 2 3 4 5 RU, M O E H A ,12 cm (20 g.L -1) ( %) taq(s)  Chip length: 12 cm

 Flow rates ratio: 𝟎. 𝟏𝟕and 𝟎. 𝟑𝟒  Outlet length ratio: Laq = 2 x Lorg

Extraction kinetic profils obtained with [DEHDMBA] = 1.4 M, [MOEHA] = 1.4 M . With ICC-DY15 (12 cm), [U(VI)] =20 g.L-1in

[HNO3] = 5 M and [monoamide] = 1.4 M, and Laq,Outlet/Lorg,Outlet= 2, T = 293 K.

MICROFLUIDIC SCREENING TOOL FOR MONOAMIDES

3rd step: Determination of a suitable contact time

Common Contact time:

𝒕𝐚𝐪 =𝒉 𝑾 𝑳𝑸

(14)

MICROFLUIDIC SCREENING TOOL FOR MONOAMIDES

𝑅

𝑁

=

𝑅

𝐶ℎ𝑖𝑝

100 ×

𝐐

𝐐

𝐨𝐫𝐠 𝐚𝐪 Normalized Yield  Chip length: 12 cm

 Flow rates ratio: 𝟎. 𝟏𝟕and 𝟎. 𝟑𝟒  Outlet length ratio: Laq = 2 x Lorg  Aqueous flow rate: Qaq = 0.3 mL.h-1 Hydrodynamic parameters

Flow rate ratio Range: 0.17 ≤ 𝑸𝐐𝐨𝐫𝐠

𝐚𝐪 ≤ 0.34

Common Length ratio:

𝑳aq 𝑳org 𝑶𝒖𝒕𝒍𝒆𝒕 = 2 Common Contact time: 𝒕𝐚𝐪 = 3s (𝑸𝐚𝐪 = 0.3 mL.h-1)

1

st

Objective:

Parallel flows and centered interface for any monoamide

2

cd

Objective:

Compare the efficiency of the monoamides

Specific viscosity

Specific Flow rate

µ

org

Q

org

 U(VI) in [HNO3] = 5 M

 [Monoamide] = 1.4 M in THP

(15)

Validation of the method for [U(VI)] =20 g.L

-1 0 20 40 60 80 100 A B C E x tra ctio n y ield in b a tch (1/1 ) (%) Conventional screening 0 0,5 1 1,5 2 2,5 3 A B C Norm a liz e d y ield Microfluidic screening Screening of 3 monoamides A, B, C

Same relative performances as batch experiments

ICC-DY15 (12cm), [U(VI)] =20 g.L-1 in [HNO

3] = 5 M and

[monoamide] = 1.4 M, and Vaq/Vorg= 1, T = 293 K.

ICC-DY15 (12cm), [U(VI)] =20 g.L-1 in [HNO

3] = 5 M and

[monoamide] = 1.4 M, and Laq,Outlet/Lorg,Outlet= 2, T = 293 K.

MICROFLUIDIC SCREENING TOOL FOR MONOAMIDES

Monoamide A B C Viscosity at 1.4 M in THP (mPa.s) 6.07 5.6 5.45 0,0 0,1 0,2 0,3 0,4 4 5 6 7 8 Qorg /Q aq µ1.4M(mPa.s)

flow rate ratio evolution depending on the viscosity of the organic phase containing monoamide diluted 1.4 M in THP with [U(VI)]Initial= 20 g.L-1

𝑅𝑁 = 𝑅𝐶ℎ𝑖𝑝 100 × QQorg

(16)

CONCLUSION AND PERSPECTIVES

Conclusion

Perspectives

Only 20 µL of solution are need

CFD simulation (COMSOL) for the design of a custom-made chip

Asymetrical geometry

More suitable length of microchip

Test with U(VI) and Pu(IV)

Microfluidic screening tool

20 µL

need

𝐐𝐚𝐪 = 𝟎. 𝟑 𝐦𝐋/𝐡 𝑳aq≈ 𝟐 𝑳org 𝐭𝐚𝐪 = 𝟑 𝐬 Aqueous flow rate Contact time Length ratio Parameters 8.04 6.07 5.454.02 0 0,1 0,2 0,3 0,4 0 20 40 60 80 100 μaq / μor g Qor g /Q aq

[U(VI)]aq, initial

Establishment of a viscosity/phase ratio diagram

flow rate ratio evolution depending on the viscosity of the organic phase containing monoamide diluted 1.4 M in THP and [U(VI)]Initialin aqueous phase.

Monoamide viscosity

Extraction Efficiency

Screening method can be applicable with large range of uranium concentration

(17)

| PAGE 16

Publication

J.P.

Jasmin

and

al.

Solvent

Extraction

of

Concentrated Uranium (VI) by 30 % TBP in a Parallel

Flows Microsystem: Towards a Tool for Screening

New Extractant Molecules

Solvent Extraction and Ion Exchange, 2017,vol 35

http://dx.doi.org/10.1080/07366299.2017.1308151

Patent pending work:

BD17584 (application submitted on december 2016)

Patent

Références

Documents relatifs

In a given contention period mini-slot, a node wanting to access the channel will transmit a RTS with 3 possible pre- computed probabilities if and only if one of the following these

A systematic solvent screening methodology for the in situ liquid extraction of products from Acetone-Butanol-Ethanol fermentation was developed in this study. on the basis

Compléter le nombre suivant par un chiffre pour que le nombre soit divisible par 5 mais pas par 3!.

[32] Stérilisation des dispositifs médicaux – Guide d’application de la norme NF EN 554, à destination des établissements de santé – Validation et contrôle de routine pour la

kRg 1, the experimental photocount autocorrela- tion obtained from light scattered by a dilute solution of polymer with a narrow weight distribution is

The comparison of the results between the quenched and the annealed disorder showed that the first order term in the perturbation expansion of the end-to-end distance is

Thakur Giri, dont nous avons déjà évoqué le parcours précédemment, enseigna ainsi les sciences politiques et l’histoire pendant près de trente-six ans dans les

We measured changes in the effects of MOC activity (1) during auditory detection and discrimination tasks, (2) for multiple signal-to-noise ratios and without