• Aucun résultat trouvé

Extremal functions for the anisotropic Sobolev inequalities

N/A
N/A
Protected

Academic year: 2022

Partager "Extremal functions for the anisotropic Sobolev inequalities"

Copied!
16
0
0

Texte intégral

(1)

Extremal functions for the anisotropic Sobolev inequalities Fonctions minimales pour des inégalités de Sobolev anisotropiques

A. El Hamidi

a

, J.M. Rakotoson

b,

aLaboratoire de Mathématiques, Université de La Rochelle, Av. Michel Crépeau, 17042 La Rochelle cedex 09, France bLaboratoire de Mathématiques, U.M.R. 6086, Université de Poitiers, SP2MI, Boulevard Marie et Pierre Curie, Téléport 2,

BP 30179, 86962 Futuroscope Chasseneuil cedex, France

Received 2 September 2005; received in revised form 31 May 2006; accepted 21 June 2006 Available online 19 December 2006

Abstract

The existence of multiple nonnegative solutions to the anisotropic critical problem

N

i=1

∂xi ∂u

∂xi

pi2∂u

∂xi

= |u|p2u inRN

is proved in suitable anisotropic Sobolev spaces. The solutions correspond to extremal functions of a certain best Sobolev constant.

The main tool in our study is an adaptation of the well-known concentration-compactness lemma of P.-L. Lions to anisotropic operators. Furthermore, we show that the set of nontrival solutionsSis included inL(RN)and is located outside of a ball of radiusτ >0 inLp(RN).

©2006 Elsevier Masson SAS. All rights reserved.

Résumé

Nous montrons l’existence d’une infinité de solutions positives pour le problème anisotropique avec exposant critique. La mé- thode consiste à regarder la meilleure constante d’une inégalité du type Poincaré–Sobolev et à adapter le fameux principe de concentration-compacité de P. L. Lions. De plus, on montre que l’ensemble des solutionsS est contenu dansL(RN)et est localisé en dehors d’une boule de rayonτ >0 dansLp(RN).

©2006 Elsevier Masson SAS. All rights reserved.

Keywords:Quasilinear problems; Concentration-compactness; Anisotropic Sobolev inequalities

* Corresponding author.

E-mail address:rako@mathlabo.univ-poitiers.fr (J.M. Rakotoson).

0294-1449/$ – see front matter ©2006 Elsevier Masson SAS. All rights reserved.

doi:10.1016/j.anihpc.2006.06.003

(2)

1. Introduction

In this paper, the existence of nontrivial nonnegative solutions to the anisotropic critical problem

N

i=1

∂xi ∂u

∂xi

pi2∂u

∂xi

= |u|p2u inRN (1)

is studied, where the exponentspi andpsatisfy the following conditions pi>1,

N

i=1

1 pi >1,

and the critical exponentpis defined by p:= N

N

i=1 1 pi−1.

In the best of our knowledge, anisotropic equations with different orders of derivation in different directions, involving critical exponents were never studied before. In the subcritical case, we can refer the reader to the recent paper by I. Fragala et al. [4].

In the special casepi=2,i∈ {1,2, . . . , N}, Problem (1) is reduced to the limiting equation arising in the famous Yamabe problem [13]:

u=u21, u >0 inRN. (2)

Indeed, let(M, g)be aN-dimensional Riemannian manifold andSgbe the scalar curvature of the metricg. Consider a conformal metricg˜onMdefined byg˜:=uN42gwhose scalar curvature (which is assumed to be constant) is denoted bySg˜, whereuis a positive function inC(M,R). The unknown functionusatisfies then

gu+ N−2

4(N−1)Sgu= N−2

4(N−1)Sg˜u21, u >0 inM, (3)

whereg denotes the Laplace–Beltrami operator. It is clear that, up to a scaling, the limiting problem of (3) (Eq. (3) without the subcritical term 4(NN21)Sgu) is exactly (2). The question of existence of minimizing solutions to (2) was completely solved by Aubin [1] and G. Talenti [9]. Their proofs are based on symmetrization theory. Notice that this theory is not relevant in our context since the radial symmetry of solutions cannot hold true because of the anisotropy of the operator.

In [5], P.-L. Lions introduced the famous concentration-compactness lemma which constitutes a powerful tool for the study of critical nonlinear elliptic equations. The concentration-compactness lemma allows an elegant and simple proof of the existence of solutions to (2) by minimization arguments. In the present work, we will adapt the concentration-compactness lemma to the anisotropic case and show that the infimum

|u|LpInf(RN )=1

N

i=1

1 pi

∂u

∂xi pi

pi

is achieved, of course, the functional space has to be specified.

The motivation of the present work is to give a new result which can provide extremal functions associated to the critical level corresponding to anisotropic problems involving critical exponents. Notice that the genuine extremal functions are obtained by minimization on the Nehari manifold associated to the problem and the critical level is nothing than the energy of these extremal functions.

The natural functional framework of Problem (1) is the anisotropic Sobolev spaces theory developed by [3,6,11,7, 8,10]. Then, letD1,p(RN)be the completion of the spaceD(RN)with respect to the norm

u1,p:=

N

i=1

∂u

∂xi

pi

.

(3)

It is well known that(D1,p(RN), · 1,p)is a reflexive Banach space which is continuously embedded inLp(RN).

In what follows, we will assume that p+=max{p1, p2, . . . , pN}< p,

thenpis the critical exponent associated to the operator:

N

i=1

∂xi

∂xi pi2

∂xi

.

The spaceD1,p(RN)can also be seen as D1,p(RN)=

uLp RN

: ∂u

∂xi

Lpi RN

.

In the sequel, we will setp=min{p1, p2, . . . , pN},p+=max{p1, p2, . . . , pN}andp=(p1, p2, . . . , pn). Also, the integral symbol

will denote

RN and · pi will denote the usual Lebesgue norm inLpi(RN). We denote by M(RN)(resp.M+(RN)) the space of finite measures (resp. positive finite measures) onRN, and by · its usual norm.

2. Existence of extremal functions for a Sobolev type inequality

In this paragraph, we shall prove that a certain best Sobolev constant is achieved.

Theorem 1.Under the above assumptions onpi,i=1, . . . , N,N2, there exists at least one functionuD1,p(RN), u0,u=0:

N

i=1

∂xi ∂u

∂xi

pi2∂u

∂xi

=up1 inD RN

.

The proof will need two fundamental lemmas, the first one is a result due to M. Troisi [10]:

Lemma 1.(Troisi [10])There is a constantT0>0depending only onpandNsuch that:

T0up N

i=1

∂u

∂xi

1 N

pi

and up 1 N T0

N

i=1

∂u

∂xi

pi

,

for alluD1,p(RN).

The second lemma is a rescaling type result ensuring the conservation of suitable norms:

Lemma 2.Letαi=ppi −1,i=1, . . . , N. For everyy∈RN,uD1,p(RN), andλ >0, if we writex=(x1, . . . , xN), y=(y1, . . . , yN),v(x)˙=uλ,y(x)=λu(λα1x1+y1, . . . , λαNxN+yN), we get

up= vp, ∂u

∂xi

pi

= ∂v

∂xi

pi

, fori=1, . . . , N, thus,u1,p= uλ,y1,p.

Proof. Noticing thatN

i=1αi =p, a straightforward computation with adequate changes of variables gives the result. 2

(4)

Lemma 3.Let

S= Inf

u∈D1,p(RN),up∗=1

N

i=1

1 pi

∂u

∂xi

pi

pi

.

ThenS >0.

Proof. From Lemma 1, we obtain that ifup=1, then N

i=1

∂u

∂xi

pi

N T0>0. (4)

Using standard argument, the infimum Inf

N

i=1

1

piapii, (a1, . . . , an)∈RN, N

i=1

aiN T0, ai0 .

=S1

is achieved and thus this minimum is positive. By relation (4), one concludes thatSS1>0. 2

Corollary 1 of Lemma 3 (Sobolev type inequality). Letp=min(p1, . . . , pN),p+=max(p1, . . . , pN)andF be the real valued function defined by

F (σ )=

σp+ ifσ1, σp ifσ1.

Then for everyuD1,p(RN), one has SF

up

N

i=1

1 pi

∂u

∂xi

pi

pi

˙=P (u).

Proof. Letube inD1,p(RN). Ifu=0 the inequality is true. Ifu=0, setw=u/up, then from the definition ofS one has:

N

i=1

1 pi

∂w

∂xi pi

pi

S. (5)

Sincetpitp+ ift >1 andtpitpotherwise, the result follows from relation (5) and the definition ofF. 2 Remark 1.Along this paragraph, we only need the inequality:

Supp+ P (u) wheneverup1.

We shall call(P)the minimization problem (P) Inf

up∗=1

N

i=1

1 pi

∂u

∂xi pi

pi

= Inf

up∗=1

P (u) .

Let(un)D1,p(RN)be a minimizing sequence for the problem(P). As in [5] and Willem [12], we define the Levy concentration function:

Qn(λ)= sup

y∈RN

E(y,λα1,...,λαN)

|un|pdx, λ >0.

HereE(y, λα1, . . . , λαN)is the ellipse defined by

z=(z1, . . . , zN)∈RN, N

i=1

(ziyi)2 λi 1

(5)

withy=(y1, . . . , yN)andαi>0 as in Lemma 2. Since for everyn, limλ0Qn(λ)=0 andQn(λ) −→

λ→+∞1. There existsλn>0 such thatQnn)=12. Moreover there existsyn∈RNsuch that

E(ynαn1,...,λαNn )

|un|pdx=1 2.

Thus by a change of variables one has forvn .

=uλnn,yn:

B(0,1)

|vn|pdx=1 2= sup

y∈RN

B(y,1)

|vn|pdx.

Since

vnp= unp, ∂vn

∂xi

pi

= ∂un

∂xi

pi

, P (un)=P (vn)

we deduce that(vn)is bounded inD1,p(RN)and is also a minimizing sequence for(P). We may then assume that:

vn vinD1,p(RN),

• |∂xi(vnv)|pi μi inM+(RN),

• |vnv|p νinM+(RN),

vnva.e. inRN. We define:

μ= N

i=1

1 pi

μi,

μ= lim

R→+∞lim

n

N

i=1

1 pi

|x|>R

∂vn

∂xi

pidx, (6)

ν= lim

R→+∞lim

n

|x|>R

|vn|pdx. (7)

We start with some general lemmas. First by the Brezis–Lieb’s Lemma [2], direct computations give the following Lemma 4.

|vn|p|v|p+ν inM+ RN

.

The lemma which follows gives some reverse Hölder type inequalities connecting the measures ν, μ and μi, 1iN.

Lemma 5.Under the above statement, one has for allϕCc(RN)

|ϕ|pp∗1

1

T0 N

i=1

|ϕ|pii

1

Npi,

|ϕ|pp∗1

p

1 N+p∗1

+ μN1+p∗1 p1+ · 1 T0

|ϕ|p+1

p+

.

(6)

Proof. LetϕCc(RN)and setwn=vnv. Since

|ϕxi|pi|wn|pidx −→

n→+∞0, we then have:

limn

∂xi(ϕwn)

pidx=lim

n

|ϕ|pi ∂wn

∂xi

pidx=

|ϕ|pii. (8)

Thus from Lemma 1, it follows that

|ϕ|pp∗1

=lim

n

|ϕwn|pdx p∗1

1

T0

N

i=1

|ϕ|pii

1

Npi. (9)

On the other hand, since

|ϕ|piip+

|ϕ|pip+μ1ppi+

|ϕ|p+ppi

+ (10)

applying the estimates (9) and (10) and knowing thatN i=1

1

pi =1+pN, we deduce

|ϕ|pp∗1

p

1 N+p∗1

+ μN1+p∗1 p1+ · 1 T0

|ϕ|p+1

p+

.

This ends the proof. 2

We then havevp1. So ifvp=1 thenvis an extremal function sinceP (v)lim infnP (vn)=Sand SP (v). Thus, we want to show that fact, by proving that if it is not true then we have a concentration ofνat a single point and thereforev=0.

Main Lemma.

vp=1.

The remainder of this section is devoted to the proof of the main Lemma Lemma 6.Ifv=0then

limn vnvpp=1− vpp<1.

Proof. From Brezis–Lieb’s Lemma we have:

limn

vnppvnvpp

= vpp,

Sincevnp=1, we derive the result. 2 Lemma 7.

pp∗+ μ.

Proof. For largen, according to Lemma 6, we have:

|vnv|pdx1.

Thus for allϕCc(RN),|ϕ|1, it holds:

S

|ϕ|p|vnv|p pp∗+

N

i=1

1 pi

|ϕ|pi

∂(vnv)

∂xi

pidx+on(1).

(7)

Lettingn→ +∞, one gets:

S

|ϕ|ppp∗+

N

i=1

1 pi

|ϕ|piiμ. (11)

Using the density ofCc(RN)inCc(RN), we get then S

sup

ϕCc(RN),|ϕ|=1

|ϕ|ppp∗+

μ,

that is the desired result. 2

Lemma 8.LetψR be inC1(R),0ψR1,ψR=1 if|x|> R+1,ψR(x)=0 if|x|< R. Then for any γi >0, i=0, . . . , N, the two equalities

ν= lim

R→+∞lim

n

|vn|pψRγ0dx,

μ= lim

R→+∞lim

n

N

i=1

1

pi ∂vn

∂xi

piψRγidx

hold true, whereνandμare defined by(6), (7).

Proof. As in Willem [12], one has:

|x|>R+1

|vn|pdx

|vn|pψRγ0dx

|x|>R

|vn|pdx,

|x|>R+1

∂vn

∂xi

pidx ∂vn

∂xi

ψRγi

|x|>R

∂vn

∂xi

pidx.

We conclude with the definition ofνandμ. 2

Lemma 9.Letwn=vnv. Then, for anyγi>0,i=0, . . . , N, we get ν= lim

R→∞lim

n

|wn|pψRγ0dx, and

μ= lim

R→∞lim

n ∂wn

∂xi

piψRγidx.

Proof. Since

R→+∞lim

|v|pψRγ0= lim

R→+∞ ∂v

∂xi

piψRγidx=0.

Thus

Rlim→∞lim

n

|wn|pψRγ0dx= lim

R→∞lim

n

|vn|pψRγ0dx=ν and

Rlim→∞lim

n

N

i=1

1

pi ∂wn

∂xi

piψRγidx= lim

R→∞lim

n

N

i=1

1 pi ∂vn

∂xi

piψRγidx. 2

(8)

Lemma 10.

p+

p∗ μ.

Proof. From Lemma 6, we know that fornlarge enough, we have

ψRp|wn|p

|wn|pdx1.

Thus by Sobolev inequality (Corollary 4 of Lemma 3), it follows S |ψRwn|pdx

pp∗+

N

i=1

1 pi

∂xi

Rwn) pi, S

R→+∞lim lim

n

|ψRwn|pdx pp∗+

lim

R→+∞lim

n

N

i=1

1 pi

∂xiRwn)

pi. (12) Since

limn

N

i=1

1

pi ∂ψR

∂xi

pi|wn|pi=0,

then

R→+∞lim lim

n

N

i=1

1 pi

∂xiRwn)

pi= lim

R→+∞lim

n

N

i=1

1

pi ∂wn

∂xi

piψRpi=μ.

Relation (12) and Lemma 9 give:

p+

p∗ μ. 2

Following again the arguments used in [12] we claim that:

Lemma 11.

1=lim

n vnpp= vpp+ ν +ν. Proof. From Lemma 4, we have:

|vn|p|v|p+ν.

Thus

R→+∞lim lim

n 1−ψRp

|vn|pdx=

|v|pdx+

dν.

Rewritingvnppas

vnpp= 1−ψRp

|vn|p+

ψRp|vn|p, we obtain

limn vnpp= lim

R→+∞lim

n 1−ψRp

|vn|p+ lim

R→+∞lim

n

ψRp|vn|p= vpp+ ν +ν. 2

Next, we shall prove the following corollary:

Corollary 1 (Of Lemma 5). There exists an at most countable index set J of distinct points {xj}jJ ⊂RN and nonnegative weightsaj andbj,jJ, such that:

(9)

(1) ν=

jJajδxj.

(2) μ

jJbjδxj. (3) Sa

p+ p∗

j bj,jJ.

Proof. The proof follows essentially the concentration compactness principle of P.L. Lions [5] because we have the reverse Hölder type inequalities of Lemma 5.

Indeed, the second statement of this lemma implies that for all Borelian setsE⊂RN, one has:

ν(E)cμμ(E)

p

p+. (13)

Since the setD= {x∈RN: μ({x}) >0}is at most countable becauseμ∈M(RN), thereforeD= {xj, jJ}and bj=. μ({xj})satisfiesμ

jJbjδxj.

Relation (13) implies thatνis absolutely continuous with respect toμ, i.e.,νμand ν(B(x, r))

μ(B(x, r))cμμ

B(x, r)p∗

p+1

,

provided thatμ(B(x, r))=0 (remember thatp> p+). Thus, we have:

ν(E)=

E rlim0

ν(B(x, r)) μ(B(x, r))dμ(x), and

Dμν(x)=lim

r0

ν(B(x, r))

μ(B(x, r))=0, μa.e. onRN\D.

Setting aj=Dμν(xj)bj, relation (13) implies thatν has only atoms that are given by{xj}, that we have already get. 2

LetϕCc(RN),ϕ(xj)=1,ϕ=1. Then, using statement (1) of this corollary and relation (11), we have Sa

pp∗+

j S

|ϕ|ppp∗+

N

i=1

1 pi

|ϕ|pii. (14)

We shall consider φCc(RN), 0 φ1, support(φ)⊂B(0,1), φ(0)=1. We fix jJ and set xj = (xj,1, . . . , xj,N), qi =pip/(ppi), i =1, . . . , N. Then αi .

= q1i satisfy N

k=1αkαiqi =0. For ε >0, we define, for everyz∈RN,z=(z1, . . . , zN):

φε(z)=φ

z1xj,1

εα1 , . . . ,zNxj,N εαN

. (15)

Thus we have:

∂φε

∂xi

qi= ∂φ

∂xi

qi(z)dz (16) and then

∂φε

∂xi

pi|v|pi ∂φ

∂xi

qidz

1p∗pi

B(xj,maxiε

1q i)

|v|pdz pip∗

−→ε00. (17)

Lemma 12.LetxjDandφεbe the function defined above associated toxj. Then:

Sa

p+ p∗

j lim

ε0lim

n

N

i=1

1 pi

φεpi

∂vn

∂xi pidx.

(10)

Proof. Since 0φε1 then

φpε|vn|pdx1. From Corollary 4 of Lemma 3, it follows S

φεp|vn|pdx pp∗+

N

i=1

1 pi

∂xiεvn)

pi. (18) From relation (17), we have

εlim0 ∂φε

∂xi

pi|v|pidx=0. (19)

Since

n→+∞lim ∂φε

∂xi

pi|vnv|pidx=0, (20)

then one has:

εlim0lim

n

N

i=1

1 pi

∂xiεvn)

pidx=lim

ε0lim

n

N

i=1

1 pi ∂vn

∂xi

piφεpidx. (21)

From relations (18) and (21), knowing that|vn|p|v|p+ν(see Lemma 4), we obtain Sa

pp∗+

j lim

ε0lim

n

N

i=1

1 pi

φεpi

∂vn

∂xi

pidx. 2

Lemma 13.Assume that N

i=1

1 pi

∂vn

∂xi

piμ˜ inM+ RN

.

Then

(1) For alljJ,Sa

pp∗+

j limε0μ(support˜ φε)(one has supportφεB(xj,maxiε

1 qi)).

(2) ˜μSνpp∗+ +P (v).

(3) S=limn→+∞P (vn)˙= ˜μ +μP (v)+pp∗+ +μ. Proof. From Lemma 12, sinceφεpiφεand

limn

N

i=1

1 pi

φεpi

∂vn

∂xi

pidx

φεdμ,˜ one obtains

Sa

pp∗+

j lim

ε0

φεdμ˜lim

ε0μ˜

B

xj; max

1iN

ε

1 qi

. (22)

This shows that{xj}jJ are all atomic points ofμ˜ and sinceN

i=1 1

pi|∂x∂vi|piis orthogonal to the atomic part ofμ, one˜ deduces from relation (22) that

˜

μS

jJ

a

pp∗+

j δxj+ N

i=1

1 pi

∂v

∂xi

pi. (23)

This implies in particular that:

˜μS

jJ

a

p+ p∗

j +P (v). (24)

(11)

Since pp+ <1 one has

jJ

aj pp∗+

jJ

a

pp∗+

j . (25)

Asν=

jJajδxj, it holds ν =

jJ

aj, (26)

which means, combining relations (24) to (26), that:

˜μSνpp∗+ +P (v).

For the last statement, we argue as before:

S=lim

n P (vn)

= lim

R→+∞lim

n

RN

(1ψR) N

i=1

1 pi

∂vn

∂xi

pidx+ lim

R→+∞lim

n

ψR

N

i=1

1 pi

∂vn

∂xi pidx,

whereψR=1 on|x|> R+1, 0ψR1,ψR=0 if|x|< R,ψRC(R).

By the definition ofμ, one has:˜

R→+∞lim lim

n

(1ψR) N

i=1

1 pi

∂vn

∂xi

pidx=lim

R

(1ψR)dμ˜ = ˜μ, and (see Lemma 8):

R→+∞lim lim

n

ψR

N

i=1

1 pi

∂vn

∂xi

pidx=μ,

thus, by the preceding statements:

S= ˜μ +μP (v)+pp∗+ +μ. 2

Lemma 14.Ifvp<1thenν =1,ν=0andv=0.

Proof. From Lemma 10, we know that

pp∗+

μ.

And by Corollary 4 of Lemma 3, we have Svpp+ P (v).

From the last statement of Lemma 13 and the above inequalities we deduce that:

SS

vpppp∗+

+ νpp∗+ +ν

pp∗+

.

Thus we obtain, due to Lemma 11, that vpppp∗+

+ νpp∗+ +ν

p+

p∗

1=

vpp+ ν +νpp∗+ .

Using the inequality

vpp+ ν +νpp∗+

v

pp∗+

p + νpp∗+ +ν

pp∗+

,

Références

Documents relatifs

Selon le site MyHandicap.ch, la Suisse compterait environ 1,4 million de personnes vivant avec un handicap et leur intégration dans la société et dans le monde du travail reste

In particular, we will prove that, under mild assumption on the base, the logarithmic Sobolev constant of the wreath product can be expressed in terms of the spectral gap of the

The authors provide also some properties of the extremal functions, as the L ∞ behaviour, extending in that way the regularity results already obtained for solutions of

The motivation of the present work is to give a new result which can provide extremal functions associated to the critical level corresponding to anisotropic problems involving

[19] Fr´ ed´ eric Robert, Existence et asymptotiques optimales des fonctions de Green des op´ erateurs elliptiques d’ordre deux (Existence and optimal asymptotics of the

[2] Craig Cowan and Nassif Ghoussoub, Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains, http://fr.arxiv.org/abs/1206.3471 (15

More specifically, a new general result on the lower bound for log(1−uv), u, v ∈ (0, 1) is proved, allowing to determine sharp lower and upper bounds for the so-called sinc

Before going on with the description of the main features of this paper, we will need some further notations. Therefore, Choquet Theory applies and every positive positive