• Aucun résultat trouvé

Transformations to symmetry based on the probability weighted characteristic function

N/A
N/A
Protected

Academic year: 2021

Partager "Transformations to symmetry based on the probability weighted characteristic function"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: hal-01018575

https://hal.archives-ouvertes.fr/hal-01018575v2

Preprint submitted on 14 Apr 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de

Transformations to symmetry based on the probability weighted characteristic function

Simos Meintanis, Gilles Stupfler

To cite this version:

Simos Meintanis, Gilles Stupfler. Transformations to symmetry based on the probability weighted

characteristic function. 2014. �hal-01018575v2�

(2)

PROBABILITY WEIGHTED CHARACTERISTIC FUNCTION

Simos G. Meintanis

a,b

, Gilles Stupfler

c

a

Department ofEonomis,NationalandKapodistrian Universityof Athens,Athens,Greee,

b

Unit forBusiness MathematisandInformatis, North-WestUniversity, Pothefstroom, SouthAfria

and

c

AixMarseilleUniversité, CNRS,EHESS,Centrale Marseille, GREQAMUMR 7316,

13002 Marseille, Frane

Abstrat. We suggest a nonparametri version of the probability weighted empirial harateristi funtion

(PWECF) introdued by Meintanis et al. (2014) and use this PWECF inorder to estimate the parameters

of arbitrary transformations to symmetry. The almost sure onsisteny of the resulting estimators is shown.

Finitesampleresultsfori.i.d. dataarepresentedandaresubsequentlyextendedtotheregressionsetting. Real

dataillustrations arealsoinluded.

Keywords. Charateristifuntion; Empirialharateristi funtion;Probabilityweightedmoments;Symmetry

transformation

AMS2000lassiationnumbers:62G10,62G20

1 Introdution

Transformationsareappliedongivendatasets inordertofailitatestatistialinferene. Thesetransformations

areoftenusedsoastoinduenitemomentsandlighttailsand/orsymmetry.Thisisimportantasitisommon

knowledgethatertainstatistialproeduresareappliableorperformwellonlyundersuhassumptions.Apart

fromthat,symmetryhasdeniteadvantagesfor identiationandonsistenyofloationestimatorswithi.i.d.

data,aswellasintheontextofregressionwhereBikel(1982)andNewey(1988)studytheexisteneofadaptive

andeientregressionestimatorsundersymmetrierrors. ThereaderisreferredtoChapter6ofHorowitz(2009)

for anie reviewof transformations inregression andotherrelated models. Lately the symmetryassumption

hasalsobeeninvokedfortheonsistenyandeienyofthequasimaximumlikelihoodestimator(QMLE) in

GARCHmodels;seeGonzálezRiveraandDrost(1999)andNeweyandSteigerwald(1997). Finally,wemention

thatpowertransformationshavereentlybeenusedbySavhukandShik(2013)inordertoimprovetherate

ofonvergene ofthe lassialParzen-Rosenblatt(Parzen,1962; Rosenblatt,1956)estimatorof theprobability

densityfuntion.

Thepurpose ofthispaperistosuggestaproedurebymeansofwhihasamplefromanunknowndistribution

is redued to a sample from a symmetri distribution. To this endwe employ the notion of the probability

weightedempirialharateristi funtion(PWECF),introdued reentlyinMeintaniset al. (2014). However,

the PWECF used inMeintanis et al. (2014) is dened in anentirely parametri ontext and it is therefore

notappropriatewhenpursuingnonparametriinferene. Inwhatfollows wesuggestanonparametriversionof

(3)

remainder of this work is outlined as follows. In Setion 2 we reall some properties of the PWCF and the

nonparametriPWECFisintrodued. InSetion3weintroduethe newestimationproedure whihisbased

onanappropriatefuntionalofthisPWECF;themethodisrelatedtothoseinYeoandJohnson(2014)andYeo

etal. (2014). ThestrongonsistenyofourestimatorisgiveninSetion4,whileinSetion5thenitesample

properties ofthemethodare investigatedby meansofasimulationstudy. Real dataexamplesare inludedin

Setion6whilesomeauxiliaryresultsandtheirproofs aredeferredtotheAppendix.

2 The nonparametri PWECF

LetXdenoteanarbitraryrandomvariablewithanabsolutelyontinuousdistributionfuntionF(x) =P(X≤x).

Forγ≥0,theprobabilityweightedharateristifuntion(PWCF)ofX isdenedby ϕ(t;γ) :=E

h

W(X;γt)eitXi

= Z

−∞

W(x;γt)eitxdF(x), t∈R, (2.1)

whereW(x;s) := [F(x)(1−F(x))]|s|. ItisnoteworthythatthePWCFofXhasvarioususefulpropertiessimilar

tothatoftheharateristifuntion(CF)ofX,seeMeintanisetal. (2014);inpartiular,adistributionfuntion whihissymmetriaroundzeromustyieldareal-valuedPWCF,seepropertyP5there,andthiswillbethebasis

ofourtransformationproedureinSetion3. Thefatthatforγ >0thePWCFisnolongeraFouriertransform,

however, makesit diultto prove strongdistributional results suhas aone-to-one orrespondene between

PWCFsand probabilitydistributions. Interestinglythough,intheontext ofloation-salefamilies,whihwas

theoriginalframeworkofMeintanisetal. (2014),wemaystateandprovesuharesult:

Proposition 1. AssumethatF1 andF2 belongtosomeloation-salefamily,namely

∀x∈R, F1

x−µ1

σ1

=F2

x−µ2

σ2

=G(x)

where G isanabsolutely ontinuous distributionfuntion andµ1, µ2 ∈R, σ1, σ2 >0. Then, forany γ >0, F1

andF2 yieldthesame PWCFifandonlyifF1=F2.

Proof ofProposition 1. Letϕµ,σ bethePWCFrelatedtoFµ,σ(x) :=G(σx+µ). Sine ϕµ,σ(t;γ) =

Z

−∞

[Fµ,σ(x)(1−Fµ,σ(x))]γ|t|eitxdFµ,σ(x),

wegetbythehangeofvariablesx=σy+µ: ϕµ,σ(t;γ) =

Z

−∞

[G(y)(1−G(y))]γ|t|ei(σt)y+µdG(y) =eitµϕ0,1(σt;γ/σ).

AssumenowthatF1andF2 yieldthesamePWCF,withσ16=σ2. Then

eitµ1ϕ0,11t;γ/σ1) =eitµ2ϕ0,12t;γ/σ2), t∈R, (2.2)

whihuptoreparametrization isequivalentto

ϕ0,1(T; Γ) =eitMϕ0,1(ΣT; Γ/Σ), T ∈R,

for someM ∈R,Σ6= 1 andΓ>0. Withoutloss ofgenerality, we assumeinwhatfollows thatΣ>1;inthis

ase,astraightforwardproofbyindutionshowsthatforanypositiveintegerm:

0,1(T; Γ)|=|ϕ0,1mT; Γ/Σm)|, T ∈R.

(4)

Observenowthatϕ0,1(0; Γ) = 1andforanyT >0, ϕ0,1mT; Γ/Σm) =

Z

−∞

[G(y)(1−G(y))]Γ|T|ei(ΣmT)yg(y)dy

= 1

T Z

−∞

[G(z/T)(1−G(z/T))]Γ|T|g(z/T)emzdz

where gisthe probabilitydensity funtionrelated to G. Theright-handside is,up to aonstant,the Fourier

transformoftheintegrablefuntion

z7→[G(z/T)(1−G(z/T))]Γ|T|g(z/T),

evaluated at the point Σm. Sine Σm → ∞, the Riemann-Lebesgue lemma states that this expression must onvergeto0asm→ ∞. Asaonlusion,

ϕ0,1(0; Γ) = 1 and ϕ0,1(T; Γ) = 0, T >0.

Thisis aontradition sine T 7→ϕ0,1(T; Γ) isontinuous,see property P7inMeintanis et al. (2014). Hene σ12,andthuseitµ1=eitµ2 forall t∈Rby(2.2),whihentailsµ12. Theproofisomplete.

Remark 1. Theloationsale ontext may atually be dropped underadditional moment hypotheses, suh

as the existene of the moment-generating funtionof F1 and F2 in a neighborhood of 0, by using analyti ontinuation. Inany ase,ifthePWCFisunique,itanbeusedto assesssymmetryaround zero: It isindeed

learthatfor anytandγ,thePWCFof−X isequaltoϕ(−t;γ),andthatϕ(−t;γ) =ϕ(t;γ),wherez denotes

theomplexonjugateof z. Nowif thePWCF ofX is real-valued,this entailsϕ(−t;γ) =ϕ(t;γ) andthus X

and−X havethesamePWCF,whenethefatthatthedistributionfuntionofX issymmetriaroundzero.

WhileMeintanis etal. (2014)estimatedthe PWCF ina parametriway,it is interestingto onsider thease

whereF isompletelyunknown. Inthisontext,itisanaturalidea todeneanestimatorofthePWCFinan

entirelynonparametriway. TothisendnotiethatthePWCFin(2.1)maybewrittenas

ϕ(t;γ) = Z 1

0

[x(1−x)]γ|t|eitQ(x)dx, (2.3)

whereQ(x) = inf{t∈R|F(t)≥x}denotesthequantilefuntionofX.

Inviewof(2.3)wesuggestthefollowingnonparametriestimatorofthePWCF:

b

ϕn(t;γ) = Z 1

0

[x(1−x)]γ|t|eitQbn(x)dx, (2.4)

withQbn(x)denoting theempirial quantile funtion. We shallallϕbn(t;γ) theprobabilityweighted empirial harateristifuntion(PWECF),andforthepurposeofestimationwewilluse

∀k∈ {1, ..., n}, ∀x∈ k−1

n ,k n

, Qbn(x) =Xk:n,

where X1:n ≤ · · · ≤ Xn:n denote the order statistis orresponding to independent opies X1, . . . , Xn of the

randomvariableX.

3 L2type proedures for symmetry transformation

The problem we shall onsider is to estimate the parameters of a given transformation whih, if applied on

the original nonsymmetrially distributed observations X1, . . . , Xn, yields transformed observations that are

(5)

approximatelysymmetriallydistributedwithloationzero. Tothisend, writeϑ= (δ, λ)∈Θ⊂R×Λfor the

transformationparametervetor,whereδdenotesloationandλdenotestheshapeparameterwhihisassumed

tolieinasubsetΛoftherealline. Forϑ= (δ, λ)∈Θ,weletQZ(·;ϑ)bethequantilefuntionofthetransformed randomvariableZ(ϑ) =ψ(X;λ)−δ,whereψisaspeitransformationfamily,andwedene

S(t;γ;ϑ) = Z 1

0

[x(1−x)]γ|t|sin(tQZ(x;ϑ))dx,

the imaginarypart of the PWCFof Z(ϑ). It is thusa onsequene ofRemark 1that ifthe transformedran- dom variable Z has a symmetri distribution around zero then S(t;γ;ϑ) = 0 for all t ∈ R, or equivalently

R

−∞S2(t;γ;ϑ) = 0.

Thisobservation isthe basiidea we needtobuild ourestimator: we introdueZk(ϑ) = ψ(Xk;λ)−δ, we let QbZ(x;ϑ)betheempirialquantilefuntionrelatedtoZ1(ϑ), . . . , Zn(ϑ)andwedene

Sbn(t;γ;ϑ) = Z 1

0

[x(1−x)]γ|t|sin(tQbZ(x;ϑ))dx,

theimaginarypartofthePWECFofZ1(ϑ), . . . , Zn(ϑ). ThenSbn(t;γ;ϑ)istheempirialounterpartofS(t;γ;ϑ).

We suggest to estimate the true value ϑ0 = (δ0, λ0) (see Setion4 for a disussion of the uniqueness of this

parameter)byϑbn,where

ϑbn= arg min

ϑ∈Θ

n(γ;ϑ), withn(γ;θ) = Z

−∞

Sbn2(t;γ;ϑ)dt. (3.1)

Remark2. ThePWCFϕ(t;γ)andPWECFϕbn(t;γ)ofarandomvariableX aresuhthat|ϕ(t;γ)| ≤(1/4)γ|t|

and|ϕbn(t;γ)| ≤(1/4)γ|t| for every(t, γ)∈R×R+. Asaonsequene,for anyϑ,the integraln(ϑ)ispositive

andnite.

Remark3. Notiethatwhilewewriteϑbn,theestimatorimpliitlydependsonthevalueofγandthereforewe

haveessentiallyafamilyofestimators{ϑbn(γ),0< γ <∞}indexedbyγ.

Remark 4. Possible hoies forthe transformationfamilyψ are theBox-Coxtransformation (1964),afamily introduedbyBurbidgeetal.(1988)aswellasthereentlyintroduedmethodofYeoandJohnson(2000). Note

thatwhilethepopularBox-Coxtransformation,

ψ(x;λ) =







 xλ−1

λ ifλ6= 0, logx ifλ= 0,

applies onlyto positiverandom variables(if λis nota nonzerointeger), itsmodiations suggestedby Manly

(1976),JohnandDraper(1980)andBikelandDoksum(1981)weredesignedtoallownegativevaluesaswell.

AfavorablefeatureofthespeidenitionofthenonparametriPWECFin(2.4)isthatitleadstoariterion

in (3.1) whih is onvenient from the omputational point of view. To see this notie that from (2.4) it is

straightforwardtoomputetheimaginarypartofthePWECFofZ1(ϑ), . . . , Zn(ϑ)as Sbn(t;γ;ϑ) =

Xn

k=1

υk,n(t;γ) sin(tZk:n(ϑ)) with υk,n(t;γ) = Z k/n

(k−1)/n

[x(1−x)]γ|t|dx.

Thentheriterionstatistiin(3.1)followsbydiretalulationas

n(γ;ϑ) =1 2

Xn

j,k=1

Ijk(γ;ϑ)−Ijk+(γ;ϑ)

whereIjk(γ;ϑ) :=I(j, k;γ;Zj:n(ϑ)−Zk:n(ϑ))andIjk+(γ;ϑ) :=I(j, k;γ;Zj:n(ϑ) +Zk:n(ϑ))with I(j, k;γ;x) =

Z

−∞

υj(t;γ)υk(t;γ) cos(tx)dt.

(6)

Here,weassumethatγ >0andthatthefollowinghold:

(A1)ThesupportDofthedistributionofX isanopenintervalandF isontinuousandstritlyinreasing

onD.

(A2)Thetransformationfamilyψissuhthat(x, λ)7→ψ(x;λ)isontinuousonD ×Λ. (A3)Forallλ∈Λ,x7→ψ(x;λ)isstritlyinreasing.

Assumption(A2)is alsousedinYeoandJohnson(2001), while(A3) meansthat thefamilyoftransformations preservesordering: iftwoobservations X1 andX2 are suhthat X1 < X2, thenthe transformedobservations

ψ(X1;λ)andψ(X2;λ)aresuhthatψ(X1;λ)< ψ(X2;λ). Inpartiular,inthissetting, itisstraightforwardto showthat

QZ(x;ϑ) =ψ(Q(x);λ)−δ and QbZ(x;ϑ) =ψ(Q(x);b λ)−δ. (4.1)

Undertheseassumptions,wemaystateastrongonsistenyresultforourestimator:

Theorem 1. Assume that(A1), (A2)and(A3) hold. LetΘbeaompatsubsetof R2 ontained inR×Λ. If,

overΘ,there existsa uniqueglobalminimumϑ0 ofthefuntion

ϑ7→

Z

−∞

S2(t;γ;ϑ)dt

thenϑbn→ϑ0 almostsurely.

Proof ofTheorem1. ByLemma2intheAppendix,

Hn(ϑ) :=

Z

−∞

Sbn2(t;γ;ϑ)dt→H(ϑ) :=

Z

−∞

S2(t;γ;ϑ)dt

almostsurely,uniformlyinϑ∈Θ.Reallthat S(t;γ;ϑ) =

Z 1

0

[x(1−x)]γ|t|sin(tQZ(x;ϑ))dx.

Beausefor anyxthefuntionϑ7→QZ(x;ϑ)isontinuousandthe integrandinS(t;γ;ϑ)isdominatedbythe

onstant1,thedominatedonvergenetheorementailsthatfor anyt,thefuntionϑ7→ S(t;γ;ϑ)isontinuous.

Furthermore, sine for any ϑ, |S(t;γ;ϑ)| ≤ (1/4)γ|t| by Remark 2, it is again a orollary of the dominated

onvergenetheoremthatthefuntionH isontinuousaswell. ApplyingLemma3onludestheproof.

Theexisteneofaglobalminimumofthefuntionϑ7→R

−∞S2(t;γ;ϑ)dtisforinstaneguaranteedifthereexists ϑ0suhthatthedistributionofZ(ϑ0)issymmetriaround0,inwhihaseS(t;γ;ϑ0) = 0foreahtandtherefore

∀ϑ∈Θ, Z

−∞

S2(t;γ;ϑ)dt≥0 = Z

−∞

S2(t;γ;ϑ0)dt.

Theuniquenessofonesuhϑ0isamorehallengingproblem. Thefollowingpropositionisasteptowardssolving thisquestionforalargelassoftransformations,inludingthosementionedinRemark4.

Proposition2. Assumethat(A1)holdsandthatX hasapositivemedian. Letψbeafamilyoftransformations, satisfying(A2)and(A3),suhthat

∀x >0, ∀λ >0, ψ(x;λ) =[f(x)]λ−1 λ

wherefisapositive,ontinuousandstritlyinreasingfuntionon(0,∞). Ifthereexistsapair(δ, λ)∈R×(0,∞)

suhthatψ(X;λ)−δ issymmetrially distributedaround zero,then(δ, λ) istheunique suhpair.

(7)

ProofofProposition2. Sine(A1)holdsandX hasapositivemedian,wehaveQ(x)>0forallxinanopen

neighborhoodU of1/2. ThemonotoniityoffthenyieldsQZ(x;ϑ) =ψ(Q(x);λ)−δforallx∈U.Inpartiular,

themedianofZ(ϑ),whihissymmetriallydistributedaroundzero,hastobe0andthus0 = [f◦Q(1/2)]λ−c(ϑ),

where c(ϑ) = 1 +δλ. In partiular, c(ϑ) is positive and f◦Q(1/2) = [c(ϑ)]1/λ. Besides, it musthold that QZ(1/2−s;ϑ) =−QZ(1/2 +s;ϑ)foranys∈(0,1/2)whihentailsforall ε >0smallenough:

[f◦Q(1/2−ε)]λ−1

λ −δ=−

[f◦Q(1/2 +ε)]λ−1

λ −δ

orequivalently:

f◦Q(1/2−ε) =

2c(ϑ)−[f◦Q(1/2 +ε)]λ1/λ

. (4.2)

Assumenowthatthereexisttwopairsϑ1= (δ1, λ1)andϑ2= (δ2, λ2)suhthatZ(ϑ1)andZ(ϑ2)aresymmetri-

allydistributedaroundzero. Notethatitisenoughtoshowthat λ12. Using (4.2),weobtainforall ε >0

suientlysmall:

2c(ϑ1)−[f◦Q(1/2 +ε)]λ11/λ1

=

2c(ϑ2)−[f◦Q(1/2 +ε)]λ21/λ2

.

Sinef◦Q(1/2) = [c(ϑ1)]1/λ1 = [c(ϑ2)]1/λ2 and the funtionf◦Q is ontinuousand stritlyinreasing, this

entailsforall h >0smallenough:

2c(ϑ1)−h

[c(ϑ1)]1/λ1+hiλ11/λ1

=

2c(ϑ2)−h

[c(ϑ2)]1/λ2+hiλ21/λ2

.

Notingthat[c(ϑ1)]1/λ1 = [c(ϑ2)]1/λ2>0,wegetthatfor allh >0smallenough:

2−[1 +h]λ11/λ1

=

2−[1 +h]λ21/λ2

.

Takinglogarithmsanddierentiatingtwie,weobtainforh >0suientlysmall:

(1 +h)λ1−2

2(λ1−1) + (1 +h)λ1

[2−(1 +h)λ1]2 =(1 +h)λ2−2

2(λ2−1) + (1 +h)λ2 [2−(1 +h)λ2]2 .

Lettingh↓0entailsλ12,whihompletestheproof.

Wenotethatthisresultrequiresthe medianofX tobepositive. Forsomefamiliessuhas theBikel-Doksum family(1981),

∀x∈R, ∀λ >0, ψ(x;λ) =sgn(x)|x|λ−1

λ , with sgn(x) =







1 ifx >0,

−1 ifx <0, 0 ifx= 0,

(4.3)

thisassumptionmayatuallybedropped,asshownbyCorollary1below. Thispartiularfamilyoftransforma-

tions,whihoinideswiththeBox-Coxfamilyoftransformationsforpositivevaluesofxandλ,istheonewe

shallonsiderinoursimulationstudy.

Corollary 1. Let ψ be the Bikel-Doksum family of transformations. Assume that (A1) holds and that the

distributionof X is notsymmetri aroundzero. Ifthere existsapair(δ, λ)∈R×(0,∞) suhthat ψ(X;λ)−δ

issymmetrially distributedaround zero,then(δ, λ) istheunique suhpair.

Proof of Corollary 1. Werstnotethatfor anysuhpairϑ= (δ, λ),thenδ6=−1/λ. If indeedwehad that δ =−1/λ, thenusing(4.3), therandom variablesgn(X)|X|λ would be symmetri. Thiswouldimply,for any x≤0,that

P(X ≤x) =P(sgn(X)|X|λ≤ −(−x)λ) =P(sgn(X)|X|λ≥(−x)λ) =P(X≥ −x).

(8)

ThenX wouldbesymmetriallydistributedaround zero, whihis aontradition. Moreover, wemay assume withoutloss ofgeneralitythat themedianQ(1/2) ofX isnonnegative: ifindeedthis isnotthe ase then−X

hasanonnegativemedianand,lettingδ=−(δ+ 2/λ)6=−1/λ,therandomvariable ψ(−X;λ)−δ=−[ψ(X;λ)−δ]

issymmetriallydistributedaroundzero. Finally,sine(A1)holdsand(A2)and(A3)aresatisedfortheBikel-

Doksumfamily,wehaveQZ(x;ϑ) =ψ(Q(x);λ)−δ by(4.1). SineZ(ϑ) is symmetriallydistributed around zero,wemusthave0 =Q(1/2)λ−(1 +δλ). Espeially,themedianQ(1/2) = [c(ϑ)]1/λofX ispositive. Applying

Proposition2onludestheproof.

5 A Monte-Carlo simulation study

5.1 Finite sample performane of the presented tehnique

Inthissetion,wepresenttheresultsofaMonte-Carlostudyondutedtoassesstheperformaneofourmethod.

Inwhatfollows,thetransformationfamilyonsideredistheBikel-Doksumfamily(4.3). Thefollowingestimators

areompared:

ourestimator(3.1),denotedbyMγ,withγ∈ {1,2};

theestimator

arg min

ϑ∈Θ

Z

−∞

"

1 n

Xn

k=1

sin(tZk(ϑ))

#2

e−|t|dt

whihorrespondstousingtheECFwithanexponentialweightingfuntion(seeYeoandJohnson,2001),

andwillbedenotedbyEECF;

theGaussianmaximumlikelihoodestimator(GMLE),assumingthatthetargetsymmetridistributionis Gaussian. Whilethisestimatoratuallyattemptstotransformtonormality,weinludeitforomparative

reasons. Theshapeestimatorisandtheloationestimatorisbδ(bλ)where λb = arg max

λ∈Λ

(

−n

2log(cσ2(λ))−1 2

Xn

k=1

(ψ(Xk;λ)−bδ(λ))2

σc2(λ) + (λ−1) Xn

k=1

logXk

)

= arg max

λ∈Λ

(

−n

2log(cσ2(λ)) + (λ−1) Xn

k=1

logXk

)

with bδ(λ) = 1 n

Xn

k=1

ψ(Xk;λ)

and2(λ) = 1 n

Xn

k=1

(ψ(Xk;λ)−δ(λ))b 2.

Togetagraspofhowtheseestimatorsbehaveinpratie,weusethefollowinggeneratingalgorithm: foragiven

n−independentsampleY1, . . . , YnofrandomopiesofasymmetrirandomvariableY,wepik(known)values

ofλandδandweonsiderthen−independentsampleX1, . . . , XnsuhthatXk=τ(Yk+δ;λ)where τ(y;λ) = sgn(λy+ 1)|λy+ 1|1/λ

istheinverseoftheBikel-Doksumtransformation. Withthisnotation,wethushaveψ(Xk;λ)−δ=Ykwhihare

symmetrirandomvariablesandwemayapplyourvariousproedurestoassessthequalityoftheestimationofλ

andδineahase. Inwhatfollows,λispikedintheset{1/4,1/2,3/4},δ= 1andthesymmetridistributions onsideredarethefollowing:

Références

Documents relatifs

After a brief introduction, this extended abstract states, in Section 2, a general theorem for weighted families of coupons. More precisely, Theorem 2.1 relates the asymptotic

In Section 5, we go beyond recognizable series by introducing pebble weighted automata (two-way and one-way), and we show that both formalisms are expressively equivalent to

Projective clustering is a part of the large subspace clustering family, which general aim lies in dividing the given high-dimensional data-set into clusters.. For the

In this work, we use a refinement of this approximation in order to estimate second order parameters of the model using the method of probability-weighted moments (PWM): in

One such inference method proposed by Carrasco and Florens (2000) for IID models exploits the whole continuum of moment conditions based on the di¤erence between the empirical

The Weighted Degree heuristic (wdeg) [1] is still among the state of the art for general variable ordering search heuristics in constraint programming.. Its principle is to keep

One of the main achievements of the present contribution is the proof that most examples of random fields arising in the modelling of heterogeneous materials in the ap- plied

Key words: Inverse probability weighted estimation, Large-sample properties, Linear transformation model, Missing data, Simulation study.. Short title: Estimation in a reliability