• Aucun résultat trouvé

Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature

N/A
N/A
Protected

Academic year: 2021

Partager "Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-01308137

https://hal.archives-ouvertes.fr/hal-01308137

Submitted on 27 Apr 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Co–Mn-oxide spinel catalysts for CO and propane

oxidation at mild temperature

Benjamin Faure, Pierre Alphonse

To cite this version:

Benjamin Faure, Pierre Alphonse. Co–Mn-oxide spinel catalysts for CO and propane oxidation at

mild temperature. Applied Catalysis B: Environmental, Elsevier, 2016, vol. 180, pp. 715-725.

�10.1016/j.apcatb.2015.07.019�. �hal-01308137�

(2)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 14529

To link to this article : DOI : 10.1016/j.apcatb.2015.07.019

URL :

http://dx.doi.org/10.1016/j.apcatb.2015.07.019

To cite this version : Faure, Benjamin and Alphonse, Pierre

Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild

temperature. (2016) Applied Catalysis B: Environmental, vol. 180. pp.

715-725. ISSN 0926-3373

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(3)

Co–Mn-oxide

spinel

catalysts

for

CO

and

propane

oxidation

at

mild

temperature

Benjamin

Faure

faure.benjamin.n@gmail.com,

Pierre

Alphonse

CIRIMAT-UPS,UniversitédeToulouse,118routedeNarbonne31062Toulousecedex09,France

Keywords: Mixedoxalate Cobaltitespinel Totaloxidation Propane VOCsremoval

a

b

s

t

r

a

c

t

CoxMn3−xO4oxides(0≤x≤3)werepreparedbycontrolleddecompositionofmixedoxalatesnear200◦C,

followedbyacalcinationat300◦C.Theseoxidesareamorphousforx<0.9.Forhighercobaltfractionthey

haveacubicspinelstructureandtheircrystallitesizegrowswiththecobaltfraction.Thesematerials havealargesurfacearea;thehighestvalues,exceeding250m2/g,wereobtainedforx2.Thespinel

oxidesexhibitanoutstandingcatalyticactivityforpropaneoxidationatmildtemperature(20–200◦C).

TheyarealsoactiveforCOoxidationatambienttemperature.Thishighactivitywascorrelatedbothwith thesurfaceareaandthecobaltconcentration.ThemostefficientmaterialisCo2,3Mn0,7O4,whichhasa

betteractivitythancobaltoxidecatalystsreportedintheliterature.

1. Introduction

Catalyticoxidationisaveryeffectivemethodfortheabatement oflowconcentrationsofVolatileOrganicCompounds(VOCs). Cur-rently,themostactivecatalystsaresupportednoblemetals[1–3]. Howeverthesecatalystsareveryexpensiveandtheiractivitycanbe stronglyinhibitedbyCO[4],waterorchloride[5].Forlow tempera-tureapplications,likeVOCsremovalinindoorair,preciousmetals canbereplacedbytransitionmetaloxides[6].Especiallyspinel cobaltoxide(Co3O4)wasreportedtobethebestcatalystforthe totaloxidationofCO[7]andhydrocarbons[6,8].Spineloxides,with thegeneralformulaAB2O4,containcationsitesofdifferent coordi-nation(tetrahedralandoctahedral)withtheoxideanionsarranged in a cubicclose-packed lattice.Partialsubstitution of cobaltby

manganesegivesmixedCo–Mnspineloxides,whichcanbebetter

catalyststhanCo3O4fortheoxidationofVOCs[9–11].

Mostoftenthecatalystsreportedintheliteratureare synthe-sizedathightemperature(>500◦C).Thisrequirement,unavoidable

for automotive catalytic converters, becomes useless for VOCs

abatementatmildtemperature(<300◦C).Actuallyitisexpected thatmetastablenanocrystalline oxides,withverylargeporosity andsurfacearea,willbehighlyactivecatalysts.Thiskindof

mate-rialscanbeeasilyobtainedbythermaldecomposition ofmetal

oxalates.Indeedaclosecontrolofthedecompositionallows

prepar-∗ Correspondingauthor.

E-mailaddress:alphonse@chimie.ups-tlse.fr(P.Alphonse).

ing mixed oxides with very high surface area (300–500m2/g)

[12,13].Moreoverthiseasyandinexpensivemethodisalsovery convenienttoobtainmixedoxides[14].

Thegoalofthisstudywasthesynthesisoflargesurfacearea CoxMn3−xO4 oxides (0≤x≤ 3) by controlled decomposition of

mixedoxalates and theevaluationof thecatalytic performance

of these metastable materialsfor the total oxidation of carbon

monoxideandpropaneatmildtemperature(20–200◦C).Carbon

monoxideisproducedinlargeamountbytransportation,industrial anddomesticactivities.Itisextremelytoxicandcatalytic oxida-tionintoCO2 constitutesthebestsolutionforCO removalfrom indoorair[7].Thuslowcost,preciousmetalfreecatalysts,

work-ingatroomtemperaturearehighlydemanded.Propaneislargely

usedasdomesticandindustrialfuel.Besidesitisalsothethirdmost commonmotorvehiclefuelintheworldbehindgasolineandDiesel fuel.Ontheotherhanditisgenerallyadmittedthatalkanesarethe leastreactiveamongVOCsandacatalystabletoremovepropaneat mildtemperaturesisexpectedtobeactiveforotherVOCsaswell.

2. Experimental

2.1. Synthesisofoxides

2.1.1. Preparationofmixedoxalates

MixedoxalatesCox/3Mn(3−x)/3C2O4.2H2Owereprecipitatedat

roomtemperaturebyquickintroductionofanaqueoussolution

ofcobaltandmanganesenitrates(200mL;0.2M)intoanaqueous

solution of ammonium oxalate (200mL; 0.22M) under

(4)

ousstirring.After30min,theprecipitatewasfiltered,thoroughly washedwithdeionizedwateranddriedinairat70◦C.

2.1.2. Thermaldecompositionofoxalates

Thethermaldecompositionofoxalateswascarriedoutina ver-ticaltubularfixed-bedflowreactorunderatmosphericpressure. Theinternaldiameterofreactorwas1cm.Theflowrateoftheinlet gas(4%O2inAr)was100cm3/min.Theoutletgascompositionwas

followedusingamassspectrometer(HPR20-QICfromHiden

Ana-lytical).ThetemperatureofthereactingsolidwasrecordedbyaK

thermocouplepositionedinsidethepowderedsample.Thissetup

allowedcontrollingboth thetemperatureofthereacting

mate-rialandthecompositionoftheatmosphere.Thetemperaturewas

increasedat2.5◦C/minuntilCO

2emissionwasdetected;fromthen

thedecompositionwasdoneinisothermalconditions.For

exam-ple,inthecaseofmanganeseoxalatethistemperaturewasabout

210◦C.WhenCO

2emissionwasover,toensureatotal decompo-sition,eveninthecoreofparticles,thepartialpressureofO2was

augmentedgraduallyto20%;thenthetemperaturewasincreased

at5◦C/minupto300Candmaintainedtothisvaluefor1h.

2.2. Thermalanalysis(TGA-DSC)

Thethermaldecompositionofoxalateswasstudiedby

thermo-gravimetricanalysis(TGA)anddifferentialscanningcalorimetry (DSC),usinga constantheatingrate(5◦C/min),ona TGA-DSC-1

Mettler–Toledodevicein thetemperaturerange30–600◦C. The

flowinggaswasamixture20%O2inAr.About5mgofoxalate

pow-derwereplacedina40mLaluminiumpanandthereferencewas

anemptyaluminiumpan.

2.3. PowderX-raydiffraction(PXRD)

ThecrystalstructurewasinvestigatedviapowderX-ray diffrac-tion.Datawascollected,atroomtemperature,withaBrukerAXS

D4–2 diffractometer,in theBragg–Brentanogeometry,using

filteredCuKaradiationandagraphitesecondary-beam monochro-mator.Diffractionintensitiesweremeasuredbyscanningfrom20 to80◦(2)withastepsizeof0.02(2).

Aquantitativeestimationofthelatticeparametersand peak

broadeningwasaccomplishedbyprofilefittingofthewholeXRD

patternsusingtheFullprofsoftware[15].Thepeakprofileswere

modeledbyThompson-Cox-Hastings[16]pseudo-Voigtfunctions.

The parameters refined were zero shift (2), background, cell

parametersandpeakshape.Thesizeandstraincontributiontothe integralbreadthofeachreflectionwerecalculatedbythesoftware.

Theinstrumentalbroadeningcontributionwasevaluatedbyusing

ana-aluminasample(NISTStandardReferenceMaterial1976b).

Thestructuralchangesversustemperaturewerefollowedby

HighTemperatureX-rayDiffraction(HTXRD)withaBrukerAXSD8

diffractometer(usingNi-filteredCuKaradiation)equippedwith

ahightemperaturechamber AntonPaarHTK1200N. Diffraction

intensitieswererecordedinsyntheticairflow(20%O2inN2),at fixedtemperature,every10◦C,intherange100–500C.The

heat-ingratebetweeneach stepwas10◦C/min.Thetime neededto

recordeachpatternwasabout15min.

2.4. Specificsurfacearea,poresizedistribution

Specificsurfaceareaandporesizedistributionwerecalculated fromnitrogenadsorption-desorptionisothermscollectedat77K, usinganadsorptionanalyzer(MicromeriticsTristarII3020).The

specificsurfaceareaswerecomputedfromadsorptionisotherms,

usingtheBrunauer–Emmett–Teller(BET)method[17].Thepore

sizedistributions(PSD)werecomputedfromdesorptionisotherms

bytheNLDFTmethod[18](withQuantachromeAutosorb-1

soft-wareusingsilicaequilibriumtransitionkernelat77K,basedona cylindricalporemodel).

Porevolume(Vpore)wascalculatedfromtheadsorbedvolume atarelativepressureof0.995(Vsat)by:

Vpore=

N2gasdensity N2liq.densityVsat

=0.00155Vsat

Priortoanalysis,toremovethespeciesadsorbedonthesurface, theoxalatesamples(about0.5g)weredegassedfor16hat70◦C whereastheoxidesamples(about0.1g)weredegassedfor16hat 90◦C(finalpressure<10−3Pa).

2.5. Electronmicroscopy

Transmission electron microscopy analyses were performed

withaJeolJEM-1400operatingat80kV.Sampleswereprepared

byputtingadropofanethanolsuspensionofparticlesona carbon-coatedcoppergrid.

Scanningelectronmicroscopyanalyseswereperformedwitha

SEMFEGFEIQuanta-250at20kV.Thesampleswerepreparedby

puttingadropofanethanolsuspensionofparticlesonanaluminum

sampleholder.Beforeanalysis,thesampleswerecoveredwitha

thinlayer(5nm)ofPtbysputtercoating.

2.6. ChemicalanalysisbyX-rayfluorescence

Theelementalcompositionwasdeterminedonpowder

sam-plesbyX-rayfluorescencewithaBrukerS2Rangerworkingwitha

maximumvoltageof50kVandacurrentof2mA.

2.7. Catalytictests

Theactivitiesofcatalystsweretested forCO andC3H8 total oxidation.Thesetestswereperformed,atambientpressure,ina tubularfixedbedflowglassreactor(internaldiameter=6mm).The catalystmasswasalwayscloseto0.05g.Thecatalystpowderwas

packedinthetubegivinga2–3mmbedlength.Thevolumetric

flowratewas1.63mLs−1givingacontacttimeof0.03s.Thesizeof catalystparticleswasabout10mm.Thereactoroperatesat differ-entialconditionsonlyforpropaneoxidation,atmildtemperatures (conversion<10%).Thereactantsweredosedbymassflow

con-trollers (Brooks5850).The catalysttemperaturewascontrolled

byaK-typethermocouplepositionedinsidethecatalystbed.For

COoxidationthetemperaturerangewas30–200◦Candtheinlet

gascompositionwas0.8%CO+20%O2inAr.ForC3H8 oxidation

thetemperaturerangewas30–300◦Candtheinletgas

composi-tionwas0.4%C3H8+20%O2 inAr.Thecatalysttemperaturewas increasedataheatingrateof200◦C/h.Thegasphasecomposition

duringthetestswasmonitoredbymassspectrometry(HPR20-QIC

fromHidenAnalytical).BeforetheCOoxidationtest,thecatalysts werefirstpretreatedwith20%O2inArfor60minat200◦C.The C3H8oxidationtestwasdoneafterCOtestwithoutany pretreat-ment.

3. Resultsanddiscussion

3.1. Characterizationofoxalateprecursors

3.1.1. XRD

TheXRDpattern(Fig.1)ofmanganeseoxalatecorrespondsto themonoclinicstructurewiththespacegroupC2/c(PDF# 00-025-0544)whereascobaltoxalatehastheorthorhombicstructurewith thespacegroupCccm(PDF#00-025-0250).Thestructureofmixed

Co–Mnoxalatesdependsontheirmanganesecontent.Foroxalates

(5)

Fig.1. ExamplesofXRDpatternsofCox/3Mn(3−x)/3C2O4.2H2OaftertheprofilefittingwiththeFULLPROFsoftware[15].Theupperpatternswereindexedforthemonoclinic

structure(PDF#00-025-0544)whereasthelowerpatternswereindexedfortheorthorhombicstructure(PDF#00-025-0250).

Table1

StructureparametersofCox/3Mn(3−x)/3C2O4.2H2Odeterminedbyprofilefittingof

XRDpatternswithFULLPROFsoftware[15].Disthecrystallitesize.

x Spacegroup a(nm) b(nm) c(nm) ˇ(◦) D(nm) 0 C2/c 1.200 0.565 0.998 128.3 52 0.6 C2/c 1.197 0.561 0.996 128.2 55 0.9 C2/c 1.194 0.557 0.996 128.1 51 1.6 Cccm 1.192 0.550 1.556 90 15 2.0 Cccm 1.188 0.545 1.557 90 17 2.3 Cccm 1.191 0.546 1.564 90 21 3 Cccm 1.187 0.542 1.557 90 32

structuregives abetteragreementwhereas,whenCoequalsor

exceedsMn,abestfitisobtainedwithorthorhombicstructure.The latticeparametersandthecrystallitesizearereportedinTable1. BothaandblatticeparametersdecreasewhentheproportionofCo increasesindicatingthatthesmallerCo2+ions(r=89pmHS) sub-stituteforthelargerMn2+ions(r=97pmHS).Thecrystallitesize isconstant,atabout50nm,forthemonoclinicstructureanddrops

near20nmwhenthestructurebecomesorthorhombic.However

thecrystallitesizeofcobaltoxalateislarger,atabout30nm,than thatofCo-richmixedoxalates.

3.1.2. Scanningelectronmicroscopy

TheSEMimagesforseveralcompositionsareshowninFig.2.

Theparticlemorphologychangesaccordingtothechemical

com-Table2

BETsurfacearea(SBET)andporevolume(Vpore)ofCox/3Mn(3−x)/3C2O4.2H2O

deter-minedfromN2adsorptionisothermsat77K.

x SBET(m2/g) CBET Vpore(cm3/g)

0 26±2 130 0.095±0.008 0.6 2.4±0.2 120 0.010±0.001 0.9 4.0±0.3 130 0.030±0.002 1.6 5.0±0.4 150 0.062±0.005 2.0 4.4±0.3 110 0.044±0.003 2.3 6.0±0.5 160 0.074±0.005 3 4.0±0.3 170 0.024±0.002

position.Theparticlesofmanganeserichoxalates(upperimages) areveryirregularinsizeandshapewhereastheparticlesofcobalt richoxalatesaremoreuniform.Theseparticlesareatleasttentimes largerthanthecrystallitesizedeterminedfromXRD.For2≤x<3 theparticlesaggregateinball-shapedunits(lowerleftimage).We didnotobservesuchaggregatesforcobaltoxalate,whichgivesrod likeparticles(lowerrightimage).

3.1.3. Specificsurfaceareaandporevolume

TheBETsurfacearea(SBET)andporevolume(Vpore)ofoxalates arereportedinTable2.Thesurfaceareasofallthecompounds con-tainingcobaltaresimilar,intherange4–6m2/g.Theyareatleast5 timeslowerthanthesurfaceareaofmanganeseoxalatewhichhas alsothelargestporevolume.Forthisoxalatewesuspectedthatthe

(6)

Fig.2. SEMimagesofsomeoxalates.

degassingprocedure(16hat70◦Cinvacuum)inducedthe begin-ningofdehydrationbecausetheonsettemperatureofdehydration waslowerthanformixedoxalates(seeSection3.2.1). Neverthe-lessdoublingtheevacuationtimedidnotchangesignificantlythe texturalproperties.

3.2. Decompositionofoxalateprecursors

3.2.1. Thermalanalysisofoxalatedecomposition

TheTGA-DSCanalysiscurvesforseveralcompositionsare

plot-tedin Fig.3.The decomposition occursin two main separated

stages:below200◦Ctheendothermicdehydrationgivingthe

anhy-drousoxalate,followed bythe exothermicdecomposition near

300◦C. Foran oxalatecontaining2H

2Opermole,themassloss duetodehydrationmustdecreaseslightlyfrom20.1%forx=0to 19.7%forx=3.Weobtaintheexpectedvalueformanganeseoxalate whereasthemasslossisonly19%forcobaltoxalate,indicatinga numberofwatermoleculesslightlylessthan2.Besides,forcobalt

oxalate,theendothermicdehydrationpeakhasasmallshoulder

ontherightsideequivalenttoabout10%ofthewholearea.This

peakisalwayspresentwhateverthemassofsampleanalyzedor

theheatingrate.Itcouldbetheindicationthatwehaveamixture

betweentheorthorhombicformandasmallamountofthe

mono-clinicpolymorphwiththespacegroupC2/c(PDF#00-025-0251)

notdetectedontheXRDpatterns.

Thermaldecompositionoftransitionmetaloxalateshydrates

hasbeenstudiedfor manyyears [19–33].It wasobserved that

the decomposition product for these oxalates depends on the

reducibilityofthemetalliccationinvolved[23,25,32].Withcations

presentingalowreducibility,likeMn2+,thedecompositionleads tothemetaloxidefollowingthereaction:

MnC2O4→MnO+CO+CO21H= 151kJ/mol (1)

WhereasformorereduciblecationslikeCo2+thedecomposition producesthemetal:

CoC2O4→ Co+2CO2H= 94kJ/mol (2)

Howeverinair,CoisoxidizedinCo3O4:

3Co+2O2→ Co3O41H=−891kJ/mol (3)

SimilarlyMnOwillbealsooxidizedinair.Accordingtothe reac-tionconditionstheproductwasreportedasMn3O4[34],Mn2O3

[22,35],MnO2[26]oramorphousMnOx[36].

Moreoverthemanganeseorcobaltoxidesformedareknownto

begoodcatalystsfortheCOoxidation[7]:

CO+1/2O2→ CO21H= −283kJ/mol (4)

Therefore,sincetheseoxidationreactionsareveryexothermic, theoveralldecompositionreactionislargelyexothermictoo.

Theeffectofcobaltfractiononsomecharacteristicsofmixed oxalatedehydrationanddecompositionisillustratedinFig.4.Four featuresarefollowed,theonsettemperatureofdehydration(Ti), thewidthofthedecompositionpeak(in◦C),theenthalpyof

dehy-drationand theenthalpyof decomposition.The upper-leftplot

shows thattheTi ofmixed oxalatesis closetotheTi ofcobalt

oxalate(130◦C) whereas thedehydration ofMn oxalatebegins

atleast30◦Cbelow.Thelower-leftplotshowsthattheenthalpy ofdehydrationis rathersimilarforallthesamplesanalyzed,at

(7)

Fig.3.TGA-DSCcurvesforsomeoxalates.

about520J/g(95kJ/moloxalate);onlytheenthalpyobservedfor manganeseoxalateisslightlylower.Thisvalueisveryclosetothe enthalpyreportedbyMaciejewskietal.[30].

Weobservedthattheonsettemperatureofdecomposition

aug-mentslinearly withthe cobalt content of oxalates, goingfrom

230◦C for manganese oxalate to255C for cobalt oxalate.The upper-rightplotshowsthatthewidthofthedecompositionpeak, whichislinkedtotherateofthereaction,markedlydecreaseswhen theproportionofcobaltincreases.Neverthelesstheenthalpyof

decomposition,estimatedbyintegrationoftheexothermicpeak,

doesnotrisemuchwiththecobaltfractionasshownbythe lower-rightplot.Thisis confirmedby theredlinein this plot,which

correspondstothe valuescalculated fromthermodynamicdata

(1fH◦298)[37,38]assumingtheformationofanidealsolidsolution havingthespinelstructure(cf.§3.2.2).Thereforewethinkthatthe increaseofthedecompositionratewiththeproportionofcobalt couldbeexplainedbytheveryhighreactivityofmetalcobaltin oxygencontainingatmospheres.Thustoavoidatemperature over-shoot,leadingtoafastgrowthofcrystallites,thedecompositionof cobalt-richoxalatesshallbeperformedinisothermalconditionand lowoxygenpartialpressure.

3.2.2. HT-XRDofoxalatedecomposition

Thethermaldecompositionoftheoxalateswasalsofollowed

byHT-XRD.Thesampleswereheatedbystepof10◦Cat5C/min. Takingintoaccountthetimerequiredtorecordeachpattern,the heatingrateontheaveragewasabout0.5◦C/min.Thus,compared withTGA-DSCforwhichtheheatingratewas5◦C/min,apeakshift

towardlowertemperaturecanbeexpected.

TherelevantXRDpatternsforseveralcompositionsareplotted inFig.5.Theupper-leftchartcorrespondstomanganeseoxalate.

Thefirstpattern,recordedat150◦C,correspondstotheanhydrous oxalatewhichhasanorthorhombicstructurewiththespacegroup

Pmna(PDF#00-032-0646).Thisanhydrousoxalatedecomposes

from230◦Ctogiveanamorphousphasewhichcrystallizesonlyat 400◦CincubicMn

2O3(bixbyite)withthespacegroupIa3(PDF#

00-041-1442).Thistransformationgivesasmallexothermalpeak

togetherwithaslightmasslossat450◦ContheTGA-DSCplot(see

Fig.3,x=0).

The upper-right plot corresponds to the mixed oxalate

Co0.2Mn0.8C2O4.2H2O(xCo=0.6).Theanhydrousoxalatepatternis observedfrom140◦C.Likeformanganeseoxalate,thisanhydrous oxalatedecomposesfrom220◦Ctogiveanamorphousphasewhich crystallizesat450◦Cinatetragonallydeformedspinel(spacegroup I41/amd)likeMn3O4(hausmannite,PDF#00-024-0734).Mn3O4 isa “normal”spinelbecauseallMn3+cationsarelocatedin the octahedralsites,givingthecationdistributionMn2+[Mn3+]

2O4[39]. Bordeneuveetal.[40],fromneutrondiffractiondatarecordedon CoxMn3-xO4ceramics,showedthat,forx<1,thesubstitutionoccurs onlyinthetetrahedralsitewhereCo2+replacesMn2+.

Thedeformationofthecubicspinelstructureiscorrelatedwith adistortionofthecoordinationoctahedronaroundMn3+,usually interpretedasaconsequenceofthecooperativeJahn–Tellereffect

[41].

The lattice parameters of hausmannite are a=0.576nm and

c=0.944nm[41].Profilematching(usingFullProfsoftware[15])

gives a=0.575nm and c=0.938nm for the pattern recorded at

450◦Canda=0.576nmandc=0.938nmforthepatternrecordedat 500◦C.Thelowercvalueinoursamplescouldoriginatefrom par-tialoxidationofMn3+intonon-distortingMn4+intheoctahedral sitesbecause,inhausmannitestructure,thecoordination octahe-dronaroundMn3+areelongatedapproximatelyparallelto[001].

(8)

Fig.4.EffectofcobaltfractionontheonsettemperatureofdehydrationTi(upper-left),thewidthofthedecompositionpeak(upper-right),theenthalpyofdehydration

(lower-left)andtheenthalpyofdecomposition(lower-right).

Profilematchingalsoprovidesanestimationofthecrystallitesize D;wefoundD=12nmfor450◦CandD=14nmfor500C.

Itisworthnoticingthatthecrystallizationobservedat450◦C isassociatedwithasmallmasslossonTGcurvebut,unlike man-ganeseoxalate,givesnodetectablethermalevent(Fig3,x=0.6). Thiscouldbeanindicationthat,inthis case,thecrystallization involvesonlylittlechangeinthestructuralarrangementofatoms, becausetheamorphousstatehasaproto-spinelstructureasitwas

previouslyassumedfornickelmanganitespinelspreparedbylow

temperaturedecompositionofmixedoxalates[42].

The lower-left plot corresponds to the mixed oxalate

Co0.3Mn0.7C2O4.2H2O (x=0.9). The dehydration occurs above

130◦C giving a compound with a XRD pattern similar to the

monocliniccobaltoxalatewiththespacegroupP21/n(PDF#

00-037-0719). This compound decomposes at 240◦C generating a

poorlycrystallinephasecorrespondingtothecubicspinel(space groupFd-3m).Then,from350◦C,thisphaseisprogressively con-vertedinthetetragonalspinel.Profilematchinggivesa=0.574nm, c=0.930nmandD=16nmforthepatternrecordedat500◦C.

Thecriticalconcentrationof distortingMn3+required inthe octahedralsitestotriggertheJahn–Tellereffectisabout55%[41]. Thusthetransientformationofthecubicspinelcouldbeexplained bythepartialoxidation,aftertheoxalatedecomposition,ofmore

than45% of Mn3+ into non-distorting Mn4+

. From 350◦C Mn4+ cationsarereducedinMn3+inducingtheprogressiveconversion inthetetragonalspinel.

Inthecaseofcobaltoxalate(lower-rightplot)thedehydration occursabove140◦C,givingthemonocliniccobaltoxalate(PDF#

00-037-0719),which startstodecomposeat230◦C toyieldthe

cubicspinelCo3O4(spacegroupFd-3m,PDF#00-042-1467). Pro-filematching,forthepatternrecordedat300◦C,givesa=0.809nm andD=12nm.

3.3. Characterizationofoxidesusedascatalysts

3.3.1. XRD

Whatever the decomposition temperature of oxalates, the

oxidesusedascatalystswereheatedinairat300◦Cfor1h.The crystal structure, latticeparameter and crystallite sizeof these materialsarereportedinTable3.Asshownintheprevious sec-tion,theoxidesforwhichx<0.9areamorphous.TheXRDpattern ofCo0.9Mn2.1O4showsverybroadlinescorrespondingtoacubic spinelcompoundbutisistoopoorlycrystallizedtoevaluateitscell parameterandcrystallitesize.Forx>0.9alltheproductshavea cubicspinelstructure.Thecellparametersofthemixedoxidesare slightlylargerthanthecellparameterofCo3O4.Neutrondiffraction dataonceramicsshowedthat,for1<x<2,thetetrahedralsitesare fullyoccupiedbyCo2+andthesubstitutionnowoccursin octahe-dralsiteswhereMn3+isreplacedbothbyCo2+andCo3+bearing inmindthateachCo2+alsoimpliestheoxidationofoneMn3+in Mn4+topreservetheglobalelectroneutrality[40].BecauseCo2+ andMn3+ionshavealargerdiameter(respectively,79and72pm)

(9)

Fig.5. XRDpatternsrecordedatincreasingtemperatureduringthedecompositionofoxalatesinair.

thanLSCo3+ions(55pm)itisexpectedthatthecellparameterof mixedoxidesbelargerthanthatofCo3O4.Thebiggestcell param-eterisobservedforx=2probablybecausethisoxidecontainsthe largestamountofCo2+.Furthermoretheincreaseofcobaltcontent isassociatedwithasignificantgrowthofthecrystallite.

3.3.2. Electronmicroscopy

Atmediummagnification,theSEMimagesofoxalatesbefore

and after decomposition are similar as shown in the case of

Co2.3Mn0.7O4 in Fig.6(left andcenter images). Thus, despitea masslosscloseto60%,whenthereactionconditionsallows

con-Table3

Microstructuralandtexturalpropertiesofmixedoxides(CoxMn3−xO4)obtainedafterheatinginairat300◦C.StructuralparameterswasdeterminedbyprofilefittingofXRD

patternswithFULLPROFsoftware[15];Disthecrystallitesize.BETsurfacearea(SBET)andporevolume(Vpore)werecalculatedfromN2adsorptionisothermsat77K.The

valuesofSBETandVporearetheaverageofseveralmeasurements.

x Structure a(nm) D(nm) SBET(m2/g) CBET Vpore(cm3/g)

0 Amorphous 90±5 110 0.16±0.01 0.6 Amorphous 100±10 140 0.21±0.02 0.9 Cubicspinel 230±20 160 0.28±0.03 1.6 Cubicspinel 8.11 6 270±30 50 0.33±0.04 2.0 Cubicspinel 8.12 7 260±30 40 0.48±0.05 2.3 Cubicspinel 8.10 9 220±20 35 0.29±0.03 3 Cubicspinel 8.09 16 60±5 50 0.27±0.01

(10)

Fig.6.SEMimagesofCo0.77Mn0.23C2O4.2H2Ooxalate(leftimage)andCo2.3Mn0.7O4oxide(middleimage).TEMmicrographofCo2.3Mn0.7O4oxide(rightimage). trollingthedecompositionrate,theexternalshapeoftheoxalate

particlesiskept.Itispossibleonthecentralmicrographytomake outmanycracksindicatingthattheoxideparticlesarehighly frac-turedbuttheporosityismoreeasilyevidencedontheTEMimage whichclearlyshowsthevoidbetweencrystallites(rightimage). Thecrystallitesizeisin goodagreementwiththesizeobtained

fromXRD.

3.3.3. Specificsurfacearea,porevolumeandporesize

distribution(PSD)

TheBETspecificsurfaceareas(SBET)andtheporevolume(Vpore) ofthematerialsheatedat300◦C,calculatedfromtheN

2

adsorp-tionisotherms,arereportedinTable3.Inthecaseofmixedoxides, weobservethatSBETisstronglydependentofthedecomposition conditionssothat,forseveralpreparationsdoneinsimilar condi-tions,SBETcandifferbyabout20%.Monometallicandamorphous oxideshavethelowestsurfaceandporevolume.ThehighestSBETis obtainedforx≈2;abovethisvaluetheincreaseofcobaltcontentis associatedwithadiminutionofthesurfaceareaandporevolume. Thehighsurfaceareaandporosityofoxidesstronglycontrast withthelowtexturalpropertiesmeasuredonoxalates(seeTable2). Thislargeinterfaceiscreatedbecausethereisalmostno shrink-ageoftheoxalateparticlesinducedbythebigmasslossoccurring

duringdecompositionprocess.

Somerepresentativeisothermsand theirassociatedPSD,

cal-culatedusingNLDFTmethod,areplottedinFig.7.Theporosityof thesematerialspansawiderange,frommicroporestomacropores; howevertheirPSDvariesconsiderablyaccordingtothecobalt frac-tion.Theapproximatecorrelationbetweenthecrystallitesizeand thepositionofthemainpeakofPSDletssupposethatthe meso-porescorrespondtotheinter-crystallitespaces.Theporesinthe

macroporerangeareprobablyduetotheinter-granularporosity

correspondingforexampletothevoidbetweentheparticles. 3.4. Catalyticactivity

Thecatalyticactivityofthemonometallicand mixedoxides,

forCOandC3H8totaloxidation,ispresentedinFig.8.These

mea-surementswerenotdoneatsteadystatebutwithadynamicramp

rateoftemperature(200◦C/h)andon-linemonitoringusingmass

spectrometry.For COoxidation,toreachthemaximumactivity,

thecatalystswereheated ina drygasflow (20%O2 inAr).For

propaneoxidationthispre-treatmentwasnotrequiredtoobtain

optimumactivity.WedetectedonlyCO2 andH2Oasproductsof oxidationandthecarbonbalancewascloseto100%within2%.All thecatalystsweretestedoverthetemperaturerange(20tests). SomerepresentativeCO(left)andC3H8(right)conversioncurves versustemperature(light-offcurves)areshownontheupperplots

ofFig.8.Wenoticedthatthesameoxalatedecomposedinwhat

Fig.7.N2adsorption-desorptionisothermsandtheirassociatedporesize

distribu-tion(PSD)calculatedusingNLDFTmethod[18].

seemstobethesameconditionscouldproducetwocatalysts hav-ingsignificantdifferencesinactivity.Thisisillustratedinthelower chartswheretheconversionobservedat60◦CforCO (left)and 200◦CforC

3H8 (right)areplotted versustheamountofcobalt. Despitethescatteringoftheresults,theeffectofthesubstitutionof manganesebycobaltseemsrathersimilarforbothreactions. Espe-ciallyweobservethat,forx<0.9,thesubstitutiondoesnotchange theactivitywhereasforx=0.9theactivityisclearlybetter(about3 times).BesidesCo3O4hasaloweractivitythanCo2.3Mn0.7O4which seemstobethebestcomposition.

The boost of activity for x=0.9 is associated with a strong increaseofSBETwhichrisesfrom100to230m2/g.Inanattempt todissociatetheeffectofspecificareafromtheinfluenceofcobalt concentration,wecalculated,fromtheconversionrateandSBET, theintrinsicactivity,Ai,definedasthenumberofreactantmmoles convertedpersecondandperm2ofcatalyst.Thisintrinsic activ-ity,plottedagainstthecobaltfraction,isshowninFig.9.Inthe caseofCOoxidationAidoesnotappeartobedirectlydependentof cobaltfractionbelowx=1.5.Thenastrongimprovementof

(11)

activ-Fig.8. ExamplesoftheCO(upper-left)andC3H8(upper-right)conversioncurvesversustemperature(light-offcurves).Effectofcobaltfractionontheconversionobserved

at60◦CforCO(lower-left)and200CforC

3H8(lower-right).

(12)

Figure10.CO(left)andpropane(right)conversionwithtimeonstreamforCo2.3Mn0.7O4catalyst.

Table4

Comparisonofcatalystactivityforpropaneoxidationat200◦C.

Ref. Catalyst Catalystmass(g) Flowrate(cm3/min) InletC

3H8concentration(%) %C3H8conv.at175◦C Activityat175◦C(mmols−1g−1)

[49] Co3O4 0.25 50 0.80 21 0.25

[50] 4%Au/Co3O4 0.25 50 0.80 32 0.38

[51] Co3O4 0.05 98 0.37 5 0.27

thiswork Co2,3Mn0,7O4 0.05 98 0.37 8 0.43 ityisobservedforhighercobaltcontent.Forpropaneoxidation,a

similarcorrelationbetweenAiandcobaltfractionisobservedfor x>1.5.Belowx=1.5,thecorrelationislessclear.

Severalworkshavedemonstratedthattheoctahedralsitesare

almost exclusivelyexposed at the surface of the spinel oxides

[43–45].Moreoverit wasalsoshown thatthe catalyticactivity ofcobaltoxideswasduetoCo3+ionsinoctahedralsites[45,46]. Hence,forlowcobaltcontent,itisexpectedthatthecatalytic activ-itydoesnotchangemuchbecausethesubstitutionoccursonlyin theinactivetetrahedralsiteswhereCo2+replacesMn2+.Whenthe tetrahedralsitesarefullyoccupiedbyCo2+(x>1)thesubstitution occursinoctahedralsitescreatingactiveCo3+ions[40].

Theapparentactivationenergyforpropaneoxidationwas deter-minedfromArrheniusplotsintheconversionrange0–10%.Except formanganeseoxide,itwasfoundalmostconstantat60±10kJ/mol whateverthecobaltconcentration.ForMnOxtheactivationenergy isslightlyhigherat75±10kJ/mol.

InthecaseoftheCOoxidationtheconversionistoohightoallow thecalculationofactivationenergy.

Forthebestcatalyst(Co2.3Mn0.7O4)wefollowedtheeffectofthe

oxalatedecompositiontemperature(intherange220–300◦C)on

thecatalyticactivityforpropaneoxidation.Althoughthevariations inactivitywereofthesameorderofmagnitudeasthedifferences

betweenreplicatesitseemsthattheoptimumdecomposition

tem-peratureis280◦C.

Thelong-termstabilityoftheconversionwastestedwiththe bestcatalyst(Co2.3Mn0.7O4).TheleftplotofFig.10showsthatthe COconversiondecreasesbyabout8%duringthefirsthalfofthe test.Thenitseemstoremainstableuntiltheendofthetest.

Unex-pectedlyweobservedvariationsoftemperatureassociatedwith

variationsofconversion.Wecouldnotdetermineifitwasthe

tem-peraturechangethatinducedconversionchangeortheconverse.

Asregardspropaneoxidation,therightplotofFig.10indicatesthat theconversionwasstableformorethan14hat160◦C.

Tocomparethecatalyticactivityofourmaterialswiththedata reportedintheliteraturewecalculatedthespecificactivitydefined

asthenumberofreactantmmolesconvertedpersecondandper

gramofcatalyst.

AsitwasdemonstratedthatCOconversionwasstrongly depen-dentupontheamountofwaterintheinletgas[46–48]welimited

ourcomparisontopropaneoxidation.Thiscomparisonrevealed

(Table4)thatCo2.3Mn0.7O4activitywasmorethan50%higherthan thatofCo3O4catalystsfoundinthemostrecentpublicationsand wassimilartocatalystsforwhichpreciousmetalhavebeenadded toenhancetheactivity.

4. Conclusion

Cobalt-manganesemixedoxalatedihydratescrystallizeinthe

monoclinicstructurewhenthecobaltfractionis lowerthan0.5

andinorthorhombicstructureotherwise.Thecontrolled

decom-positionoftheseoxalatesnear200◦C,followedbyacalcinationat 300◦C,stronglyrestrainstheshrinkageofparticlesandthe crys-tallitesintering,producingmixedoxidesCoxMn3−xO4withavery largesurfacearea.Forx<0.9thesematerialsareamorphous.For x≥0.9theyhaveacubicspinelstructureandtheircrystallitesize increaseswiththecobaltfraction.

Thesespineloxidesexhibitanoutstandingcatalyticactivityfor propaneoxidation.TheyarealsoactiveforCOoxidationevenat

ambienttemperature.Thishighactivityiscorrelated both with

the surface area and the cobalt concentration. For manganese

oxide the apparent activation energy for propane oxidation is

75±10kJ/molwhereasitis60±10kJ/molandnearlyindependent ofcobaltfractionfortheothercatalysts.Themostefficientmaterial isCo2,3Mn0,7O4,whichhasanactivitymorethan50%higherthan thebestCo3O4catalystsreportedintheliterature.

Acknowledgments

ThisworkwasfinanciallysupportedbytheDGEandtheRegional CouncilofMidi-PyrénéesintheframeworkoftheSOFTAIRproject. References

[1]L.F.Liotta,Catalyticoxidationofvolatileorganiccompoundsonsupported noblemetals,Appl.Catal.B:Environ.100(2010)403–412.

(13)

[2]M.Ousmane,L.F.Liotta,G.Carlo,Di,G.Pantaleo,A.M.Venezia,G.Deganello,L. Retailleau,A.Boreave,A.Giroir-Fendler,SupportedAuCatalystsFor Low-TemperatureAbatementofPropeneandToluene,AsModelVOCs: SupportEffect,Appl.Catal.B:Environ.101(2011)629–637.

[3]V.P.Santos,S.A.C.Carabineiro,P.B.Tavares,M.F.R.Pereira,J.J.M.Orfao,J.L. Figueiredo,OxidationofCO,ethanolandtolueneoverTiO2supportednoble

metalcatalysts,Appl.Catal.B:Environ.99(2010)198–205.

[4]M.J.Patterson,D.E.Angove,N.W.Cant,Theeffectofcarbonmonoxideonthe oxidationoffourC6–C8hydrocarbonsoverplatinum,palladiumand rhodium,Appl.Catal.B:Environ.26(2000)47–57.

[5]P.Marecot,A.Fakche,B.Kellali,G.Mabilon,P.Prigent,J.Barbier,Propaneand propeneoxidationoverplatinumandpalladiumonalumina:effectsof chlorideandwater,Appl.Catal.BEnviron.3(1994)283–294.

[6]G.Busca,M.Daturi,E.Finocchio,V.Lorenzelli,G.Ramis,R.J.Willey,Transition metalmixedoxidesascombustioncatalysts:preparation,characterization andactivitymechanisms,Catal.Today33(1997)239–249.

[7]S.Royer,D.Duprez,Catalyticoxidationofcarbonmonoxideovertransition metaloxides,ChemCatChem3(2011)24–65.

[8]B.Solsona,I.Vazquez,T.Garcia,T.E.Davies,S.H.Taylor,Completeoxidationof shortchainalkanesusingananocrystallinecobaltoxidecatalyst,Catal.Lett. 116(3–4)(2007)116–121.

[9]J.Zhu,QiumingGao,MesoporousMCo2O4(M=Cu,MnandNi)spinels:

structuralreplication,characterizationandcatalyticapplicationinCO oxidation,Micropor.Mesopor.Mater.124(2009)144–152.

[10]S.Todorova,H.Kolev,J.P.Holgado,G.Kadinov,Ch.Bonev,R.Pereniguez,A. Caballero,Completen-hexaneoxidationoversupportedMn–Cocatalysts, Appl.Catal.B:Environ.94(2010)46–54.

[11]B.Puertolas,A.Smith,I.Vazquez,A.Dejoz,A.Moragues,T.Garcia,B.Solsona, Thedifferentcatalyticbehaviourinthepropanetotaloxidationofcobaltand manganeseoxidespreparedbyawetcombustionprocedure,Chem.Eng.J. 229(2013)547–558.

[12]C.Drouet,P.Alphonse,Synthesisofmixedmanganiteswithhighsurfacearea bythermaldecompositionofoxalates,J.Mater.Chem.12(2002)3058–3063. [13]V.Iablokov,K.Frey,O.Geszti,N.Kruse,HighcatalyticactivityinCOoxidation

overMnOxnanocrystals,Catal.Lett.134(2010)210–216.

[14]J.Robin,Etudedesoxalatesmétalliquescommematièrespremièrespourla preparationdesolutionsolidesd’oxydes,BulletindelaSociétéChimiquede France20(1953)1078–1084.

[15]J.Rodríguez-Carvajal,RecentdevelopmentsoftheprogramFULLPROF, Commissiononpowderdiffraction(IUCr)Newsletter26,12–19.

[16]P.Thompson,D.E.Cox,J.B.Hastings,RietveldrefinementofDebye-Scherrer synchrotronX-raydatafromAl2O3,J.Appl.Crystallogr.20(1987)79–83.

[17]S.Brunauer,P.Hemmett,E.Teller,Adsorptionofgasesinmultimolecular layers,J.Am.Chem.Soc.60(1938)309–319.

[18]N.Seaton,J.Walton,N.Quirke,Anewanalysismethodforthedetermination oftheporesizedistributionofporouscarbonsfromnitrogenadsorption measurements,Carbon27(1989)853–861.

[19]D.Dollimore,D.Nicholson,Thethermaldecompositionofoxalates:partI, Var.Surf.AreaTemp.Treat.AirJ.Chem.Soc.96(1962)0–96.

[20]D.Broadbent,D.Dollimore,J.Dollimore,Thethermaldecompositionof oxalates.partVII.Theeffectofpriordehydrationconditionsuponthe subsequentdecompositionofcobaltoxalate,J.Chem.Soc.A.(1966) 1491–1493.

[21]D.Dollimore,J.Dollimore,J.Little,Thethermaldecompositionofoxalates. PartX.Nitrogenadsorptiondataonsolidresiduesfromtheisothermalheat treatmentofmanganese(II)oxalatedihydrate,J.Chem.Soc.A.(1969) 2946–2951.

[22]M.E.Brown,D.Dollimore,A.K.Galwey,Thermaldecompositionof manganese(II)oxalateinvacuumandinoxygen,J.Chem.Soc.FaradayTrans. 170(1974)1316–1324.

[23]K.Nagase,K.Sato,N.Tanaka,Thermaldehydrationanddecomposition reactionsofbivalentmetaloxalatesinthesolidstate,Bull.Chem.Soc.Jpn.48 (1975)439–442.

[24]J.Mu,D.D.Perlmutter,Thermaldecompositionofcarbonates,carboxylates, oxalates,acetatesformatesandhydroxides,Thermochim.Acta49(1981) 207–218.

[25]D.Dollimore,Thethermaldecompositionofoxalates.Areview,Thermochim. Acta117(1987)331–363.

[26]X.Gao,D.Dollimore,Thethermaldecompositionofoxalates.Part26.A kineticstudyofthethermaldecompositionofmanganese(II)oxalate dihydrate,Thermochim.Acta215(1993)47–63.

[27]A.Coetzee,M.E.Brown,D.J.Eve,C.A.Strydom,Kineticsofthethermal dehydrationsanddecompositionsofsomemixedmetaloxalates,J.Therm. Anal.41(1994)357–385.

[28]A.K.H.Nohman,H.M.Ismail,G.A.M.Hussein,Thermalandchemicaleventsin thedecompositioncourseofmanganesecompounds,J.Anal.Appl.Pyrolysis 34(2)(1995)265–278.

[29]A.K.Nikumbh,A.E.Athare,S.K.Pardeshi,Thermalandelectricalpropertiesof manganese(II)oxalatedihydrateandcadmium(II)oxalatemonohydrate, Thermochim.Acta326(1999)187–192.

[30]M.Maciejewski,E.Ingier-Stocka,W.D.Emmerich,A.Baiker,Monitoringofthe gasphasecomposition:aprerequisiteforunravellingthemechanismof decompositionofsolids.Thermaldecompositionofcobaltoxalatedihydrate, J.Therm.Anal.Calorim.60(2000)735–758.

[31]B.V.L’vov,Kineticsandmechanismofthermaldecompositionofnickel, manganese,silver,mercuryandleadoxalates,Thermochim.Acta364(2000) 99–109.

[32]B.Malecka,E.Drozdz-Cielsa,P.K.Olszewski,Kineticsofthermal

decompositionofmanganese(II)oxalate,J.Therm.Anal.Calorim.74(2003) 485–490.

[33]M.A.Mohamed,A.K.Galwey,S.A.Halawy,Acomparativestudyofthethermal reactivitiesofsometransitionmetaloxalatesinselectedatmospheres, Thermochim.Acta429(2005)57–72.

[34]B.Donkova,D.Mehandjiev,Mechanismofdecompositionofmanganese(II) Oxalatedihydrateandmanganese(II)oxalatetrihydrate,Thermochim.Acta 421(2004)141–149.

[35]M.E.Brown,D.Dollimore,A.K.Galwey,Thermochemistryofdecompositionof manganese(II)oxalatedihydrate,Thermochim.Acta21(1977)103–110. [36]V.Iablokov,K.Frey,O.Geszti,N.Kruse,HighcatalyticactivityinCOoxidation

overMnOxnanocrystals,Catal.Lett.134(2010)210–216.

[37]N.B.S.The,Tablesofchemicalthermodynamicproperties,J.Phys.Chem.Ref. Data11(supplementno.2)(1982).

[38]O.Kubaschewski,C.B.Alcock,P.J.Spencer,MaterialsThermochemistry,6th ed.,PergamonPress,1993.

[39]Y.Xiao,D.E.Wittmer,F.Izumi,S.Mini,T.Graber,P.J.Viccaro,Determinationof cationsdistributioninMn3O4byanomalousX-raypowderdiffraction,Appl.

Phys.Lett.85(2004)736–738.

[40]H.Bordeneuve,C.Tenailleau,S.Guillemet-Fritsch,R.Smith,E.Suard,A. Rousset,StructuralvariationsandcationdistributionsinMn3−xCoxO4

(0<x<3)denseceramicsusingneutrondiffractiondata,SolidStateSci.12 (2010)379–386.

[41]D.Jarosch,Crystalstructurerefinementandreflectancemeasurementsof hausmannite,Mn3O4,Mineral.Petrol.37(1987)15–23.

[42]C.Laberty,M.Verelst,P.Lecante,P.Alphonse,A.Mosset,A.Rousset,Awide angleX-rayscattering(WAXS)studyofnonstoichiometricnickelmanganite spinelsNiMn2h3ı/4O4+ı,J.SolidStateChem.129(1997)271–276.

[43]M.Shelef,M.A.Z.Wheeler,H.C.Yao,Ionscatteringspectrafromspinel surfaces,Surf.Sci.47(1975)697–703.

[44]J.P.Jacobs,A.Maltha,J.G.H.Reintjes,J.Drimal,V.Ponec,H.H.Brongersma,The surfaceofcatalyticallyactivespinels,J.Catal.147(1994)294–300.

[45]K.Omata,T.Takada,S.Kasahara,M.Yamada,Activesiteofsubstitutedcobalt spine1oxideforselectiveoxidationofCO/H2.PartII,Appl.Cata.A:Gen.146

(1996)255–267.

[46]X.Xie,Y.Li,Z.Q.Liu,M.Haruta,W.Shen,Low-temperatureoxidationofCO catalysedbyCo3O4nanorods,Nature458(2009)746–749.

[47]Y.F.YuYao,TheoxidationofhydrocarbonsandCOovermetaloxides:III. Co3O4,J.Catal.33(1974)108–122.

[48]F.Grillo,M.M.Natile,A.Glisenti,Lowtemperatureoxidationofcarbon monoxide:theinfluenceofwaterandoxygenonthereactivityofaCo3O4

powdersurface,Appl.Catal.B:Environ.48(2004)267–274.

[49]T.Garcia,S.Agouram,J.F.Sanchez-Royo,R.Murillo,A.M.Mastral,A.Aranda,I. Vazquez,A.Dejoz,B.Solsona,Deepoxidationofvolatileorganiccompounds usingorderedcobaltoxidespreparedbyananocastingroute,Appl.Cata.A: Gen.386(2010)16–27.

[50]B.Solsona,E.Aylon,R.Murillo,A.M.Mastral,A.Monzonis,S.Agouram,T.E. Davies,S.H.Taylor,T.Garcia,Deepoxidationofpollutantsusinggold depositedonahighsurfaceareacobaltoxidepreparedbyananocasting route,J.Hazard.Mater.187(2011)544–552.

[51]G.Salek,P.Alphonse,P.Dufour,S.Guillemet-Fritsch,C.Tenailleau, Low-temperaturecarbonmonoxideandpropanetotaloxidationby nanocrystallinecobaltoxides,Appl.Catal.B:Environ.147(2014)1–7.

Figure

Fig. 1. Examples of XRD patterns of Co x/3 Mn (3−x)/3 C 2 O 4 .2H 2 O after the profile fitting with the FULLPROF software [15]
Fig. 2. SEM images of some oxalates.
Fig. 3. TGA-DSC curves for some oxalates.
Fig. 4. Effect of cobalt fraction on the onset temperature of dehydration T i (upper-left), the width of the decomposition peak (upper-right), the enthalpy of dehydration (lower-left) and the enthalpy of decomposition (lower-right).
+5

Références

Documents relatifs

Cette approche n’est cependant pas complètement satisfaisante, puisque de nombreuses requêtes ne contiennent pas de tels mots-clefs mais des combinaisons de mots qui, séparément,

Pour l’ann´ee 1991-1992 Bruno Torr´esani et Philippe Tchamitchian organis`erent au CPT `a Marseille une seconde « Ann´ee Ondelettes » qui donna lieu `a plusieurs manifestations :

Nous avons mis en œuvre un code numérique pour l’étude de la ventilation traversante naturelle dans une cavité ouverte. Nous avons choisi un modèle de pièce qui sera la base

Human OA and mouse articular chondrocytes were stimulated with increasing concentrations of visfatin (1, 2.5, 5 and 10 μg/mL) for 24 hours and NGF mRNA expression and release

En détail, il s’agit d’un unique câble à fibre optique, placé sur deux circonférences, avec deux méthodes de fixation (Figure 1); pour faciliter les comparaisons, les lieux de

Ces médi caments sont généralement issus de la pharmacopée traditionnelle et sont couramment uti lisés par la communauté avec une amélioration de la présentation

In this paper we prove there is no exact packing measure for the level sets of stable trees (including the Brownian case) and we also prove that there is no exact Hausdorff measure

(a) Silica nanoparticles coated with a supported lipid bilayer [17]; (b) gold particles embedded within the lipid membrane of a vesicle [31]; (c) silica particles adsorbed at