• Aucun résultat trouvé

1 . S h o r t H is to r y

N/A
N/A
Protected

Academic year: 2022

Partager "1 . S h o r t H is to r y"

Copied!
16
0
0

Texte intégral

(1)

Arithmetic and Cryptography

Michel Waldschmidt

A m o n g th e u n e x p e c te d fe a tu re s o f r e c e n t d e v e l- o p m e n ts in te c h n o lo g y a r e th e c o n n e c tio n s b e - tw e e n c la ssic a l a r ith m e tic o n th e o n e h a n d , a n d n e w m e th o d s fo r r e a c h in g a b e tte r se c u r ity o f d a ta tr a n sm issio n o n th e o th e r . W e w ill illu stra te th is a s p e c t o f th e su b je c t b y sh o w in g h o w m o d - e rn c r y p to g r a p h y is r e la te d to o u r k n o w le d g e o f so m e p ro p e r tie s o f n a tu r a l n u m b e r s. A s a n e x - a m p le , w e e x p la in h o w p r im e n u m b e r s p la y a k e y r o le in th e p r o c e ss w h ic h e n a b le s y o u to w ith - d r a w s a fe ly y o u r m o n e y fr o m y o u r b a n k a c c o u n t u sin g A T M (A u to m a te d T e lle r M a c h in e s) w ith y o u r se c re t P IN (P e r so n a l Id e n ti¯ c a tio n N u m - b e r ) c o d e .

1 . S h o r t H is to r y

O ld cry p to g ra p h y m eth o d s relied o n elem en ta ry o p era - tio n s o n th e sy m b o ls o f th e in itia l tex t, a sim p le ex a m p le b ein g to rep la ce ea ch letter b y a n o th er o n e fo llow in g a g iv en ru le w h ich w a s su p p o sed to b e k n ow n o n ly b y th e sen d er a n d th e receiv er. J u liu s C a esa r is o ften q u o ted a s u sin g th e co d e w h ich co n sists in sh iftin g ea ch letter o f th e a lp h a b et b y a g iv en n u m b er o f p la ces. M a n y va ri- a n ts h av e b een in tro d u ced , b u t n ow it is k n ow n th a t n o n e o f th em is rea lly relia b le: it is ea sy to d ecip h er su ch m essa g es w ith o u t k n ow in g th e k ey, a n d o n e ca n ev en recov er th e k ey fro m a n en co d ed m essa g e.

T o b rea k su ch a co d e, o n e e± cien t p ro cess is to p er- fo rm a sta tistica l stu d y o f o ccu rren ces o f th e d i® eren t letters. T h is id ea w a s u sed a s ea rly a s IX -th cen tu ry b y A b u Y o u sso u f Y a q u b Ish a q A l K in d i w h o ch eck ed th e a u th en ticity o f sa cred Isla m ic tex ts.

Michel Waldschmidt is a specialist of transcendental

number theory. He has been President of the French Mathematical Society (SMF: Société Mathématique de France)

and is now vice-president of the International Center

of Pure and Applied Mathematics (CIMPA:

Centre International de Mathématiques Pures et Appliquées), an interna- tional organization helping to promote the mathemati- cal sciences in developing countries supported by the

UNESCO.

Keywords

Number theory, arithmetic,

cryptography, RSA, public key

cryptosystem, prime numbers,

factorization, algorithms, residue

class ring, theoretical computer

science, internet security, infor-

mation theory, trapdoor oneway

function.

(2)

1

Please see issue on Charles Babbage, Resonance, Vol.7, No.6, 200.

It should be assumed that any

cryptographic method is known to the enemy; and thus, the security of the

system must rely only on the choice of the keys, which should be renewed on a regular basis.

D u rin g th e X III-th cen tu ry, in h is L etter con cern in g the M arvelou s P ow er of A rt an d N atu re an d the N u llity of M agic, R o g er B a co n d escrib ed sev en m eth o d s to en cry p t m essa g es.

In th e X V I-th cen tu ry, th e F ren ch d ip lo m a t B la ise d e V ig en µere w a s a lso a cry p to g ra p h er.

C B a b b a g e (1 7 9 1 -1 8 7 1 ) 1 , w h o in v en ted th e co m p u ter, p o in ted o u t th e u sefu ln ess o f sta tistics fo r d ecip h erin g en cry p ted m essa g es. A t th e sa m e p erio d a rem a rka b le b rea k th ro u g h w a s a ch iev ed b y J -F C h a m p o llio n w h o p i- o n eered d ecip h erm en t o f th e p rev io u sly u n rea d a b le a n - cien t scrip ts o f E g y p t in v o lv in g h iero g ly p h s.

A fter th e w a r in 1 8 7 0 b etw een F ra n ce a n d G erm a n y, th e F ren ch G ov ern m en t rea lized th a t o n e stro n g p o in t o f th e G erm a n a rm y w a s co m m u n ica tio n ; it w a s d ecid ed to cre- a te m ilita ry cen tres fo r th e stu d y o f ca rrier-p ig eo n s. A t th e sa m e tim e, J a m es C M a x w ell w a s d ev elo p in g elec- tro m a g n etism th eo ry w h ich , th a n k s to th e w o rk s o f H H H erz a n d A ch a ry a J C B o se, w a s g o in g to g iv e rise to ra d io a n d m o d ern m ea n s o f tra n sm ittin g d a ta .

In a v isio n a ry p a p er o n the m ilitary cryptography p u b - lish ed in th e J ou rn al of M ilitary S cien ces in 1 8 8 3 , A K erck h o ® s p ro p o sed a n u m b er o f p rin cip les w h ich a re still va lid . O n e o f th e m o st im p o rta n t p rin cip les em p h a - sises th a t it sh o u ld b e a ssu m ed th a t a n y cry p to g ra p h ic m eth o d is k n ow n to th e en em y ; a n d th u s, th e secu rity o f th e sy stem m u st rely o n ly o n th e ch o ice o f th e k ey s, w h ich sh o u ld b e ren ew ed o n a reg u la r b a sis.

T h e red phon e (w h ich w a s a fa x ) b etw een W h ite H o u se a n d K rem lin d u rin g th e co ld w a r u sed th e d isp o sa b le m a sk tech n iq u e w h ich h a d b een in v en ted b y G V ern a m in 1 9 1 7 .

D u rin g W o rld W a r II, m o st G erm a n co m m u n ica tio n s

w ere en cip h ered o n th e E n ig m a cip h er m a ch in e. It w a s

(3)

b a sed o n ro to rs w h o se m o v em en t p ro d u ced ev er-ch a n g in g a lp h a b etic su b stitu tio n s. T h e m a th em a ticia n A T u rin g 2 in v en ted a co d eb rea k in g m a ch in e, th e B o m b , w h ich g av e b irth to th e ¯ rst electro n ic p ro g ra m a b le co m p u ter b y M a x N ew m a n . T h e w o rk d o n e b y h im a n d h is co llea g u es a t B letch ley P a rk b ro u g h t cry p to lo g y in to th e m o d ern w o rld . It req u ired in g en io u s lo g ic, sta tistica l th eo ry, th e b eg in n in g s o f in fo rm a tio n th eo ry, a d va n ced tech n o lo g y, a n d su p erb o rg a n isa tio n .

C S h a n n o n 3 , a n A m erica n electrica l en g in eer a n d m a th - em a ticia n , h a s b een ca lled `th e fa th er o f in fo rm a tio n th e- o ry ': h e p io n eered th e m o d ern m a th em a tica l th eo ry o f d a ta tra n sm issio n .

T h e p rin cip les o f u sin g p u b lic k ey s fo r en cip h erin g m es- sa g es w a s su g g ested b y W D i± e a n d M E H ellm a n in 1 9 7 6 ; its ¯ rst rea liza tio n in 1 9 7 8 b y R L R iv est, A S h a m ir a n d L M A d lem a n p ro d u ced th e R S A sy stem w h ich is n ow a d ay s th e m o st e± cien t. W e sh a ll o u tlin e b elow th e b a sic id ea s b eh in d th e R S A cry p to -sy stem . 2 . T h e E x c h a n g e o f S u itc a se s P r o to c o l

A n elem en ta ry ex a m p le o f secu red d a ta tra n sm issio n is th e fo llow in g o n e. A lice w ish es to sen d a su itca se to B o b . S h e d o es n o t w a n t C h a rlie, w h o is g o in g to ca rry th e su itca se, to k n ow w h a t is in sid e. A lice h a s a lo ck a n d th e k ey o f th e lo ck . B o b a lso h a s a lo ck a n d th e co rre- sp o n d in g k ey, b u t th ey a re n o t co m p a tib le w ith th e o n es o f A lice (o th erw ise it w o u ld b e stra ig h tfo rw a rd ). H ow ca n th ey p ro ceed ? G iv en th e m in im a l a m o u n t o f in fo r- m a tio n , it is n o t d i± cu lt to ¯ n d th e fo llow in g so lu tio n . A lice w a n ts to sen d th e su itca se w h o se co n ten t is co n -

¯ d en tia l, so sh e n eed s to clo se it w ith h er lo ck . T h en sh e a sk s C h a rlie to ca rry it. W h en B o b receiv es it, h e is n o t a b le to o p en it. N ow h e rem em b ers h e a lso ow n s a lo ck : so h e u ses it a n d g iv es b a ck to C h a rlie th e su itca se clo sed w ith tw o lo ck s. W h en A lice receiv es th e su itca se

2

Please see issue on A M Turing, Resonance, Vol.2, No.7, 1997.

3

Please see issue on C Shan- non, Resonance, Vol.7, No.2, 2002.

The principles of

using public keys for

enciphering

messages was

suggested by W

Diffie and M E

Hellman in 1976; its

first realization in

1978 by R L Rivest,

A Shamir and L M

Adleman produced

the RSA system.

(4)

fro m C h a rlie, sh e is n o t a b le to o p en it (a n y w ay sh e k n ow s th e co n ten t), w h a t sh e ca n d o is to rem ov e h er ow n lo ck sin ce sh e h a s th e k ey, a n d to g iv e o n ce m o re th e su itca se to C h a rlie. F in a lly w h en B o b receiv es fo r th e seco n d tim e th e su itca se, th ere is o n ly o n e lo ck , o f w h ich h e h a s th e k ey, so h e is a b le to o p en it.

W e sh a ll ex p la in h ow to tra n sla te th is p ro to co l in a rith - m etic term s. C h a rlie w ill b e rep la ced b y electro n ic co n - n ectio n s, a n d th e su b stitu te fo r th e su itca se w ill b e a d ig ita l m essa g e, h en ce a seq u en ce o f 0 a n d 1 . T h is m es- sa g e w ill b e sp lit in to p ieces, a ll o f th e sa m e len g th : h en ce th e m essa g e to b e sen t w ill b e a n u m b er g iv en b y its b in a ry ex p a n sio n , a n d th is n u m b er w ill lie b etw een 0 a n d a g iv en b o u n d . T h e lo ck a n d th e k ey w ill a lso b e rep la ced b y n u m b ers. T o clo se th e su itca se w ith th e lo ck o r to rem ov e th e lo ck w ith th e k ey w ill b e rep la ced b y a rith m etica l o p era tio n s, in v o lv in g th e co rresp o n d in g n u m b ers (th o se o f th e m essa g e a n d th e lo ck o r th e k ey ).

A p p ly in g su ccessiv ely th e lo ck a n d th e k ey sh o u ld g iv e b a ck th e in itia l m essa g e. M o reov er, so m eo n e w h o d o es n o t h av e th e k ey sh o u ld n o t b e a b le to o p en th e lo ck . 3 . C h e c k in g th e Id e n tity

In m a n y circu m sta n ces o n e n eed s to p rov e o n e's ow n id en tity, o r a t lea st to p rov e th a t o n e k n ow s a secret co d e o r p a ssw o rd th a t is su p p o sed to b e k n ow n o n ly to h im . T a k e th e ex a m p le o f so m eo n e w h o w ish es to u se a n A u tom ated T eller M achin e (A T M ) to w ith d raw m o n ey fro m h is b a n k a cco u n t u sin g h is p la stic sm a rt- ca rd w ith a ch ip . H e k n ow s h is person al iden ti¯ cation n u m ber (P IN ). In a secu red tra n sa ctio n , th e b a n k d o es n o t k n ow th e P IN : it w o u ld b e to o risk y to sto re th is in fo rm a tio n in a co m p u ter. H ow co u ld th e b a n k ch eck th a t th e u ser k n ow s h is P IN ? O n e sh o u ld a ssu m e th a t o th er p eo p le a re a b le to listen to a ll m essa g es w h ich a re sen t d u rin g th is tra n sa ctio n . S o th e u ser sh o u ld p rov e to th e b a n k th a t h e k n ow s h is P IN w ith o u t g iv in g a n y

In many

circumstances one

needs to prove one’s

own identity, or at

least to prove that

one knows a secret

code or password

that is supposed to

be known only to

him.

(5)

in fo rm a tio n w h ich w o u ld en a b le a n y o n e to d iscov er th is P IN : a t th e en d o f th e tra n sa ctio n th e b a n k still d o es n o t k n ow it, th e b a n k o n ly ch eck s th a t th e u ser k n ow s h is P IN .

N o so lu tio n to th is p ro b lem b y m ea n s o f cla ssic en cip h er- in g m eth o d s is k n ow n . In o rd er to so lv e th is p ro b lem , o n e req u ires to u se th e recen t d ev elo p m en ts o f th e su b - ject.

W e sh a ll ex p la in h ow it w o rk s in p ra ctice, b u t let u s sta rt b y tellin g th e ¯ rst step : th e b a n k w ill a sk a q u estio n to th e u ser, a n d ea ch tim e th e q u estio n w ill b e d i® eren t.

K n ow in g th e rig h t a n sw er to o n e su ch q u estio n w ill n o t g iv e h in ts to g u ess th e a n sw er to a n o th er o n e. In o th er term s th e ¯ rst m essa g e sen t b y th e b a n k w ill b e selected ra n d o m ly. O n ce m o re it w ill b e a n u m b er (g iv en b y its d ig ita l rep resen ta tio n ) b etw een 0 a n d a g iv en b o u n d . T h e ch ip w ill m a k e so m e co m p u ta tio n u sin g th is n u m - b er (m essa g e) to g eth er w ith th e P IN (w h ich is a n o th er n u m b er), a n d th e resu lt w ill b e sen t to th e b a n k . H en ce o n e n eed s to ¯ n d a p ro cess w h ich en a b les to co m p u te th e o u tg o in g m essa g e u sin g th e in co m in g m essa g e if o n e k n ow s th e P IN , a n d w h ich en a b les to ch eck th a t th e u sers k n ow s h is P IN if o n e k n ow s b o th th e in co m in g a n d o u tg o in g m essa g es.

In th e cry p to sy stem s u sed b efo re D i± e a n d H ellm a n n , th ere w a s a sy m m etry : A lice a n d B o b w ere ex ch a n g in g in fo rm a tio n u sin g ea ch a secret k ey th a t th ey sh a red . T h ese k ey s en a b led ea ch o f th em to w rite to th e o th er a n d to d ecy p h er th e m essa g es th ey receiv ed . T h e b a sic fea tu re o f pu blic key cryptography, in tro d u ced b y D i± e a n d H ellm a n n in 1 9 7 6 , is th a t a n y u ser h a s tw o k ey s, a p u b lic o n e a n d a secret o n e. T h e p u b lic k ey is k n ow n b y ev ery b o d y, a n d ev ery b o d y is a b le to sen d a m essa g e to a n y u ser, b y m ea n s o f its p u b lic k ey. O n ly th e receiv er h av in g th e p riva te o r secret k ey is a b le to u n d ersta n d th e m essa g e. T h e p u b lic k ey is a su b stitu te fo r th e lo ck

In the cryptosystems

used before Diffie and

Hellmann, there was a

symmetry.

(6)

a n d th e p riva te k ey fo r th e k ey o f th e lo ck .

O n e m ay n o tice th a t in th e q u estio n o f ex ch a n g e o f su it- ca ses, if th e lo ck o f B o b is rep la ced b y a p u b lic k ey, th en a sin g le trip fro m C h a rlie is su ± cien t: A lice u ses th e p u b lic k ey (lo ck ) o f B o b , a n d B o b ca n o p en th e su itca se w ith h is secret k ey.

4 . A T r a p d o o r O n e w a y F u n c tio n

T o ¯ n d th e rig h t p a th in a m a ze m ay b e v ery co m p li- ca ted . H ow ev er, if so m eo n e g iv es y o u th e so lu tio n , it is m u ch ea sier to ch eck w h eth er it w o rk s o r n o t. A sim ila r situ a tio n o ccu rs in a rith m etics: if I g iv e y o u tw o n u m - b ers a n d a sk fo r th eir p ro d u ct, it is n o t a to o d i± cu lt ta sk , p rov id ed th a t th e n u m b ers a re n o t to o la rg e. O n th e o th er sid e if I g iv e y o u th eir p ro d u ct o n ly, it m ay b e h a rd er to ¯ n d th e tw o n u m b ers. F o r in sta n ce if I tell y o u th a t th e p ro d u ct I g et is 2 0 4 7 , it ta k es m o re tim e to ¯ n d th a t th e tw o n u m b ers I m u ltip lied a re 2 3 a n d 8 9 th a n to ch eck th e resu lt.

M o d ern cry p to g ra p h ic m eth o d s rely o n m a th em a tica l q u estio n s fo r w h ich n o e± cien t so lu tio n is k n ow n . T h e factorisation problem , w h ich is th e p ro b lem o f d eco m - p o sin g a n in teg er in to a p ro d u ct o f p rim es, lik e w e d id fo r 2 0 4 7 , ca n b e so lv ed b y m o d ern co m p u ters fo r n u m b ers w ith n o m o re th a n 1 5 0 o r 2 0 0 d ecim a l d ig its. F o r la rg er n u m b ers th e req u ired co m p u tin g tim e is p ro h ib itiv e.

In cry p to g ra p h y, a trapdoor on ew ay fu n ction is a fu n c- tio n th a t is ea sy to co m p u te in o n e d irectio n , y et b e- liev ed to b e d i± cu lt to co m p u te in th e o p p o site d irec- tio n ; h ow ev er, g iv en so m e ex tra in fo rm a tio n (ca lled th e tra p d o o r in fo rm a tio n ), it b eco m es fea sib le to co m p u te th e in v erse fu n ctio n . W e sh a ll g iv e a sim p li¯ ed ex a m p le u sin g th e id ea s w h ich a re in v o lv ed in R S A .

W e a re g o in g to w o rk w ith n u m b ers o f th ree d ecim a l d ig its o n ly, w h ich m ea n s th a t o n e co n sid ers th e in teg ers

Modern cryptographic methods rely on mathematical questions for which no efficient solution is known.

In cryptography, a

trapdoor oneway

function is a function

that is easy to

compute in one

direction, yet believed

to be difficult to

compute in the

opposite direction.

(7)

b etw een 0 0 0 a n d 9 9 9 . W e sh a ll p erfo rm so m e co m p u ta - tio n s, w h en th e resu lt ex ceed s 1 0 0 0 , o n e k eep s o n ly th e la st th ree d ig its. T h is a m o u n ts to d iv id e b y 1 0 0 0 a n d to k eep th e rem a in d er, if y o u p refer.

W e sh a ll ta k e pow ers o f n u m b ers. T h e squ are o f a n u m - b er (seco n d p ow er) is th e p ro d u ct o f th is n u m b er w ith itself. F o r in sta n ce, th e sq u a re o f 4 7 1 is 4 7 1 £ 4 7 1 , n a m ely 2 2 1 8 4 1 . T h e cu be, o r th ird p ow er, is th e p ro d - u ct o f th e sq u a re w ith th e in itia l n u m b er: so th e cu b e o f 4 7 1 is th e p ro d u ct o f 2 2 1 8 4 1 w ith 4 7 1 , th e resu lt b ein g 4 7 1 £ 4 7 1 £ 4 7 1 = 1 0 4 4 8 7 1 1 1 . If w e co n tin u e a n d m u l- tip ly th is la st n u m b er b y 4 7 1 w e g et th e fo u rth p ow er, a n d so o n .

It w ill b e co n v en ien t to in tro d u ce th e expon en tial n o ta - tio n w ith a n u p p er ex p o n en t: th e su ccessiv e p ow ers o f 2 w ill b e d en o ted b y 2 1 = 2 , 2 2 = 4 , 2 3 = 8 , 2 4 = 1 6 , 2 5 = 3 2 , 2 6 = 6 4 ....

T h e secret k ey w ill b e 3 , a n d th e o p era tio n w ill b e to ra ise to th e th ird p ow er a n d k eep o n ly th e la st th ree d ig its. F o r in sta n ce sta rtin g w ith 4 7 1 w e co n sid er th e la st th ree d ig its o f its cu b e 4 7 1 3 = 4 7 1 £ 4 7 1 £ 4 7 1 = 1 0 4 4 8 7 1 1 1 a n d w e g et 1 1 1 . N o tice th a t it is m o re clev er to k eep o n ly th e la st th ree d ig its a fter ea ch step , fo r in - sta n ce a fter co m p u tin g th e sq u a re 4 7 1 £ 4 7 1 w e k eep o n ly th e la st th ree d ig its, n a m ely 8 4 1 , w h ich w e m u lti- p ly w ith 4 7 1 a n d g et 3 9 6 1 1 1 . T h e la st th ree d ig its a re o b v io u sly th e sa m e, b u t th is w ay lea d s u s to w o rk o n ly w ith n u m b ers h av in g n o m o re th a n 6 d ecim a l d ig its.

If I tell y o u th a t th e o p era tio n w h ich I ju st d escrib e (ra ise to th e cu b e a n d k eep th e la st th ree d ig its) p ro - d u ces 6 3 1 , w ill y o u b e a b le to tell m e w h ich is th e th ree d ig its n u m b er I sta rted w ith ?

T h e b ru te fo rce so lu tio n is to try o n e a fter th e o th er

a ll 9 9 9 p o ssib ilities: fo r ea ch o f th em y o u p erfo rm th e

o p era tio n a n d y o u co m p a re w ith 6 3 1 . O f co u rse y o u

(8)

w ill ¯ n d th e so lu tio n , w h ich is 1 1 1 , b u t th is so -ca lled greedy m ethod is a b it lo n g to im p lem en t, a n d in p ra c- tice it w ill n o t b e p o ssib le to p erfo rm it in a rea so n a b le tim e b eca u se th e n u m b ers to b e co n sid ered w ill in v o lv e h u n d red s o f d ig its, n o t ju st 3 . S o , let u s fo rg et it fo r a w h ile.

N ow I g iv e y o u th e secret k ey (w h ich is th e tra p d o o r in fo rm a tio n h ere): it is 6 7 . T h is m ea n s th a t if y o u co m - p u te th e la st th ree d ig its o f th e 6 7 -th p ow er o f 6 3 1 , y o u

¯ n d th e in itia l n u m b er 1 1 1 . It is m u ch fa ster to co m p u te a 6 7 -th p ow er th a n to p erfo rm th e a b ov e m en tio n ed ex - h a u stiv e sea rch . T o co m p u te a sq u a re req u ires o n e m u l- tip lica tio n . F o r a cu b e y o u n eed o n e m o re. Y o u m ig h t ex p ect th a t a 6 7 -th p ow er req u ires a lto g eth er 6 6 m u lti- p lica tio n s, b u t o n e m ay im p rov e th e p ro cess b y m ea n s o f th e squ are-an d-m u ltiply algorithm . In d eed , if y o u m u l- tip ly th e sq u a re o f a n u m b er b y itself, y o u ¯ n d th e 4 - th p o w er, w ith o n ly tw o m u ltip lica tio n s. T h e p ro d u ct o f th e 4 -th p ow er b y itself y ield s th e 8 -th p ow er, w ith o n ly 3 m u ltip lica tio n s a lto g eth er. S o to co m p u te th e la st th ree d ig its o f 6 3 1 6 7 , ¯ rst w rite 6 7 = 6 4 + 2 + 1 , a n d th en ta k e su ccessiv e sq u a res (k eep in g o n ly th e la st th ree d ig its): 6 3 1 2 , 6 3 1 4 , 6 3 1 8 , 6 3 1 1 6 , 6 3 1 3 2 , 6 3 1 6 4 . N ow y o u m u ltip ly th e va lu es o f 6 3 1 6 4 , 6 3 1 2 , a n d 6 3 1 (k eep in g a lw ay s th e la st th ree d ig its o n ly, th e o th ers a re u seless h ere). T h e ¯ n a l resu lt is 1 1 1 , a s w e a n n o u n ced . T h is is h ow 3 p lay s th e ro le o f th e lo ck a n d 6 7 o f th e k ey : if y o u p u t th e lo ck 3 , y o u rem ov e it w ith th e k ey 6 7 . H ere is th e sch em e:

1 1 1 3

¡¡ ¡ ¡! 6 3 1 6 7

¡¡ ¡ ¡! 1 1 1

M o re g en era lly th e lo ck a n d th e k ey in tera ct a s fo llow s:

o rig in a l m essa g e lo ck

¡¡ ¡ ¡! en co d ed m essa g e k ey

¡¡ ¡ ¡! d eco d ed m essa g e O f co u rse th e d eco d ed m essa g e sh o u ld b e id en tica l w ith

th e in itia l o n e!

(9)

H ere, it tu rn s o u t th a t w e co u ld p erm u te th e p ro cess: if y o u ta k e 6 7 a s a lo ck , th en 3 is a k ey : th e la st d ig its o f 1 1 1 6 7 a re 4 7 1 w h ile th e la st d ig its o f 4 7 1 3 a re 1 1 1

1 1 1 6 7

¡¡ ¡ ¡! 4 7 1 3

¡¡ ¡ ¡! 1 1 1

Y o u w ill ch eck th a t fo r th e lo ck 7 o n e m ay u se th e k ey 4 3 . F o r in sta n ce th e la st th ree d ig its o f 1 1 1 7 a re 8 7 1 , a n d th e la st th ree d ig its o f 8 7 1 4 3 a re 1 1 1 :

1 1 1 7

¡¡ ¡ ¡! 8 7 1 4 3

¡¡ ¡ ¡! 1 1 1

W e a lw ay s selected th e sa m e in itia l m essa g e, 1 1 1 . A n y n u m b er b etw een 0 a n d 9 9 9 co u ld b e selected , p rov id ed th a t its la st d ig it is 1 , 3 , 7 o r 9 (see S ectio n 5 ).

N ow w e a re a b le to p ro d u ce th e a n a lo g u e o f th e p ro to - co l o f ex ch a n g es o f su itca ses. W e rep la ce th e su itca se b y 1 1 1 , A lice's lo ck b y 7 , th e k ey o f h er lo ck b y 4 3 , th e lo ck o f B o b b y 3 , th e k ey o f h is lo ck b y 6 7 , a n d o f co u rse ea ch tim e w e co n sid er th e la st th ree d ig its o f th e co rresp o n d in g p ow er.

S o A lice ¯ rst p u ts h er lo ck 7 o n th e su itca se 1 1 1 : th is m ea n s th a t sh e sen d s to B o b th e la st th ree d ig its o f 1 1 1 7 , w ich a re 8 7 1 .

H en ce B o b receiv es 8 7 1 , w h ich co rresp o n d s to th e su it- ca se clo sed w ith A lice's lo ck . H e p u ts h is ow n lo ck 3 , w h ich m ea n s th a t h e sen d s b a ck to A lice th e la st th ree d ig its o f 8 7 1 3 , w h ich a re 3 1 1 .

N ow A lice u ses h er k ey 4 3 to rem ov e h er lo ck : sh e sen d s th e la st th ree d ig its o f 3 1 1 4 3 , n a m ely 6 3 1 . T h erefo re 6 3 1 co rresp o n d s to th e su itca se clo sed o n ly w ith B o b 's lo ck . A n d n ow B o b is a b le to o p en th e su itca se th a n k s to h is k ey 6 7 : th e la st th ree d ig its o f 6 3 1 6 7 a re in d eed 1 1 1 , a s w e a lrea d y saw .

1 1 1 7

¡¡ ¡ ¡! 8 7 1 3

¡¡ ¡ ¡! 3 1 1 4 3

¡¡ ¡ ¡! 6 3 1 6 7

¡¡ ¡ ¡! 1 1 1

(10)

H en ce 7 clo ses th e su itca se w h ile 4 3 rem ov es th is lo ck , w h ile 3 p u ts a n o th er lo ck a n d 6 7 o p en s it.

N ex t let u s g o to th e b a n k . A ssu m e th a t th e k ey 3 o f B o b is p u b lic, b u t th a t h e is th e o n ly o n e to k n ow th e secret k ey 6 7 . W h en h e g o es to a n A T M to w ith d raw ca sh , th e b a n k w ill sen d h im (o r ra th er sen d to th e ch ip o f h is cred it ca rd ) a ra n d o m m essa g e; say th a t th is m essa g e is 1 1 1 . U sin g h is secret k ey 6 7 h e co m p u tes th e la st th ree d ig its o f 1 1 1 6 7 , h e ¯ n d s 4 7 1 , a n d th is is w h a t h e rep lies to th e b a n k . N ow th e b a n k ch eck s th a t th e la st th ree d ig its o f th e cu b e o f 4 7 1 a re th e in itia l m essa g e 1 1 1 (th e cu b e, sin ce th e p u b lic k ey is 3 ).

1 1 1 6 7

¡¡ ¡ ¡! 4 7 1 3

¡¡ ¡ ¡! 1 1 1 5 . A r ith m e tic

W e sh o u ld in sist th a t w e h av e g iv en o n ly a n o u tlin e o f th e m eth o d : a n u m b er o f q u estio n s a rise, so m e o f th em a re w ell u n d ersto o d , w h ile o th ers a re b ein g in v estig a ted n ow .

L et u s ex p la in w h y (3 ; 6 7 ) a n d (7 ; 4 3 ) a re a d m issib le p a irs o f (k e y ;lo ck ). T h e p o in t is th a t th e la st tw o d ig its o f b o th p ro d u cts 3 £ 6 7 a n d 7 £ 4 3 a re 0 1 , w h ile a ll n u m b ers co rresp o n d in g to m essa g es h av e fo r la st d ig it 1 , 3 , 7 o r 9 . W e n eed so m e m o re a rith m etic to ex p la in w h a t is g o in g o n .

F o r a n in teg er m , th e fo llow in g sta tem en ts a re eq u iva - len t:

² th e la st d ecim a l d ig it o f m is 1 , 3 , 7 o r 9 ,

² m is n eith er d iv isib le b y 2 n o r b y 5 ,

² m is rela tiv ely p rim e to 1 0 ,

² m is rela tiv ely p rim e to 1 0 3 = 1 0 0 0 ,

² th e resid u e cla ss o f m m o d u lo 1 0 3 is a u n it (in v ertib le elem en t) in th e q u o tien t rin g Z = 1 0 3 Z .

It w ill b e co n v en ien t to w o rk w ith th e resid u e cla ss rin g

Z = 1 0 3 Z . T h is a m o u n ts to k eep in g th e la st th ree d ecim a l

(11)

d ig its, n a m ely th e rem a in d er o f th e E u clid ea n d iv isio n b y 1 0 0 0 .

B y th e C h in ese R em a in d er T h eo rem , th is rin g Z = 1 0 3 Z is iso m o rp h ic to th e d irect p ro d u ct o f th e rin g Z = 2 3 Z h av in g 2 3 = 8 elem en ts w ith th e rin g Z = 5 3 Z h av in g 5 3 = 1 2 5 elem en ts.

T h e m u ltip lica tiv e g ro u p o f th e u n its in Z = 1 0 3 Z , w h ich w e d en o te b y (Z = 1 0 3 Z ) £ , is th e d irect p ro d u ct o f th e g ro u p (Z = 2 3 Z ) £ h av in g 2 3 ¡ 2 2 = 4 elem en ts w ith th e g ro u p (Z = 5 3 Z ) £ h av in g 5 3 ¡ 5 2 = 1 0 0 elem en ts. H en ce (Z = 1 0 3 Z ) £ h a s 4 0 0 elem en ts; its expon en t is th e lcm (least com m on m u ltiple) o f 4 a n d 1 0 0 , w h ich is 1 0 0 : th is m ea n s th a t a n y elem en t x in (Z = 1 0 3 Z ) £ sa tis¯ es x 1 0 0 = 1 . In o th er term s, if y o u ta k e th e 1 0 0 -th p ow er o f a n in teg er m w ith la st d ig it 1 , 3 , 5 o r 9 , th en th e la st th ree d ig its o f th e resu lt m 1 0 0 a re 0 0 1 . O b v io u sly, a n y p ow er o f m 1 0 0 h a s th e sa m e p ro p erty, b eca u se a n y p ow er o f a n u m b er en d in g w ith 0 0 1 h a s a lso 0 0 1 a s la st th ree d ig its. T h is m ea n s th a t if b is a m u ltip le o f 1 0 0 a n d m is rela tiv ely p rim e to 1 0 , th en th e la st th ree d ig its o f m b a re 0 0 1 . A s a co n seq u en ce, if w e m u ltip ly su ch a m b w ith m , th e la st th ree d ig its o f th e p ro d u ct m b+ 1 a re th e sa m e a s th e la st th ree d ig its o f m itself. A n d n ow , b is a m u ltip le o f 1 0 0 if a n d o n ly if th e la st tw o d ig its o f b + 1 a re 0 1 .

S o w e h av e p rov ed th e fo llow in g

P r o p o sitio n . L et m be a positive in teger w ith last dec- im al digit 1 , 3 , 7 or 9. L et a be a positive in teger w ith last tw o decim al digits 0 1 . T hen m a an d m have the sam e last three digits:

g cd (m ;1 0 ) = 1 ; a ´ 1 (m o d 1 0 0 ) = ) m a ´ m (m o d 1 0 0 0 ):

D en o te b y ¸ (m ) th e ex p o n en t o f th e m u ltip lica tiv e g ro u p

(Z = m Z ) £ . F o r in sta n ce ¸ (1 0 0 0 ) = 1 0 0 a n d ¸ (1 0 0 ) = 2 0 .

(12)

F o r ` 2 Z h a v in g g cd (`;1 0 ) = 1 , w e h av e ` 2 0 ´ 1 (m o d 1 0 0 ), so th a t th e in v erse k o f ` m o d u lo 1 0 0 is ` 1 9 (m o d 1 0 0 ). T h is g iv es a n a lg o rith m to co m p u te th e se- cret k ey k w h en o n e k n ow s th e p u b lic k ey `, p rov id ed th a t o n e k n ow s a lso th e n u m b er ¸ (¸ (N )) fo r m essa g es in (Z = N Z ) £ . E x a m p les w ith N = 1 0 0 0 a re ` = 3 , k = 6 7 a n d ` = 7 , k = 4 3 :

3 1 9 ´ 6 7 (m o d 1 0 0 ) a n d 7 1 9 ´ 4 3 (m o d 1 0 0 ):

O f co u rse w ith su ch sm a ll n u m b ers th e cry p to sy stem is n o t secu red ! F o r a ctu a l im p lem en ta tio n o f th e R S A cry p to sy stem o n e rep la ces 1 0 3 = 1 0 0 0 b y th e p ro d u ct o f tw o d istin ct la rg e p rim e n u m b ers p a n d q . E a ch o f th em h a s so m e 1 5 0 d ecim a l d ig its, so th e p ro d u ct p q h a s a b o u t 3 0 0 d ecim a l d ig its. S in ce 2 1 0 = 1 0 2 4 is clo se to 1 0 3 , a n u m b er w ith 3 0 0 d ecim a l d ig its h a s a b o u t 1 0 0 0 b in a ry d ig its. E x h a u stiv e sea rch es a re n o t fea sib le w ith su ch la rg e n u m b ers, ev en w ith v ery p ow erfu l co m p u ters.

O n e b a sic p o in t is th a t th e p ro d u ct N = p q is p u b lic b u t p a n d q a re k ep t secret. N ow a d ay s, g iv en a n u m - b er w ith 3 0 0 d ecim a l d ig its w h ich is th e p ro d u ct o f tw o la rg e p rim e n u m b ers p a n d q , co m p u ters a re n o t a b le to

¯ n d th e fa cto rs p a n d q w ith in a rea so n a b le tim e. T h e secu rity o f th e R S A p ro to co l relies h eav ily o n th is fa ct.

T h e m u ltip lica tiv e g ro u p (Z = p q Z ) £ o f th e resid u e cla ss rin g Z = p q Z m o d u lo th e p ro d u ct p q is a g ro u p o f o rd er n w ith n = (p ¡ 1 )(q ¡ 1 ). T h e co n d itio n in th e p rev io u s ex a m p le w ith 1 0 3 th a t th e m essa g e m sh o u ld n o t b e d iv isib le b y 2 n o r b y 5 is rep la ced b y th e co n d itio n th a t m sh o u ld n o t b e d iv isib le b y p n o r b y q - n ow o n ly a v ery tin y p ercen ta g e o f m essa g es a re ex clu d ed (w h ile w ith 1 0 3 o n ly 4 0 % o f th e 1 0 0 0 p o ssib le m essa g es w ere a llow ed ).

N ex t w e co n sid er th e co n d itio n o n th e lo ck ` a n d th e k ey k : in th e ca se o f 1 0 3 in p la ce o f p q th e co n d itio n w a s th a t th eir p ro d u ct a = `k h a d its la st tw o d ecim a l d ig its 0 1 (th is m ea n s th a t th e rem a in d er o f th e d iv isio n b y 1 0 0 is 1 ). N ow th e co n d itio n is th a t th e rem a in d er

Nowadays, given a

number with 300

decimal digits which

is the product of two

large prime numbers

p and q, computers

are not able to find

the factors p and q

within a reasonable

time. The security of

the RSA protocol

relies heavily on this

fact.

(13)

B o x 1 . R e se a r c h in F r a n c e a n d in In d ia

Tuning up these ideas and implementing the process in a concrete way involves high level research activities in a number of laboratories all around the world, including France and India. Interaction between arithmetic and cryptology is a research subj ect in several places around the world. Among the laboratories where scientists pursue their investigations on this topic are the following French and Indian ones.

The C o m p u te r S cie n ce L a bo ra to ry a t X in the ¶Ecole Polytechnique (Palaiseau, near Paris)

h t t p : / / w w w . l i x . p o l y t e c h n i q u e . f r / c r y p t o l o g i e / e n g l i s h - i n d e x . h t m l ,

T h e N a t i o n a l R e s e a r c h I n s t i t u t e i n C o m p u t e r S c i e n c e a n d A u t o m a t i c IN R IA (In stitu t N a tio n a l d e R ec h erch e en In fo rm a tiqu e et en A u to m a tiqu e ) i n R o c q u e n c o u r t , a g a i n n e a r P a r i s , w i t h t h e P r o j e c t C O D E S d e a l i n g n o t o n l y w i t h c o d i n g t h e o r y b u t a l s o w i t h c r y p t o g r a p h y

h t t p : / / w w w - r o c q . i n r i a . f r / c o d e s / C O D E S / E N G L I S H / i n d e x . h t m l ,

T h e M a t h e m a t i c s D e p a r t m e n t o f t h e E N S ( ¶E c o l e N o r m a l e S u p ¶e r i e u r e ) r u e d ' U l m , P a r i s

h t t p : / / w w w . d i . e n s . f r / C r y p t o R e c h e r c h e . h t m l ,

I n C a e n t h e c o n s o r t i u m C ry p to logie et A lg o rith m iqu e E n N o rm a n d ie (C A E N ) i n c l u d - i n g t h e G ro u pe d e R ech erch e en In fo rm a tiq u e, Im a ge, A u to m a tiqu e et In stru m en - ta tio n d e C a en G R E Y C

h t t p : / / w w w . g r e y c . u n i c a e n . f r / ,

T h e L a bo ra to ire d e M a th ¶em a tiqu es N ico la s O resm e o f t h e U n i v e r s i t y C a e n B a s s e N o r m a n d i e

h t t p : / / w w w . m a t h . u n i c a e n . f r / l m n o / a n d F ra n ce T eleco m R & D C a en , I n G r e n o b l e t h e U n i v e r s i t y J o s e p h F o u r i e r

h t t p : / / w w w - f o u r i e r . u j f - g r e n o b l e . f r / ,

I n L i m o g e s t h e In stitu t d e R ech erch e X L im o f t h e U n i v e r s i t y h t t p : / / w w w . x l i m . f r / h t t p : / / w w w . x l i m . f r / ,

I n T o u l o n t h e G ro u pe d e R ech erc h e en In fo rm a tiqu e et M a th ¶em a tiqu es G R IM o f t h e U n i v e r s i t y S u d T o u l o n - V a r

h t t p : / / g r i m . u n i v - t l n . f r ,

I n T o u l o u s e t h e L a bo ra to ire d 'A n a ly se et d 'A rch itectu re d es S y stµem es L A A S h t t p : / / w w w . l a a s . f r / l a a s / ,

w i t h t h e t e a m L I L A C ( L o g i c , I n t e r a c t i o n , L a n g u a g e , a n d C o m p u t a t i o n ) h t t p : / / w w w . i r i t . f r / r e c h e r c h e s / L I L A C / P e r s /

Box 1. continued...

(14)

Box 1. continued...

a n d T o u l o u s e M a t h e m a t i c a l I n s t i t u t e h t t p : / / w w w . u n i v - t l s e 2 . f r / g r i m m / a l g o .

N u m b e r T h e o r y a n d C r y p t o g r a p h y i s a l s o a r e s e a r c h t o p i c i n a n u m b e r o f i n s t i t u t i o n s a l l a r o u n d I n d i a . W e o n l y q u o t e a f e w o f t h e m :

I n K o l k a t a T h e In d ia n S ta tistica l In stitu te, w i t h i t s S ta tistics a n d M a th em a tics U n it a s w e l l a s i t s A p p lied S ta tistic D ivisio n

h t t p : / / w w w . i s i c a l . a c . i n / ,

I n C h e n n a i t h e In stitu te o f M a th em a tica l S cien ces s t u d y i n g b o t h M a t h e m a t i c s a n d T h e o r e t i c a l C o m p u t e r S c i e n c e

h t t p : / / w w w . i m s c . r e s . i n / ,

I n K a n p u r t h e In d ia n In stitu te o f T ech n o logy I I T h t t p : / / w w w . i i t k . a c . i n /

w i t h t h e P ra b h u G oel R esea rc h C en tre fo r C o m p u ter a n d In te rn e t S ec u rity h t t p : / / w w w . s e c u r i t y . i i t k . a c . i n / ,

I n B a n g a l o r e t h e In d ia n In stitu te o f S cien ce w h e r e t h e s e c t i o n C o m p u ter S ci- en ce a n d A u to m a tio n C ry p togra p h y s t u d i e s C o m p u t a t i o n a l N u m b e r T h e o r y , C o m p u t a t i o n a l C o m b i n a t o r i c s , A r i t h m e t i c a l , A l g e b r a i c a n d G e o m e t r i c A l g o r i t h m s

h t t p : / / w w w . c s a . i i s c . e r n e t . i n / ,

A g a i n i n C h e n n a i t h e S ocie ty fo r E lectro n ic T ra n sa ctio n s a n d S ecu rity S . E . T . S . w h i c h i s s p e c i a l i z e d i n C r y p t o g r a p h y a l g o r i t h m s , C r y p t o l o g y p r o t o c o l s , S e c u r e I n f o r m a t i o n S y s t e m s a n d S e c u r i t y P o l i c y a n d C r y p t a n a l y s i s h t t p : / / w w w . s e t s i n d i a . o r g / .

W e c o m p l e t e t h i s l i s t w i t h t h e C ry p to logy R esea rch S ociety o f In d ia h t t p : / / w w w . c r s i n d . c o m / w h i c h o r g a n i z e s t h e a n n u a l I n t e r n a t i o n a l C o n f e r e n c e o n C r y p t o l o g y i n I n d i a In d ocry p t:

h t t p : / / w w w . c r s i n d . c o m / i n d o c r p t . a s p

O n e a c h o f t h e s e w e b p a g e s o n e m a y f i n d a n u m b e r o f f u r t h e r r e f e r e n c e s a n d r e s o u r c e s .

o f th e d iv isio n b y ¸ (N ) o f th is p ro d u ct is 1 . S in ce ¸ (N ) d iv id es n , it su ± ces to req u ire

`k ´ 1 (m o d n ) w ith n = (p ¡ 1 )(q ¡ 1 ):

(15)

1

Full text of ‘A Mathematician’s Apology’ is in the public domain in Canada, courtesy of the Uni- versity of Alberta Mathematical Science Society:

http://www.math.ualberta.ca/

~mss/misc/

G iv en ` w h ich is p rim e to n , th ere is a sin g le k m o d u lo n sa tisfy in g th is co n d itio n , n a m ely

k ´ ` ¸ (n )¡1 (m o d n ):

T o co m p u te k is ea sy, p rov id ed th a t o n e k n ow s n : h ow - ev er, to k n ow b o th p q a n d n a m o u n ts to k n ow in g b o th p a n d q , sin ce n = p q + 1 ¡ (p + q ). F o r so m eo n e w h o k n ow s p a n d q , it is ea sy to co m p u te th e k ey k a sso ci- a ted w ith a g iv en lo ck `. F o r so m eo n e w h o k n ow s ` a n d N b u t n o t th e in d iv id u a l fa cto rs p a n d q o f N , th ere is n o e± cien t k n ow n w ay so fa r to d ed u ce k .

C o n c lu sio n

C ry p to g ra p h y a n d co d in g th eo ry, w h ich u se a d va n ced n u m b er th eo ry, tea ch u s a n im p o rta n t lesso n : m a th e- m a tica l resea rch (resea rch o n p rim e n u m b ers, in p a rticu - la r), w h ich seem s to b e co m p letely u n rela ted to p ra ctica l m a tters, m ay tu rn o u t to b e cru cia l fo r so m e a p p lica tio n s m a n y y ea rs, o r d eca d es la ter, in a co m p letely u n p re- d icta b le w ay. In h is b o o k A m athem atician's apology 1 , th e g rea t B ritish a n a ly st G H H a rd y (1 8 7 7 -1 9 4 7 ), w h o w a s a ferv en t p a ci¯ st, to o k im m en se p rid e in w o rk in g in n u m b er th eo ry, a n a b so lu tely p u re ¯ eld , a n d a t n ev er h av in g d o n e a n y th in g w h ich co u ld b e co n sid ered \ u se- fu l" :

\I have n ever don e an ythin g \u sefu l". N o discovery of m in e has m ade, or is likely to m ake, directly or in di- rectly, for good or ill, the least di® eren ce to the am en ity of the w orld. ... Ju dged by all practical stan dards, the valu e of m y m athem atical life is n il".

It w a s p erh a p s `u seless' a t th a t tim e. It is n o lo n g er th e ca se to d ay.

A c k n o w le d g m e n t

T h is tex t is b a sed o n lectu res g iv en b y th e a u th o r in N o -

v em b er 2 0 0 6 a n d 2 0 0 7 u n d er th e p ro g ra m F ren ch S ci-

en ce T oday (h ttp :/ / w w w .fren ch scien ceto d ay.o rg / ) o f th e

(16)

Suggested Reading

[1] Alfred J Menezes, Paul C van Oorschot and Scott A Vanstone, Hand- book of Applied Cryptography, CRC Press, 1996. Fifth Printing (August 2001).

Available online for free download on the web site http://www.cacr.math.uwaterloo.ca/hac/

[2] Palash Sarkar, A Sketch of Modern Cryptology, Resonance, Vol.5, No.9, pp.22–40, September 2000.

http://www.ias.ac.in/resonance/Sept2000/pdf/Sept2000p22-40.pdf [3] R Thangadurai and A K Bhandari, Classical Cryptosystems,Bona

Mathematica, Vol.12, Nos 1–2, pp.12–33, 2001.

[4] R Thangadurai, Elliptic Curve Cryptosystems, Bona Mathematica, Vol.

13, Nos 2–3, pp.27–59, June-September 2002,

[5] Elliptic Curves, Modular Forms and Cryptography, Fields Institute Com- munications, Vol.38, Hindustan Book Agency, New Delhi, 2003.

http://www.hindbook.com/Home.asp?P=69

[6] Gilles Lachaud, Communicating without errors: error-correcting codes, in: L’explosion des mathématiques, English version.

http://smf.emath.fr/en/Publications/ExplosionDesMathematiques/

index_en.html

Address for Correspondence Michel Waldschmidt Université Pierre et Marie Curie-Paris 6, UMR 7586 IMJ

175 rue du Chevaleret, Paris, F-75013 France

F ren ch E m b a ssy in In d ia a n d th e n etw o rk o f A llia n ces

F ra n »ca ises. T h e rem a rka b ly e± cien t co o rd in a tio n o f th is

p ro g ra m w a s d o n e b y B ru n o R o u o t. A m a rty a K u m a r

D u tta su g g ested th a t th is lectu re b e w ritten d ow n fo r

R eson an ce. H im self a s w ell a s S C B a g ch i, B S u ry,

C la u d e L ev esq u e, S u d h ir G h o rp a d e, a n d th e ed ito r o f

R eson an ce m a d e v ery u sefu l co m m en ts o n a p relim in a ry

v ersio n . A lso C h en G o n g L ia n g sen t m e fu rth er releva n t

rem a rk s o n th e secu rity o f cry p to sy stem s. M a n y th a n k s

to a ll o f th em .

Références

Documents relatifs

Recalling its endorsement of the Regional Consultative Committee’s proposal at its Twenty-first session held in May 1997, to agree to the establishment of prizes that may be

Dans sa résolution EB25.R71* le Conseil exécutif a recommandé "à la Treizième Assemblée mondiale de la Santé de décider d'adopter un drapeau officiel de l'Organisation

Co-ordinated comparative studies on cardiovascular diseases are being initiated because of the light they may throw on problems in human cardiology, A Scientific Group composed

1« APPROUVE le Rapport du Directeur général et tout particulièrement le futur programme de l'OMS au sujet des aspects sanitaires de la situation démographique mondiale,'*' y

pourcentage des dépenses concernant les nouveaux projets ne renseignaient qu ! impar- faitement car lis indiquaient seulement que le programme envisagé pour 19бЗ restait assez

Acknowledging the increased awareness in the Member States of the Region of the consequences of population ageing and their efforts to formulate policies and to develop or

Having reviewed the technical discussions paper on accreditation of hospitals and medical education institutions: challenges and future directions 1 :.. Recalling

Considérant que ledit projet de programme et de budget est soumis au Conseil Directeur, en sa qualité de Comité régional de l'Organisation mon- diale de la Santé, pour être examiné