• Aucun résultat trouvé

A non-commutative algorithm for multiplying (7 × 7) matrices using 250 multiplications

N/A
N/A
Protected

Academic year: 2021

Partager "A non-commutative algorithm for multiplying (7 × 7) matrices using 250 multiplications"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-01572046

https://hal.archives-ouvertes.fr/hal-01572046v3

Preprint submitted on 18 Jan 2019

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A non-commutative algorithm for multiplying (7 x 7) matrices using 250 multiplications

Alexandre Sedoglavic

To cite this version:

Alexandre Sedoglavic. A non-commutative algorithm for multiplying (7 x 7) matrices using 250

multiplications. 2017. �hal-01572046v3�

(2)

A non-commutative algorithm for multiplying (7 × 7) matrices using 250

multiplications

Alexandre.Sedoglavic@univ-lille.fr January 18, 2019

Abstract

We present a non-commutative algorithm for multiplying (7×7) ma- trices using 250 multiplications and a non-commutative algorithm for mul- tiplying (9×9) matrices using 520 multiplications. These algorithms are obtained using the same divide-and-conquer technique that could be ap- plied to any suitable matrix sizes.

1 Introduction

The main tool of this note could be summarised in the following proposition:

Proposition 1. — Denoting by hu, v, wi the number of multiplications neces- sary to multiply an(u×v)matrix with an (v×w)matrix to yield an (u×w) product matrix, the following relation holds:

hu+v, u+v, u+vi ≤ hu, u, ui+ 3hu, u, vi+ 3hv, v, uiwhenu > v. (1) For (u, v) = (4,3), by selecting already known matrix multiplication algo- rithms and applying this proposition, we obtain a new upper bounds 250 and the explicit corresponding algorithm(7×7×7 ; 250).

In fact, we use the Strassen’s matrix multiplication algorithm [13] todivide the (7×7) matrix multiplication problem into smaller sub-problems; the use of three Smirnov’s rectangular matrix multiplication algorithms [11, 12] allows to conquer new upper bounds on the number of necessary non-commutative multiplications.

To illustrate this point, we first present a scheme that evaluate the prod- uctP=N·M:

N=

n11 · · · n17

... ... n71 · · · n77

, M=

m11 · · · m17

... ... m71 · · · m77

, P=

p11 · · · p17

... ... p71 · · · p77

, (2) using 250 multiplications. This algorithm improves slightly the previous known upper bound 258 presented in [2] and likely obtained with the same kind of techniques presented in this note.

(3)

In the last section of this work, we stress the main limitation of our ap- proach by constructing a (9×9) matrix multiplication algorithm using 520 mul- tiplications (that is only two multiplications less then the corresponding result in [2] but 6 multiplications more then the algorithm (9×9×9 ; 514) cited in Table A—that summarise what we know about 286 matrix multiplication al- gorithms and was obtained automatically during the elaboration of this note—

see [10] for a more complete list with all details). This shows that, as the approach presented here is based on the knowledge of fast matrix multiplication algorithms for rectangular matrices, it is limited by the restricted knowledge we have on these algorithms.

2 Divide

For any (2×2) matrices:

A= (aij)1≤i,j≤2, B = (bij)1≤i,j≤2 and C= (cij)1≤i,j≤2, (3) V. Strassen shows in [13] that the matrix productC=A·B could be computed by performing the following operations:

t1= (a11+a22)(b11+b22), t2= (a12−a22)(b21+b22), t3= (−a11+a21)(b11+b12), t4= (a11+a12)b22, t5=a11(b12−b22), t6=a22(−b11+b21), t7= (a21+a22)b11,

c11 c12

c21 c22

=

t1+t2−t4+t6 t6+t7, t4+t5 t1+t3+t5−t7

,

(4)

in the considered non-necessarily commutative coefficients algebra.

To construct our algorithm, we are going to work with the algebra of (4×4) matrices and thus, we have to adapt our inputs P, N and M (2) to that end.

So we rewrite these matrices (2) in the following equivalent form:

X=

x11 x12 x13 0 x14 · · · x17

x21 x22 x23 0 x24 · · · x27

x31 x32 x33 0 x34 · · · x37

0 0 0 0 0 · · · 0

x41 x42 x43 0 x44 · · · x47

... ... ... ... ... ... x71 x72 x73 0 x74 · · · x77

, X ∈ {P, M, N}, (5)

in which we have just added a line and a column of zeros. After that padding, the productP =N·M is unchanged.

Notations 2. — Hence, in the sequel P (resp. M, N) designates the (8×8) matrices defined in (5) and Pij (resp. Mij, Nij) designates (4×4) matrices (e.g.P11 stands for the upper left submatrix of P, etc).

Remark 3. — The process of peeling the result (removing rows and columns) of our computations might be better understood if we use—even implicitly—the ten- sor interpretation of matrix multiplication algorithms. Using this framework it

(4)

appears that the bilinear applicationB:K(8×8)×K(8×8)7→K(8×8)with indeter- minatesN andM that defines the matrix multiplicationB(N, M) =N·M =P is completely equivalent to the trilinear formK(8×8)×K(8×8)×K(8×8)7→Kwith indeterminates N, M andP defined by Trace (N·M ·P) (e.g. see [6, §4.6.4, page 506], [8,§2.5.2], [1,§ 2.2] or [3] for a complete description of this equiv-

alence).

Computationally, this equivalence induces that the following relation holds:

Trace (N·M ·P) = Trace ((N11+N22)·(M11+M22(P11+P22)) (6a) + Trace ((N12−N22)·(M21+M22P11) (6b) + Trace ((N21−N11)·(M11+M12P22) (6c) + Trace ((N11+N12)·M22·(P21−P11)) (6d) + Trace (N11·(M12−M22(P21+P22)) (6e) + Trace (N22·(M21−M11(P11+P12)) (6f) + Trace ((N21+N22)·M11·(P12−P22)). (6g) As the bilinear application and the trilinear form are equivalent, one could retrieve directly the algorithm from this last form. Our original problem is now divided in 7 lower dimensional subproblems encoded by trilinear forms.

In the next section, we enumerate the algorithms used to compute the matrix products (6a-6g).

3 Conquer

The first summand (6a) involves unstructured (4×4) matrix multiplication that could be computed using Strassen’s algorithm and could be done with 72 mul- tiplications. Before studying the other summands, we emphasise the following trivial remarks:

Remarks 4. — As we consider some matrices with zero last column and/or row, recall that the product of two(4×4) matrices(xij)1≤i,j≤4 and(yij)1≤i,j≤4 is equivalent to the product of the:

• (4×3) matrix (xij)1≤i≤4,1≤j≤3 with the (3×4) matrix(yij)1≤i≤3,1≤,j≤4

when for1≤i≤4we have yi4= 0 (zero last row);

• (3×4) matrix (xij)1≤i≤3,1≤j≤4 with the (4×3) matrix(yij)1≤i≤3,1≤,j≤4

when for1≤j≤4 we have y4j = 0(zero last column).

Let us now review the matrices involved in the summands (6b-6g).

Facts 5. — We notice that by construction:

the last row and column ofX11 are only composed by zeros;

• X22 is a(4×4) matrix;

the last column of X21−X11 is only composed by zeros;

(5)

the last line of X11+X12 is only composed by zeros;

• X12−X22 and X21−X22 are (4×4) matrices without zero row or col- umn.

Hence, taking into account Remarks4and Facts5, we have a better descrip- tion of the sub-problems considered in this section:

Remarks 6. — The summand:

(6b) involves an(3×4)times (4×3) times(3×3) matrices product;

(6c) involves an(4×3)times (3×4) times(4×4) matrices product;

(6d) involves an(3×4)times(4×4)times(4×3) matrices product;

(6e) involves an(3×3)times (3×4) times(4×3) matrices product;

(6f) involves an(4×4) times(4×3)times(3×4) matrices product;

(6g) involves an(4×3)times (3×3) times(3×4) matrices product.

Remark 7. — We also rely our construction on the representation of matrix multiplication algorithm by trilinear forms and the underlying tensor represen- tation (see Remark3) because, as quoted in [6,§4.6.4 p. 507]:

“[. . .], a normal scheme for evaluating an(m×n)times(n×s)ma- trix product implies the existence of a normal scheme to evaluate an (n×s) times(s×m)matrix product using the same number of chain multiplications.”

This is exactly what we are using in the sequel. To do so and in order to express complexity of the summands (6b-6g), we (re)introduce more precisely the following notations (already used in Proposition1):

Notation 8. — For matricesU, V andW of size(u×v),(v×w)and(w×u), we denote byhu, v, withe known supremum on the multiplication necessary for computing Trace (U·V ·W)(that is the number of multiplication used by the best known algorithm allowing to computeU·V =W (a.k.a. tensor rank)).

Remarks 9. — Using this notation, we see that Remarks 6can be restated as follow:

(6b) can be computed usingh3,4,3imultiplications;

(6c) can be computed usingh4,3,4imultiplications;

(6d) can be computed usingh3,4,4imultiplications;

(6e) can be computed usingh3,3,4imultiplications;

(6f) can be computed usingh4,4,3imultiplications;

(6)

(6g) can be computed usingh4,3,3imultiplications.

We are going to see that we need only two algorithms to perform all these computations. In fact, the Remark 7 is a direct consequence of the follow- ing Trace properties:

Trace (U·V ·W) = Trace (W ·U·V) = Trace (V ·W ·U),

= Trace (U·V ·W)

= Trace V ·U

. (7)

To be more precise, Relations (7) imply the following well-known result:

Lemma 10. — The following relations hold:

hu, v, wi=hw, u, vi=hv, w, ui=hv, u, wi=hw, v, ui=hu, w, vi. (8) This allows us to state that algorithm (6b-6g) requires:

h4,4,4i+ 3h3,3,4i+ 3h3,4,4i (9) multiplications. As A. V. Smirnov states that h3,3,4i= 29 and h3,4,4i= 38 in [11, Table 1, No 13 and 21], we conclude that our algorithm required 250 multiplications (72+ 3·29 + 3·38). Furthermore, Smirnov provides in [12] the explicit description of these algorithms, allowing us to do the same with the first algorithm constructed in this note at url:

http://fmm.univ-lille.fr/7x7x7.html.

In the next section, we show how to apply the very same manipulations to the product of two (9×9) matrices.

4 An algorithm for multiplying (9 × 9) matrices

As in the previous section, we are going to pad our (9×9) matrices:

N = (nij)1≤i,j≤9, M = (Mij)1≤i,j≤9 and P = (Pij)1≤i,j≤9, (10) in order to work this time with equivalent (12×12) matrices:

Y =

y11 y12 y13 0 0 0 y14 · · · y19

y21 y22 y23 0 0 0 y24 · · · y29

y31 y32 y33 0 0 0 y34 · · · y39

0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 · · · 0

y41 y42 y43 0 0 0 y44 · · · y49

... ... ... ... ... ... ... ... y91 y92 y93 0 0 0 y94 · · · y99

, Y ∈ {P, M, N}, (11)

After that padding, the productP =N·M is unchanged.

(7)

Notations 11. — In the sequelP (resp.M, N) designates the(12×12)matri- ces defined in (11) andPij (resp.Mij, Nij) designates(6×6)matrices (e.g.P11

stands for the upper left submatrix of P, etc).

The process described in Section3remains—mutatis mutandis—exactly the same and we obtain the following special case of Proposition1:

Lemma 12. — With the Notations8, there exists an algorithm that multiply two(9×9) matrices usingh6,6,6i+ 3h6,6,3i+ 3h6,3,3imultiplications.

Again, we found in [11, Table 1, No27] thath3,3,6i= 40 (an explicit form of this algorithm could be found in the source code of [1] or in the collection [10]).

But this time, we do not have found in the literature anyfast matrix multipli- cation algorithm for h6,6,3i and we have to provide an algorithm forh6,6,6i.

Nevertheless, as done implicitly in Section 2, we are going to use again the following constructive result on tensor’s Kronecker product.

Lemma 13. — Given an algorithm computing(u1×v1)times(v1×w1)matrix product usinghu1, v1, w1imultiplications and an algorithm computing (u2×v2) times (v2×w2) matrix product usinghu2, v2, w2imultiplications, one can con- struct an algorithm computing (u1u2×v1v2) by (v1v2×w1w2) matrix multi- plication usinghu1, v1, w1i · hu2, v2, w2imultiplications (a.k.a. the tensor’s Kro-

necker product of the two previous algorithms).

Hence, as we know that trivially h1,2,2i= 4, we conclude that h6,6,6i is equal toh6,3,3i · h1,2,2i(that is 160) and thath6,6,3i= 80. So, the algorithm constructed in this section requires 520 multiplications (4·40 + 3·80 + 3·40).

5 Concluding remarks

The complexity of our algorithm for multiplying (9×9) matrices could likely be improved by finding abetter algorithm forh6,6,3iandh6,6,6ithen those used above (algorithms obtained by tensor Kronecker product are not always optimal as shown by the fact thath3,3,3i · h3,3,3iis equal to 529 while computations summarised in TableAshow thath9,9,9iis now 514).

By combining tensor’s based description of matrix multiplication algorithms with rectangular algorithms found by numerical computer search (see [1,§2.3.2]

and [11]), it is possible—as already shown in [2]—to improve the theoretical complexity of small size matrix products (see TableAin appendix in which new results obtained with the method presented in this note are in bold face).

Remark 14. — Furthermore, by considering the case of algorithm :

(4×7×10 ; 207)= 3(2×3×5 ; 25)+ 4(2×4×5 ; 33), (12) one can remark that the complexityof the resulting algorithm could be smaller then the complexity of the algorithms used to construct it:

C(4,7,10) = 3 ln(207)

ln(4·7·10) = 2.839175463<2.839184673 =C(2,3,5), (13) and

C(4,7,10)<2.843552579 =C(2,4,5). (14)

(8)

The author thinks that some symmetry-based geometrical methods could re- duce further the upper bounds presented in this note.

References

[1] Benson, A. R., and Ballard, G. A framework for practi- cal parallel fast matrix multiplication. Tech. rep. arXiv:1409.2908v1 Sept. 2014. Source code athttps://github.com/arbenson/fast-matmul.

[Cited§3,4, and 5.]

[2] Drevet, C.- ´E., Nazrul Islam, M., and Schost, E.´ Op- timization techniques for small matrix multiplication. The- oretical Computer Science 412, 22 (May 2011), 2219–2236.

https://doi.org/10.1016/j.tcs.2010.12.012. [Cited§1 and5.]

[3] Dumas, J.-G., and Pan, V. Y. Fast matrix multiplication and symbolic computation. Tech. rep.arXiv:1612.05766v1, Dec. 2015. [Cited§3.]

[4] Hopcroft, J. E., and Kerr, L. E. On minimizing the number of multiplication necessary for matrix multiplication. SIAM Journal on Ap- plied Mathematics 20, 1 (Jan. 1971). https://doi.org/10.1137/0120004.

[Cited§1.]

[5] Hopcroft, J. E., and Musinski, J. Duality applied to the complexity of matrix multiplications and other bilinear forms. In 5th Annual acm Symposium on the theory of computing (Apr. 30–May 2 1973), A. V. Aho, A. Borodin, R. L. Constable, R. W. Floyd, M. A. Harrison, R. D. Karp, and R. H. Strong, Eds., pp. 73–87. https://doi.org/10.1137/0202013.

[6] Knuth, D. E. The Art of Computer Programming. Seminumerical Al- gorithms, 3 ed., vol. 2 of Computer Science and Information Processing.

Addison Wesley, Reading, Mass., 1997. https://doi.org/10.1137/1012065.

[Cited§3and7.]

[7] Laderman, J. B. A noncommutative algorithm for multi- plying 3 × 3 matrices using 23 multiplications. Bulletin of the American Mathematical Society 82, 1 (Jan. 1976), 126–128.

https://doi.org/10.1090/S0002-9904-1976-13988-2. [Cited §1.]

[8] Landsberg, J. M. Tensors: geometry and applications, vol. 128 of Graduate Studies in Mathematics. American Mathematical Society, 2010.

https://doi.org/10.1090/gsm/128. [Cited§3.]

[9] Sedoglavic, A. A non-commutative algorithm for multiplying 5×5 matrices using 99 multiplications. Tech. rep. arXiv:1707.06860v1, arXiv, July 2017. [Cited§1.]

[10] Sedoglavic, A. Fast matrix multiplication database.

http://fmm.univ-lille.fr/ [Cited§1 and4.]

[11] Smirnov, A. V. The bilinear complexity and practical al- gorithms for matrix multiplication. Computational Mathemat- ics and Mathematical Physics 53, 2 (Dec. 2013), 1781–1795.

https://doi.org/10.1134/S0965542513120129. [Cited§1,3,4,5, and1.]

(9)

[12] Smirnov, A. V. Several bilinear algorithms for matrix multiplication.

Tech. rep. Jan. 2017. doi:10.13140/RG.2.2.30005.06886 [Cited§1and 3.]

[13] Strassen, V. Gaussian elimination is not optimal. Numerische Math- ematik 13, 4 (Aug. 1969), 354–356. https://doi.org/10.1007/BF02165411. [Cited§1,2, and1.]

A Summary of known results

We gather below a summary of some known results up toh12,12,12i.

h1, x, yi x·y x·y trivial algorithms h2,2,2i 7 8 Strassen [13]

h2,3,3i 15 18 Hopcroft & Kerr [4]

h2,3,4i 20 24 Hopcroft & Kerr [4]

h2,3,5i 25 30 Hopcroft & Kerr [4]

h2,3,6i 30 36 h2,3,3i · h1,1,2i h2,3,7i 35 42 h2,3,3i+h2,3,4i h2,3,8i 40 48 h2,3,4i · h1,1,2i h2,3,9i 45 54 h2,3,3i · h1,1,3i h2,3,10i 50 60 h2,3,4i+h2,3,6i h2,3,11i 55 66 h2,3,7i+h2,3,4i h2,3,12i 60 72 h1,1,2i · h2,3,6i

h2,4,4i 26 32 Hopcroft & Kerr [4]

h2,4,5i 33 40 Hopcroft & Kerr [4]

h2,4,6i 39 48 Hopcroft & Kerr [4]

h2,4,7i 46 56 h2,4,3i+h2,4,4i h2,4,8i 52 64 h2,4,4i · h1,1,2i h2,4,9i 59 72 h2,4,4i+h2,4,5i h2,4,10i 65 80 h2,4,4i+h2,4,6i h2,4,11i 72 88 h2,4,7i+h2,4,4i h2,4,12i 78 96 h1,1,3i · h2,4,4i

h2,5,5i 40 50 Hopcroft & Kerr [4]

h2,5,6i 48 60 Hopcroft & Kerr [4]

h2,5,7i 56 70 Hopcroft & Kerr [4]

h2,5,8i 64 80 Hopcroft & Kerr [4]

h2,5,9i 72 90 Hopcroft & Kerr [4]

h2,5,10i 80 100 h2,5,5i · h1,1,2i h2,5,11i 88 110 h2,5,6i+h2,5,5i h2,5,12i 96 120 h2,5,6i+h2,5,6i

h2,6,6i 57 72 Hopcroft & Kerr [4]

h2,6,7i 67 84 Hopcroft & Kerr [4]

h2,6,8i 76 96 Hopcroft & Kerr [4]

h2,6,9i 86 108 Hopcroft & Kerr [4]

h2,6,10i 95 120 Hopcroft & Kerr [4]

h2,6,11i 105 132 h2,6,5i+h2,6,6i h2,6,12i 114 144 h1,1,2i · h2,6,6i

h2,7,7i 77 98 Hopcroft & Kerr [4]

h2,7,8i 88 112 Hopcroft & Kerr [4]

h2,7,9i 99 126 Hopcroft & Kerr [4]

(10)

h2,7,10i 110 140 Hopcroft & Kerr [4]

h2,7,11i 121 154 Hopcroft & Kerr [4]

h2,7,12i 132 168 Hopcroft & Kerr [4]

h2,8,8i 100 128 Hopcroft & Kerr [4]

h2,8,9i 113 144 Hopcroft & Kerr [4]

h2,8,10i 125 160 h1,1,2i · h2,8,5i h2,8,11i 138 176 h2,8,3i+h2,8,8i h2,8,12i 150 192 Hopcroft & Kerr [4]

h2,9,9i 126 162 Hopcroft & Kerr [4]

h2,9,10i 140 180 h1,1,2i · h2,9,5i h2,9,11i 154 198 h2,9,2i+h2,9,9i h2,9,12i 168 216 Hopcroft & Kerr [4]

h2,10,10i 155 200 Hopcroft & Kerr [4]

h2,10,11i 171 220 h2,10,1i+h2,10,10i h2,10,12i 186 240 h2,10,2i+h2,10,10i h2,11,11i 187 242 Hopcroft & Kerr [4]

h2,11,12i 204 264 h2,11,1i+h2,11,11i h2,12,12i 222 288 Hopcroft & Kerr [4]

h3,3,3i 23 27 Laderman [7]

h3,3,4i 29 36 Smirnov [11]

h3,3,5i 36 45 Smirnov [11]

h3,3,6i 40 54 Smirnov [11]

h3,3,7i 49 63 h3,3,1i+h3,3,6i h3,3,8i 55 72 h3,3,6i+h3,3,2i h3,3,9i 63 81 h3,3,3i+h3,3,6i h3,3,10i 69 90 h3,3,4i+h3,3,6i h3,3,11i 76 99 h3,3,5i+h3,3,6i h3,3,12i 80 108 h1,1,2i · h3,3,6i

h3,4,4i 38 48 Smirnov [11]

h3,4,5i 48 60 Smirnov [11]

h3,4,6i 58 72 h3,4,3i · h1,1,2i h3,4,7i 67 84 h3,4,3i+h3,4,4i h3,4,8i 76 96 h3,4,4i · h1,1,2i h3,4,9i 86 108 h3,4,4i+h3,4,5i h3,4,10i 96 120 h3,4,2i+h3,4,8i h3,4,11i 105 132 h3,4,3i+h3,4,8i h3,4,12i 114 144 h1,1,3i · h3,4,4i

h3,5,5i 61 75 h3,5,2i+h3,5,3i h3,5,6i 70 90 h3,2,6i+h3,3,6i h3,5,7i 84 105 h3,2,7i+h3,3,7i h3,5,8i 95 120 h3,5,6i+h3,5,2i h3,5,9i 106 135 h3,5,3i+h3,5,6i h3,5,10i 118 150 h3,5,4i+h3,5,6i h3,5,11i 130 165 2h2,3,5i+ 2h3,3,6i h3,5,12i 140 180 h3,3,12i+h3,2,12i

h3,6,6i 80 108 h3,3,6i · h1,2,1i h3,6,7i 98 126 h3,3,7i · h1,2,1i h3,6,8i 110 144 h1,2,1i · h3,3,8i h3,6,9i 120 162 h3,6,3i · h1,1,3i h3,6,10i 138 180 h3,6,1i+h3,6,9i

(11)

h3,6,11i 150 198 h3,6,2i+h3,6,9i h3,6,12i 160 216 h1,1,2i · h3,6,6i

h3,7,7i 116 147 h3,7,3i+h3,7,4i h3,7,8i 131 168 h3,3,8i+h3,4,8i h3,7,9i 147 189 h3,7,3i · h1,1,3i h3,7,10i 165 210 h3,7,4i+h3,7,6i h3,7,11i 180 231 h3,7,3i+h3,7,8i h3,7,12i 194 252 h3,3,12i+h3,4,12i

h3,8,8i 150 192 h3,8,2i+h3,8,6i h3,8,9i 165 216 h1,1,3i · h3,8,3i h3,8,10i 186 240 h3,8,4i+h3,8,6i h3,8,11i 205 264 h3,8,2i+h3,8,9i h3,8,12i 220 288 h1,1,4i · h3,8,3i

h3,9,9i 183 243 h3,9,3i+h3,9,6i h3,9,10i 206 270 h3,9,4i+h3,9,6i h3,9,11i 226 297 h3,9,5i+h3,9,6i h3,9,12i 240 324 h1,1,2i · h3,9,6i h3,10,10i 234 300 h3,10,4i+h3,10,6i h3,10,11i 255 330 h3,10,3i+h3,10,8i h3,10,12i 274 360 h3,4,12i+h3,6,12i h3,11,11i 280 363 h3,11,5i+h3,11,6i h3,11,12i 300 396 h3,11,6i+h3,11,6i h3,12,12i 320 432 h1,2,2i · h3,6,6i

h4,4,4i 49 64 h2,2,2i · h2,2,2i h4,4,5i 64 80 h4,4,2i+h4,4,3i h4,4,6i 75 96 h4,4,4i+h4,4,2i h4,4,7i 87 112 h4,4,4i+h4,4,3i h4,4,8i 98 128 h1,1,2i · h4,4,4i h4,4,9i 113 144 h4,4,2i+h4,4,7i h4,4,10i 124 160 h4,4,2i+h4,4,8i h4,4,11i 136 176 h4,4,3i+h4,4,8i h4,4,12i 147 192 h1,1,3i · h4,4,4i

h4,5,5i 80 100 h2,5,5i · h2,1,1i h4,5,6i 93 120 3h2,2,3i+ 4h2,3,3i

h4,5,7i 109 140 h2,2,3i+ 2h2,2,4i+ 2h2,3,3i+ 2h2,3,4i h4,5,8i 122 160 3h2,2,4i+ 4h2,3,4i

h4,5,9i 140 180 h2,2,4i+ 2h2,2,5i+ 2h2,3,4i+ 2h2,3,5i h4,5,10i 154 200 3h2,2,5i+ 4h2,3,5i

h4,5,11i 170 220 h4,5,8i+h4,5,3i h4,5,12i 183 240 3h2,2,6i+ 4h2,3,6i

h4,6,6i 105 144 h2,2,2i · h2,3,3i h4,6,7i 125 168 3h2,3,3i+ 4h2,3,4i h4,6,8i 140 192 h2,2,2i · h2,3,4i h4,6,9i 160 216 3h2,3,4i+ 4h2,3,5i h4,6,10i 175 240 h2,2,2i · h2,3,5i h4,6,11i 195 264 3h2,3,5i+ 4h2,3,6i h4,6,12i 210 288 h1,1,2i · h4,6,6i

h4,7,7i 147 196 h2,3,3i+ 2h2,4,4i+ 4h2,3,4i h4,7,8i 164 224 3h2,3,4i+ 4h2,4,4i

h4,7,9i 188 252 h2,3,4i+ 2h2,3,5i+ 2h2,4,4i+ 2h2,4,5i

(12)

h4,7,10i 207 280 3h2,3,5i+ 4h2,4,5i

h4,7,11i 229 308 h2,3,5i+ 2h2,3,6i+ 2h2,4,5i+ 2h2,4,6i h4,7,12i 246 336 3h2,3,6i+ 4h2,4,6i

h4,8,8i 182 256 h2,2,2i · h2,4,4i h4,8,9i 210 288 3h2,4,4i+ 4h2,4,5i h4,8,10i 231 320 h2,2,2i · h2,4,5i h4,8,11i 255 352 3h2,4,5i+ 4h2,4,6i h4,8,12i 273 384 h2,2,2i · h2,4,6i

h4,9,9i 225 324 h2,3,3i · h2,3,3i h4,9,10i 259 360 3h2,4,5i+ 4h2,5,5i h4,9,11i 284 396 h4,9,2i+h4,9,9i h4,9,12i 300 432 h2,3,3i · h2,3,4i h4,10,10i 280 400 h2,2,2i · h2,5,5i h4,10,11i 312 440 3h2,5,5i+ 4h2,5,6i h4,10,12i 336 480 h2,2,2i · h2,5,6i

h4,11,11i 346 484 h2,5,5i+ 2h2,6,6i+ 4h2,5,6i h4,11,12i 372 528 3h2,5,6i+ 4h2,6,6i

h4,12,12i 390 576 h2,3,3i · h2,4,4i h5,5,5i 99 125 Sedoglavic [9]

h5,5,6i 117 150 h2,2,3i+ 2h3,3,3i+ 4h2,3,3i

h5,5,7i 136 175 h2,2,4i+h3,3,3i+h3,3,4i+ 2h2,3,3i+ 2h2,3,4i h5,5,8i 152 200 h2,2,4i+ 2h3,3,4i+ 4h2,3,4i

h5,5,9i 173 225 h2,2,5i+h3,3,4i+h3,3,5i+ 2h2,3,4i+ 2h2,3,5i h5,5,10i 190 250 h2,2,5i+ 2h3,3,5i+ 4h2,3,5i

h5,5,11i 206 275 h2,2,6i+h2,3,6i+ 2h3,3,6i+ 3h2,3,5i h5,5,12i 221 300 h2,2,6i+ 2h3,3,6i+ 4h2,3,6i

h5,6,6i 137 180 h3,6,6i+h2,6,6i

h5,6,7i 159 210 h2,3,3i+ 2h2,3,4i+ 2h3,3,3i+ 2h3,3,4i h5,6,8i 176 240 3h2,3,4i+ 4h3,3,4i

h5,6,9i 200 270 h2,3,4i+ 2h2,3,5i+ 2h3,3,4i+ 2h3,3,5i h5,6,10i 218 300 h2,3,4i+ 2h2,3,6i+ 2h3,3,4i+ 2h3,3,6i h5,6,11i 236 330 h2,3,6i+h3,3,5i+ 2h2,3,5i+ 3h3,3,6i h5,6,12i 250 360 3h2,3,6i+ 4h3,3,6i

h5,7,7i 185 245 h2,4,4i+h3,3,3i+h3,4,4i+ 2h2,3,4i+ 2h3,3,4i h5,7,8i 206 280 h2,3,4i+ 2h2,4,4i+ 2h3,3,4i+ 2h3,4,4i

h5,7,9i 235 315 h2,3,5i+h2,4,4i+h2,4,5i+h3,3,4i+h3,3,5i+h3,4,4i+h3,4,5i h5,7,10i 259 350 h2,3,5i+ 2h2,4,5i+ 2h3,3,5i+ 2h3,4,5i

h5,7,11i 283 385 h2,3,5i+h2,4,5i+h2,4,6i+h3,4,5i+h3,4,6i+ 2h3,3,6i h5,7,12i 304 420 h2,3,6i+ 2h2,4,6i+ 2h3,3,6i+ 2h3,4,6i

h5,8,8i 230 320 3h2,4,4i+ 4h3,4,4i

h5,8,9i 264 360 h2,4,4i+ 2h2,4,5i+ 2h3,4,4i+ 2h3,4,5i h5,8,10i 291 400 3h2,4,5i+ 4h3,4,5i

h5,8,11i 323 440 h2,4,5i+ 2h2,4,6i+ 2h3,4,5i+ 2h3,4,6i h5,8,12i 346 480 h5,2,12i+h5,6,12i

h5,9,9i 300 405 h2,6,6i+h3,3,3i+h3,6,6i+ 2h2,3,6i+ 2h3,3,6i h5,9,10i 331 450 h2,4,5i+ 2h2,5,5i+ 2h3,4,5i+ 2h3,5,5i

h5,9,11i 360 495 h2,3,5i+h2,5,6i+h2,6,6i+h3,5,6i+h3,6,6i+ 2h3,3,6i h5,9,12i 384 540 h2,3,6i+ 2h2,6,6i+ 2h3,3,6i+ 2h3,6,6i

h5,10,10i 364 500 3h2,5,5i+ 4h3,5,5i

h5,10,11i 398 550 h2,5,6i+h3,5,5i+ 2h2,5,5i+ 3h3,5,6i

(13)

h5,10,12i 424 600 3h2,5,6i+ 4h3,5,6i

h5,11,11i 434 605 h2,6,6i+h3,5,5i+h3,6,6i+ 2h2,5,6i+ 2h3,5,6i h5,11,12i 462 660 h2,5,6i+ 2h2,6,6i+ 2h3,5,6i+ 2h3,6,6i

h5,12,12i 491 720 3h2,6,6i+ 4h3,6,6i h6,6,6i 160 216 h3,3,6i · h2,2,1i h6,6,7i 185 252 h6,6,4i+h6,6,3i h6,6,8i 203 288 h2,2,2i · h3,3,4i h6,6,9i 225 324 h2,3,3i · h3,2,3i h6,6,10i 247 360 3h3,3,4i+ 4h3,3,6i h6,6,11i 268 396 3h3,3,5i+ 4h3,3,6i h6,6,12i 280 432 h2,2,2i · h3,3,6i

h6,7,7i 215 294 h3,3,3i+ 2h3,4,4i+ 4h3,3,4i h6,7,8i 239 336 3h3,3,4i+ 4h3,4,4i

h6,7,9i 273 378 h3,3,4i+ 2h3,3,5i+ 2h3,4,4i+ 2h3,4,5i h6,7,10i 300 420 3h3,3,5i+ 4h3,4,5i

h6,7,11i 328 462 h3,3,5i+ 2h3,3,6i+ 2h3,4,5i+ 2h3,4,6i h6,7,12i 352 504 h6,6,12i+h6,1,12i

h6,8,8i 266 384 h2,2,2i · h3,4,4i h6,8,9i 300 432 h2,4,3i · h3,2,3i h6,8,10i 336 480 h2,2,2i · h3,4,5i h6,8,11i 373 528 h6,2,11i+h6,6,11i h6,8,12i 390 576 h2,4,4i · h3,2,3i

h6,9,9i 343 486 h3,3,3i+ 2h3,6,6i+ 4h3,3,6i h6,9,10i 375 540 h2,3,5i · h3,3,2i

h6,9,11i 416 594 h3,3,5i+ 2h3,3,6i+ 2h3,5,6i+ 2h3,6,6i h6,9,12i 435 648 h2,3,3i · h3,3,4i

h6,10,10i 422 600 h6,10,4i+h6,10,6i h6,10,11i 463 660 h6,6,11i+h6,4,11i h6,10,12i 490 720 h2,2,2i · h3,5,6i

h6,11,11i 501 726 h3,5,5i+ 2h3,6,6i+ 4h3,5,6i h6,11,12i 530 792 h6,5,12i+h6,6,12i

h6,12,12i 560 864 h2,2,2i · h3,6,6i

h7,7,7i 250 343 h4,4,4i+ 3h3,3,4i+ 3h3,4,4i h7,7,8i 279 392 h3,3,4i+ 2h4,4,4i+ 4h3,4,4i

h7,7,9i 321 441 h3,3,5i+h4,4,4i+h4,4,5i+ 2h3,4,4i+ 2h3,4,5i h7,7,10i 353 490 h4,4,4i+ 2h3,3,6i+ 2h3,4,4i+ 2h4,4,6i

h7,7,11i 388 539 h4,4,5i+ 2h3,3,6i+ 2h3,4,5i+ 2h4,4,6i h7,7,12i 419 588 2h3,3,6i+ 2h3,4,6i+ 3h4,4,6i

h7,8,8i 310 448 3h3,4,4i+ 4h4,4,4i

h7,8,9i 360 504 h3,4,4i+ 2h3,4,5i+ 2h4,4,4i+ 2h4,4,5i h7,8,10i 398 560 h7,8,2i+h7,8,8i

h7,8,11i 441 616 h7,8,3i+h7,8,8i h7,8,12i 474 672 h7,8,4i+h7,8,8i h7,9,9i 408 567 h3,9,9i+h4,9,9i

h7,9,10i 454 630 h3,3,6i+h3,4,4i+h3,6,6i+h4,4,6i+h4,6,6i+ 2h3,4,6i

h7,9,11i 494 693 h3,3,6i+h3,4,5i+h3,4,6i+h3,5,6i+h3,6,6i+h4,5,6i+h4,6,6i h7,9,12i 526 756 h3,3,6i+ 2h3,4,6i+ 2h3,6,6i+ 2h4,6,6i

h7,10,10i 500 700 h3,6,6i+h4,4,4i+h4,6,6i+ 2h3,4,6i+ 2h4,4,6i

h7,10,11i 545 770 h3,4,6i+h3,5,6i+h3,6,6i+h4,4,5i+h4,4,6i+h4,5,6i+h4,6,6i h7,10,12i 578 840 h3,4,6i+ 2h3,6,6i+ 2h4,4,6i+ 2h4,6,6i

(14)

h7,11,11i 590 847 h3,6,6i+ 2h3,5,6i+ 2h4,5,5i+ 2h4,6,6i h7,11,12i 626 924 h3,5,6i+ 2h3,6,6i+ 2h4,5,6i+ 2h4,6,6i h7,12,12i 660 1008 3h3,6,6i+ 4h4,6,6i

h8,8,8i 343 512 h2,2,2i · h4,4,4i h8,8,9i 400 576 h2,4,3i · h4,2,3i h8,8,10i 443 640 h8,8,2i+h8,8,8i h8,8,11i 492 704 h8,8,4i+h8,8,7i h8,8,12i 520 768 h2,4,3i · h4,2,4i

h8,9,9i 435 648 h2,3,3i · h4,3,3i h8,9,10i 500 720 h2,3,5i · h4,3,2i h8,9,11i 548 792 h8,9,2i+h8,9,9i h8,9,12i 570 864 h2,3,3i · h4,3,4i

h8,10,10i 559 800 h4,4,4i+ 2h4,6,6i+ 4h4,4,6i

h8,10,11i 610 880 h4,4,5i+ 2h4,4,6i+ 2h4,5,6i+ 2h4,6,6i h8,10,12i 645 960 3h4,4,6i+ 4h4,6,6i

h8,11,11i 661 968 2h4,5,5i+ 2h4,5,6i+ 3h4,6,6i h8,11,12i 699 1056 3h4,5,6i+ 4h4,6,6i

h8,12,12i 735 1152 h2,2,2i · h4,6,6i

h9,9,9i 514 729 Proj([[0,0],[2]],h9,9,10i) h9,9,10i 540 810 h3,3,2i · h3,3,5i

h9,9,11i 600 891 Proj([[0,0],[12]],h9,9,12i) h9,9,12i 600 972 h3,3,2i · h3,3,6i

h9,10,10i 625 900 h3,2,5i · h3,5,2i h9,10,11i 680 990 h9,10,2i+h9,10,9i h9,10,12i 708 1080 h9,1,12i+h9,9,12i h9,11,11i 754 1089 h9,11,2i+h9,11,9i h9,11,12i 768 1188 h9,2,12i+h9,9,12i h9,12,12i 800 1296 h3,2,4i · h3,6,3i h10,10,10i 693 1000 h2,2,2i · h5,5,5i h10,10,11i 765 1100 3h5,5,5i+ 4h5,5,6i

h10,10,12i 815 1200 h4,4,6i+ 2h6,6,6i+ 4h4,6,6i h10,11,11i 841 1210 h5,5,5i+ 2h5,6,6i+ 4h5,5,6i h10,11,12i 894 1320 h10,2,12i+h10,9,12i

h10,12,12i 936 1440 h2,4,4i · h5,3,3i

h11,11,11i 922 1331 h6,6,6i+ 3h5,5,6i+ 3h5,6,6i h11,11,12i 972 1452 h2,11,12i+h9,11,12i

h11,12,12i 1022 1584 h2,12,12i+h9,12,12i h12,12,12i 1040 1728 h2,4,4i · h6,3,3i

h15,15,15i 2101 3375 h7,8,8i+ 2h8,8,8i+ TA(h7,7,8i,h7,8,7i) + TA(h7,7,8i,h8,7,7i) h18,18,18i 3200 5832 h3,3,6i · h6,6,3i

h21,21,21i 5240 9261 h12,12,12i+ 3h9,9,12i+ 3h9,12,12i

Références

Documents relatifs

La liste des relations ci-après est très loin d’être exhaustive. Ce sont quelques exemples parmi une multitude de

We conclude that the Laderman matrix multiplication algorithm can be constructed using the orbit of an optimal 2 × 2 matrix multiplication algorithm under the action of a given

Makarov decomposed the 5 × 5 matrix multiplication algo- rithm as 7 others matrix multiplication algorithms using a variant of Strassen’s algorithm [15] and obtain an

In fact, the best solution found by the GA, here called H-GA, uses only 31% of the dimensions from the canonical version of the descriptor and still achieves a similar performance.

• the WRMC algorithm through Propositions 2.1 (consistency of the estimation), 2.2 (asymptotic normality), and 2.3 (a first partial answer to the initial question: Does waste

We use a hybrid algorithm to lemmatize the Helsinki Corpus of English Texts, a long-time-span diachronic corpus that includes Middle English texts of different genres, a total of

• Stopping condition redesigned (integrated with the exploration/exploitation strategy and based on the interest of the search and diversity of new solutions). ACOv3f: algorithm

Vers quel nombre du cadran est pointée la grande aiguille. Le nombre pointé par la grande aiguille est