• Aucun résultat trouvé

INFLUENCE OF ARSENIC VAPOR SPECIES ON ELECTRICAL AND OPTICAL PROPERTIES OF MBE GROWN GaAs

N/A
N/A
Protected

Academic year: 2021

Partager "INFLUENCE OF ARSENIC VAPOR SPECIES ON ELECTRICAL AND OPTICAL PROPERTIES OF MBE GROWN GaAs"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00222236

https://hal.archives-ouvertes.fr/jpa-00222236

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INFLUENCE OF ARSENIC VAPOR SPECIES ON ELECTRICAL AND OPTICAL PROPERTIES OF

MBE GROWN GaAs

H. Jung, H. Künzel, K. Ploog

To cite this version:

H. Jung, H. Künzel, K. Ploog. INFLUENCE OF ARSENIC VAPOR SPECIES ON ELECTRICAL

AND OPTICAL PROPERTIES OF MBE GROWN GaAs. Journal de Physique Colloques, 1982, 43

(C5), pp.C5-135-C5-143. �10.1051/jphyscol:1982517�. �jpa-00222236�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C S , suppZe'ment au n012, Tome 43, de'cembre 1982 page C5-135

INFLUENCE OF ARSENIC VAPOR SPECIES ON ELECTRICAL AND OPTICAL

PROPERTIES OF MBE GROWN GaAs

H. Jung, H . Kiinzel and K. Ploog

Max-PZanck-Institut fiir Festkiirperforschung, 0-7000 S t u t t g a r t 80, F.R.G.

Msum'e.

-

L ' i n f l u e n c e r e s p e c t i v e des especes gazeuses de l ' a r s e n i c dim6res (As2) e t t'etramCres (Ass) s u r l e s propri'et'es 'electriques e t optiques de GaAs, non dop'e e t

dop'e par Ge, @labor& p a r ' e p i t a x i e de j e t mol6culait-e (MBE), a 'eye 6 t u d i 6 e par e f f e t Hal 1, photo1 uminescence (PL) e t mesures DLTS. Le j e t mol'eculai r e provenai t de deux sources As2 e t As4 d i f f e r e n t e s a i n s i que d'une source unique pouvant f o u r n i r des r a p p o r t s de f l u x As4/As2 r'eglables. L ' a p p a r i t i o n de 1 ignes d ' e x c i t o n de saut r e 1 iees au ditfaut dans l e s p e c t r e

2K

PL e s t directement c o r r 6 l e e d 1 'e x i s t e n c e de t r o i s 'etats profonds (Ml, 113, F44), q u i sont caract'eristiques de GaAs 5labor'e par l a m'ethode MBE.

L 1 i n t e n s i t 5 de ces PL l i g n e s suppl'ementaires et, simultan5ment l a c o n c e n t r a t i o n des 'electrons pi'eg'es peuvent d t r e r'eduites substantie'llement p a r d i m i n u t i o n du r a p p o r t de As4 SUP As2. De plus, un r a p p o r t d'au-tocompensation beaucoup p l u s f a i b l e dans n-GaAc doph au Ge peut S t r e obtenu par un j e t mol'eculaire d'especes As2, q u i f o u r - n i t une p o p u l a t i o n de s u r f a c e de l ' a r s e n i c nettement p l u s s t a t i o n n a i r e . Les r'esul- t a t s demontrent que l ' i n c o r p o r a t i o n des centres r e l i e s au d @ f a u t aussi b i e n que cellededopantsamphoteriques d'epend fortement de 1 ' ' e t a t chimique de l a s u r f a c e im- p l i q u 6 e l o r s du processus de croissance du f i l m .

Abstract.

-

The i n f l u e n c e o f d i m e r i c (As2) vs t e t r a m e r i c (As4) a r s e n i c vapour spe- c i e s on t h e e l e c t r i c a l and o p t i c a l p r o p e r t i e s o f undoped and of Ge-doped GaAs grown by molecular beam e p i t a x y (MBE) has been s t u d i e d by using H a l l e f f e c t , photolumi- nescence (PL) and DLTS measurements. The a r s e n i c molecular beam was obtained from separate As2 and AS+ sources, resp., and from a s i n g l e source p r o v i d i n g a d j u s t a b l e As4/As2 f l u x r a t i o s . The occurrence o f t h e defect r e l a t e d bound e x c i t o n l i n e s i n t h e 2K PL spectra was found t o be d i r e c t l y c o r r e l a t e d w i t h - t h e existence o f t h r e e deep s t a t e s

(MI,

M3, M4) which a r e e h a r a c t e r i s t i c o f MBE grown GaAs. The i n t e n s i t y o f these e x t r a PL l i n e s and simultaneously the e l e c t t o n t r a p c o n c e n t r a t i o n c o u l d be reduced s u b s t a n t i a l l y by decreasing t h e Asq v s As2 f l u x r a t i o . I n a d d i t i o n , a con- s i d e r a b l y lower autocompensation r a t i o i n Ge-doped n-GaAs was achieved w i t h As2 mo- l e c u ? a r beam species which p r o v i d e a such h i g h e r steady-state a r s e n i c s u r f a c e popu- l a t i o n . These r e s u l t s demonstrate t h a t t h e i n c o r p o r a t i o n o f defect r e l a t e d centers as w e l l as o f amphoteric dopants s t r o n g l y depends on t h e s u r f a c e chemistry i n v o l v e d i n t h e f i l m growth process.

1. I n t r o d u c t i o n .

-

I n t h e growth o f GaAs f i l m s by molecular beam e p i t a x y (MBE) the a r s e n i c molecular beam c o n s i s t s o f e i t h e r t e t r a m e r i c (As4) [l] o r d i m e r i c (As2) spe- c i e s C21. General ly, AS+ mol e c u l a r beams produced by evaporating p o l y c r y s t a l 1 in e a r s e n i c source m a t e r i a l a r e employed. For t h e more l a b o r i o u s g e n e r a t i o n o f As2 mo- l e c u l e s d u r i n g MBE, t h e r e a r e naw t h r e e methods a v a i l a b l e : (a) t h e incongruent eva- p o r a t i o n o f GaAs source m a t e r i a l [31, ( b ) t h e thermal decomposition o f gaseous AsH3 i n a s p e c i a l l e a k - e f f u s i o n source [41 o r c r a c k i n g furnace [51, and ( c ) t h e c r a c k i n g o f As4 i n t o As2 species i n a two-zone e f f u s i o n c e l l a r r a y e m e n t [6,7].

Previous s t u d i e s i n d i c a t e d t h a t t h e q u a l i t y o f MBE GaAs f i l m s i s probably

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982517

(3)

C5-136 JOURNAL DE PHYSIQUE

superior when grown from dimeric arsenic species [7, 81. Low-temperature photolumi- nescence (PL) measurements showed the existence of additional sharp PL l i n e s in the range 1.504 - 1.511 eV which a r e due t o r a d i a t i v e recombination of bound excitons induced by point defects 181. The occurrence of these defects was correlated with the complex second-order interaction process of the impinging As4 molecules on the (100) GaAs ~ r o w t h surface [I!. Except f o r the l i n e a t 1.5109 eV, t h e extra

PL

featu- res disappeared t o t a l l y when As2 instead of As4 beam species were used, thus indicat- ing a substantial decrease of growth induced defects.

A

comparable reduction of the concentration of deep electron traps in As2-grown MBE GaAs was derived from DLTS measurements [7]

The apparent advantage of As2 over As4 species in tlBE of GaAs was attributed to the elemectary f i r s t - o r d e r reaction process of dissociative chemisorption of As2 in- volving only a s i n g l e Ga surface atom [2]. This reduces the probability of incorpo- ration of p o i n t 7 G T E t s related t o Ga vacancies a.nd t h e i r descendants C81. In addi- tion, i t has been speculated t h a t a higher steady-state arsenic surface population during growth e x i s t s with As2 beam species. I f so, t h i s should also have a strong impact on the incorporation

of

amphoteric dopants in MBE GaAs.

In t h i s paper we present the r e s u l t s of combined Hall e f f e c t , low-temperature PL and DLTS measurements on not intentionally doped and on Ge-doped GaAs layers grown from separate As4 and AS:! sources, resp., o r from a s i n g l e source providing adjustable As4/As2 flux r a t i o s . In addition t o the incorporation of defect related centers, we examine the autocompensation r a t i o and thereby the s i t e occupancy of t h e amphoteric dopant Ge. The r e s u l t s a r e then correlated with the d i f f e r e n t surface chemistry involved with As2 and As4 molecular beams.

2.

Experimental. - The GaAs films were grown in a

UHV

system of the v e r t i c a l evapo- r a t m i p p e d with a sample exchange load-lock device [91. For the present study we operated four effusion c e l l s t o evaporate elemental arsenic, gallium and germanium a s well as polycrystalline GaAs. The epitaxial GaAs layers with a thick- ness of

2 ym

were deposited without any buffer layer simultaneously onto (100) crien- ted Cr-doped SI and heavily Si-doped N -GaAs substrates. During deposition, the substrate temperature was typically maintained a t 550

C ,

i f not quoted otherwise.

The temperatures of the effusion c e l l s containing Ga and elemental arsenic (lower part of the c e l l only!) o r GaAs, resp., were kept constant throughout the growth runs resulting in a constant growth r a t e of 1.0

pm/h

and a constant arsenic-to-gall- ium f l u x r a t i o of about two, which produces the As-stabilized (2x4) reconstruction on the (100) growth surface. During t h i s study we adjusted the temperature of t h e Ge effusion c e l l t o y i e l d a constant d p ~ a n t 5lux f o r a gree:electron concentration in the grown layers of between 1x10

cm-

and 4 x 1 0 ~ cm- depending on the autocom-

pensation r a t i o .

3

The elemental arsenic was evaporated in a two-zone 20 cm capacity effusion c e l l made from high-purity quartz glass uhich has been described in Ref. 10. The two zones could be heated independently and t h e i r temperatures measured by W-Re thfrmocoupl e s were recorded separately. The temperature of t h e 1 ower (evaporation) zone determines the t o t a l f l u x , while the temperature of the upper (cracking) zone determines the emerging As4/As2 r a t i o . This arrangement made f e a s i b l e a very e f f i - c i e n t cracking of the evaporating tetrameric species into dimeric species, t h e amount depending only on t h e temperature of the removable upper zone. The generation of ad- justable As4 /As2 flux r a t i o s from a s i n g l e source avoids the introduction of any additional impurities from separate A m As4 sources. Operation of the cracking zone a t temperatures below m i e l d s -a pure As4 f l u x , whereas operation of t h a t zone a t 850

C

generates a beam consisting of a t l e a s t

90%

As2. The undoped GaAs films grown from the s i n g l e elemental arsenic source exhibilgd coypensated o r s l i g h t - l y n - t y p ~ behaviour with electron concentrations below 1x10 cm . Even a t 850

OC

cracker temperature there was no measurable influence on the layer quality. After evaluation through 300

K

and 77

K

Hall e f f e c t measurements, the samples were studied by detailed photoluminescence measuremen$s a t temperatures below 2 K. Excitatioq was performed by the 6471

A

l i n e of a Kr l a s e r using a power density of

1

Wcm . The

excitation power was adjusted by neutral density f i l t e r s . The luminescence l i g h t was analysed by a grating monochromator with 1

A

resolution and detected by a photon counting system attached t o a cooled GaAs photolathode photomultiplier.

The DLTS measurements of layers grown on n -substrates were performed on Au

(4)

Schottky b a r r i e r diodes usinq a f u l l y automated measuring system, which has been described elsewhere t l l l . During measurement t h e samples were biased a t -2.0

V.

The whole capacitance t r a n s i e n t was recorded a f t e r applying a short voltage puls of 2.0

V

to zero-bias the sample. The emission r a t e s of the electron t r a p s were then cal- culated from the time constant of the capacitance transient. The temperature depen- dence of the thermal emission r a t e s yielded the activation energy of the traps and allowed a comparison with data from the l i t e r a t u r e L121. The t r a p concentrations were determined d i r e c t l y from the peak height of the DLTS signal, the t o t a l capa- citance, and the free-electron concentration a s determined by Hall measurements.

3.

Results and Discussion. -

-Investigations. - Two typical 1 ow-temperature PL spectra of

FlBE

GaAs in the near band gap energy region a r e shown in Fig.

1.

The upper spec-

trum was obtained from a nominally undoped GaAs layer grown

w i t h

the cracking zone of

MBE

the arsenic efgusion c e l l kept a t a tempe-

Ph,=1wcm-2

reture of 300

C.

The well-known emission lines of the f r e e exciton, FE, the d ~ n o r bound-exciton, (DO,

X ) ,

and the acceptor bound-exci ton, (A',

X )

, a r e c l e a r l y resol v- ed [131. In addition, the emission struc- tures a t energies below 1.51 eV appear, which have been a t t r i b u t e d t o defect induc- ed bound excitons

[81.

The e n t i r e PL spec- trum shows thus the same p e c u l i a i f t i e s as i f the sample was grown from a standard one- zone Asb source, a s shown i n Fig.

2.

F i g . 1 : Comparison of 1.8 K photolumines- cence s p e c t r a o b t a i n e d from nomi- n a l l y undoped MBE GaAs l a y e r s grown from predeminantly As+ ( t o p ) and As2 (bottom) molecular beam s p e c i e s of t h e two-zone e f f u s i o n c e l l .

1.505 1.510 1.515 1.520

PHOTON ENERGY I eV 1

ENERGY [eVI

1.5050 1.5100 1.5150

I

MBE GaAs

As4 source

M V E LENGTH [A1

F i g . 2 : Highly r e s o l v e d 1.6K PL spectrum o f a 3 u m t h i c k MBE GaAs l a y e r (p-type) grown from Ga and As4 s p e c i e s (expanded s c a l e w i t h r e s o l u t i o n b e t t e r t h a n 1 A).

The assisnment of the observed spectral-features i s displayed in

F i a . 3.

ihen the temperature of the

cracking zone of the arsenic

effusion c e l l was stepwise in-

creased, however, the

PL

intensi-

t i e s of the excitonic s t r u c t u r e s

below

1.51

eV were graduslly re-

duced. Inspection of the lower

spectrum in Fig. 1 reveals t h a t

(5)

JOURNAL DE PHYSIQUE

Fig. 3 : Assignment of 1.6K near band gap emission features of MBE GaAs grown from As4 Species as shown in Fig.

2 (conversion factor is E(eV) = 12395 / A (A) ) .

f i n a l l y , a t a cracker temperature o f 850 OC,

t h e d e f e c t induced bound e x c i t o n l i v e s have completely disappeared, i

.

e. t h e i r i n t e n s i

-

t i e s a r e now below t h e d e t e c t i o n l i m i t of our luminescence experiment. T h i s spectrum e x h i b i t s t h e same d e t a i l e d f e a t u r e s as if t h e sample was grown from pure As2 generated by incongruent evaporation o f GaAs i n a se- parate source (Fig. 4)

[a].

The f i r s t marked r e d u c t i o n o f t h e i n t e n s i t i e s o f t h e e x t r a emission l i n e s s t a r t s a t a tgmperature of t h e c r a c k i n g zone above 700 C. T h i s i n d i - cates t h a t i n t h i s teiiperature regime t h e As4/As2 f l u x r a t i o emerging from t h e e f f u - s i o n c e l l changes toward a d i r e c t i o n t h a t ENERGY t eV1 favours t h e amount of As? species achieving 15100 ,5125 1,5175 t h e precursor s t a t e before t h e r e a c t i o n w i t h

2 2 1

t h e GaAs growth surface.

Assignment fr-acciton

w c i M states d lW.X1

uaton bound to nutral donor(W,Xl exatonboundtoiariuddonorlP,X) J+3/2 acciton bound to neutral

~ = 5 / 2 ] accsp(or(A',Xl Line

a b c d r f

g 1.5109 h 1.5095 i 1.SOIU j 1.5089 k 1.5087 I 1.5084 m 1.5082

d.1.a iduud bound aaitw p 1.5075

q 1.5071 r 1.5069 s 1.5066 t 1.50S8 u 1.5056 v 1.5049 E W(.V) I*O.l mrV1

1.5156 1.5144 1.5140 1.5134 1.5124 1.5122

3.2 DLTS I n v e s t i g a t i o n s .

-

The r e s u l t s o f our DLTS measurements were used t o de- t e m i n e d i r e c t l y any c o r r e l a t i o n between t h e observed continuous r e d u c t i o n o f PL i n t e n s i t y due t o d e f e c t induced bound e x c i t o n s and t h e o v e r a l l e l e c t r o n t r a p con- c e n t r a t i o n as a f u n c t i o n o f decreasing As4/As2 r a t i o i n t h e a r s e n i c molecular beam.

For these studies, t h e samples were i n t e n t i o n a l l y doped w i t h germanium. Three t y p i - c a l DLTS spectra obtained from MBE grown n-6aAs:Ge l a y e r s a r e shown i n F i g . 5. The DLTS s i g n a l was normalized f o r t h e spectra o f a l l t h r e e samples so t h a t one s c a l e i s v a l i d Tor t h e t r a p concentration. The lower spectrum o f F i g . 5 was taken from a sam- p l e ( # 1308) grown w i t h t h e c r a c k i n g zone o f t h e e f f u s i o n c e l l operated a t 500 OC.

The observed t h r e e dominant f e a t u r e s l a b e l e d M1, M2, and M4 according t o Ref. 12

-

0

+ t

V) Z W I- Z

-

w 0 Z w 0

V) w

H 3

8

I

a

WAVE LENGTH [ A l

qos,,= 0 . 2 5 ~ lcm2 MBE G ~ A ~ nom. undoped

(n

-

type)

(LL

I I I I I xi 1

Fig. 4 : 1.6K PL spectrum obtained from a nominally undoped MBE GaAs layer (n-type) grown from Asp species (generated of ~ a A s l

.

by incongruent evaporation Our r e s u l t s o f t h e PL s t u d i e s c l e a r l y demonstrate t h a t t h e i n t e n s i t y o f t h e emiss- i o n due t o p o i n t d e f e c t induced bound e x c i - tons decreases c o n t i n u o u s l y w i t h t h e reduc- t i o n o f t h e r a t i o o f t e t r a m e r i c t o d i m e r i c a r s e n i c species i n t h e molecular beam. I n p a r t i c u l a r , t h i s r e s u l t excludes any addi- t i o n a l e x t r i n s i c i m p u r i t y from a separate a r s e n i c source which was r e c e n t l y claimed t o be r e s p o n s i b l e f o r t h e occurrence o f those a d d i t i o n a l PL s t r u c t u r e s a t energies below 1.51 eV by S c o t t e t a l . [141.

8220 8200 8180 8(W

(6)

F i g . 5 : DLTS spectra of electron traps in MBE n-G+s:Ge layers grown with diffe- rent As2/As4 flux ratios.

The trap concentration sca- le is the same for all three samples.

# 130.4 a r e c h a r a c t e r i s t i c f o r MBE GaAs f i l m s grown w i t h A s - s t a b i l i z e d (2x4) sur-

- f a c e r e c o n s t r u c t i o n . A t emission

'1

x",,m-3,

JLJ

temperatures o f 300

K

we observed an

a d d i t i o n a l emission s t r u c t u r e denot- ed as W6 e l e c t r o n t r a p C121. Inspec- t i o n o f t h e upper t r a c e i n F i g . 5 shows t h a t we c o u l d achieve a dras- t i c r e d u c t i o n o f t h e peak h e i g h t s

-

- - - -

-

- - - -

- -

- - - - -

- -

- - -

-

- - - - - - - o f t h e t r a p s M3 and M4, w i t h t r a p M1 being below t h e d e t e c t i o n l i m i t ,

loo 200 MO when we used pure As2 3nstead o f As4

TEMPERATURE CK1 s ~ e c i e s from a GaAs source d u r i n q MBE growth. I n a d d i t i o n , an u n r e i o l v - ed s u p e r p o s i t i o n o f several t r a p s i g n a l s i n t h e r e g i o n o f t h e M5, M6 and M7 t r a p s appears, which was a l s o observed by Lang e t a l . [121. Since these f e a t u r e s a r e n o t s e n s i t i v e t o t h e a p p l i e d Ast+/As2 r a t i o and d i f f e r from sample t o sample, we con- dered o n l y t h e most i m p o r t a n t t r a p s

MI,

M3 and M4 f o r a f u r t h e r systematic study.

D e t a i l e d t r a p concentrations o f f o u r MBE n-GaAs:Ge samples grown w i t h d i f f e r e n t As4/As2 r a t i o s i n t h e a r s e n i c molecular beam a r e summarized i n Table 1. kc observed

Table 1. Concentration of MI, M3 and M4 deep levels in MBE n-GaAs:Ge layers with different A S ~ / A S ~ molecular beam flux ratios indicated by the temperature

( T ~ o n e 2 ) of the cracking zone

# 1308 16 1 3 13

2 . 2 ~ 1 0 ~ ~ 500 2. 2x1012 7.5~10:: 2 . 9 ~ 1 0 ~ ~ 0.57%

# 1304 1 . 9 ~ 1 0 ~ ~ 700 8.4~10 2 . 3 ~ 1 0 ~ ~ 1 . 2 ~ 1 0 ~ ~ 0.24%

# 1310 3 . 7 ~ 1 0 ~ ~ 800

-

3 . 4 ~ 1 0 ~ ~ 2 . 9 ~ 1 0 ~ ~ 0.17%

# 1222 3.0~10 pure Asp

-

1.3~10 1.8~10 0.10%

a considerable decreese of t h e o v e r a l l c o n c e n t r a t i o n o f M I , M3, and M4 t r a p s r e l a - t i v e t o t h e f r e e - c a r r i e r concentration, when we reduced t h e t e t r a m e r i c - t o - d i m e r i c r a t i o o f a r s e n i c species by i n c r e s s i n g t h e temperature o f t h e c r a c k i n g zone. More than a f i v e f o l d r e d u c t i o n i n t r a p c o n c e n t r a t i o n (MI, W3, M44 was achieved by t h i s procedure. T h i s v a l u e c o u l d be f u r t h e r reduced t o below 10- o f t h e f r e e - c a r r i e r c o n c e n t r a t i o n by i n c r e a s i n g the s u b s t r a t e temperature t o 580 OC.

3.3 I n v e s t i g a t i o n o f I n c o r p o r a t i o n .

-

Next, we performed a more d e t a i l e d examina- t i o ~ o f t h e a r s e n i c s u r f a c e p o p u l a t i o n d u r i n g growth by c o n s i d e r i n g t h e incorpora- t i o n o f Ge i m p u r i t i e s . The group-IV-element Ge i s an amphoteric dopant i n MBE GaAs.

(7)

JOURNAL DE PHYSIQUE

I t bas been shown previously

[15,

161 t h a t the Ge incorporation depends c r i t i c a l l y on t h e Ga and As s i t e s available on the growing GaAs surface, i.e. on the applied As4/Ga flux r a t i o a ~ d on the s u b s t r a t e temperature. Therefore, the measurable r a t i o of autocompensation [fie l/[Ge

1,

where [Ge 1 i s the concentration of Ge acceptors on As s i t e s and [Ge 1 A?.he cofigentration ofAte donors on

Ga

s i t e s , should be a sen- s i t i v e diagnostic t%l t o study the steady-state arsenic surface population as a function of impinging dimeric and tetrameric arsenic species.

For a f i r s t q u a l i t a t i v e estimation of t h i s e f f e c t , Fig. 6 displays two shallow

e e I BE

1 I 1

F i g . 6 :

Shallow acceptor

1.6 K PL spectra

- -

g

z

E z

P

3

2

2!

PHOTON ENERGY tev1

The considerable decrease of the (e,Ao) in- t e n s i t y occurs a t a cracker temperature of 700

OC.

This i s i n good agreement with the behaviour of the defect induced bound exciton l i n e s described i n Sec. 3.1. The dimeric arsenic species replacing the t e t r a - meric ones

i~

the reaction provide a considerable higher arsenic surface population

st t h e same arsenic-to-gallium flux r a t i o and substrate temperature. This d r a s t i - c a l l y reduces the amount of As s i t e s available f o r Ge incorporation on acceptor s i t e s .

Based on a model including both

C

and Ge acceptors as well as Ge donors we could recently show [I71 t h a t the r a t i o of Ge autocompensation decreases exponen- t i a l l y with inverse s u b r t r a t e temperature, as depicted by the upper curve of Fig. 7, when using Ga and Asq molecular beams. The data of the temperature dependence of the Hall e f f e c t yielded the overall compensation r a t i o , N /N and the data from detailed PL measurements were used t o estimate the r a t i o I f eyand Ge acceptors in- corporated on As s i t e s . From t h a t analysis we were thus able t o determine the con- centration of the three dominant impurities [Ge I , [Ge

],

and [C 1 separately.

When we applied the same evaluation procedfi?e to G $ A ~ : G ~ sampfzs grown from dimeric arsenic species only (generated by incongruent evaporation of GaAs) , we obtained the concentrations summarized in Table 2. Ere a l s o observed an exponential decrease of the Ge autocompensation r a t i o with inverse s u b s t r a t e temperature. In- spection of F i g . 7 reveals, however, t h a t a much lower and therefore more favour- able compensation r a t i o in n-GaAs:Ge can be a c h i e F Z E t a given substrate tempera- ture-with the use of As2 instead of As4 saecies. Aul~6compensation r a t i o s a s low a s 2x10 have been obtained a t a substrate t e m ~ e r a t u r e of

530 OC

(of course t h i s value does not include the additional compensating

C

acceptors). The observed behaviour of aut.ocompensation of amphoteric dopants in

MBE

GaAs i s thus d i r e c t l y correlated with the surface population of available f r e e As s i t e s f o r acceptor incorporation which can be more d r a s t i c a l l y reduced by an external f l u x of dimeric than tetrameric

-

of MBE n-GaAs:Ge

layers grown

w i t h d i f f e r e n t A s 2 / A s 4 flux r a t i o s . TBe

spectra a r e normalized

i n

i n t e n s i t y

t o t h e peak h e i g h t of the

(e,AO)

t r a n s i t i o n

r e l a t e d

t o C A s '

acceptor PL spectra of intentionally Ge-dop-

I

+

1308

Th2 =soooc

ed n-tyoe RaAs films grown with d i f f e r e n t temperatures of the Asb cracking zone. In both spectra the two acceptors Ge and CAS can be c l e a r l y detected by t h e i r A?ecombi- nation radiation (e,Ao) of f r e e electrons

# 1304

e captured a t the corresponding neutral

T~~~~ =700°c

acceptors Ao. An increase of the amount of

As2 r e l a t i v e t o As4 species emerging from the arsenic source r e s u l t s i n a marked re- duction of the (e,AO) luminescence t r a n s i -

14-4 I L ~ I~LB 150 152

tion r e l a t e d t o Ge on As s i t e s a t

1.479

eV.

MBE GaAs Go

ynsER =lr2 wcm2 T = U K

(8)

arsenic species.

Fig. 7 : Substrate temperature dependence of

TEkipERATlJf?€

[ % ] Ge autocompensation ratio in MBE

600 550 5a) n-GaAs:Ge layers;

I I I samples grown from pure As4 mole-

l o o

-

cular beam species by evaporation

of elemental arsenic.

samples grown from pure As2 mole- cular beam species by incongruent evaporation of Gas.

A samples grown from an adjustable

A S ~ / A S L , ratio in the molecular

- - ca'

beam by operating the two-zone

-

effusion cell. The arrow indicates

the reduction of autocompensation by increasing the As2/Asb flux

-

pure As2 grown ratio.

pure As' grown A ASr-AsZ gmwn

I I 1

115 (20 125

Table 2. Concentration of C and Ge impuriti-es on either Ga or As sites in MBE GaAs:

Ge layers grown from pure As2 molecular beam species at different substrate temperatures. Growth at 610 C produces p-type material where the analysis of Hall data is not valid

The other s t r i k i n g r e s u l t indicated in Fig. 7 i s t h a t , nevertheless, with both arsenic species the t r a n s i t i o n of MBE GaAs:Ge layers, grown a t a constant arsenic- to-gallium flux r a t i o of two, from n-type to p-type material occurs in the same sub- s t r a t e temperature range of 600 - 610

O C .

The observed behaviour agrees well with e a r l i e r r e s u l t s of Meave and Joyce [1S1 in t h a t the surface population of vacancies f o r Ge incorporation does not only r e l a t e t o the external fluxes but i s also influ- enced by the internal sources of both Ga and As. This reevaporation of the consti- tuent elements from the growing surface depends strongly on the growth temperature.

An increase of the s u b s t r a t e temperature a t constant incident fluxes lowers &he ra- t i 0 of arsenic-to-gallium steady s t a t e adatom population, until a t

T

>600

C

a change of the

RHEED

pattern from As-stable (2x4) via (1x1) t o ~ a - s t a 8 8 (4x2) i s observed.

Final1y;we demonstrate t h a t the observed difference of Ge autocompensation i s

not caused by any additional impurities fram the separate Asn and As4 sources. The

black t r i a n g l e s in Fig.

7

indicate the r e s u l t s of two representative samples

( #

1304 and

#

1308) which were grown with d i f f e r e n t As4/As2 r a t i o s generated from

(9)

JOURNAL DE PHYSIQUE

t h e two-zone e f f u s i o n c e l l . A r e d u c t i o n o f t h e Ge autocompensation r a t i o from 0.34 ( # 1304) t o 0.10 ( # 1308), i n d i c a t e d by t h e arrow i n F i g . 7, has bgen achieved sim- p l y by i n c r e a s i n g t h e temperature o f t h e As4 c r a c k i n g zone t o 700 C, where d i m e r i c a r s e n i c beam species dominate. This behaviour i s c o n s i s t e n t w i t h t h e r e s u l t s o f our

PL

measurements described e a r l i e r i n t h e t e x t .

4. Conclusion.

-

The o p t i c a l and e l e c t r i c a l p r o p e r t i e s o f undoped and o f Ge-doped MBE SaAs l a y e r s were s t u d i e d as a f u n c t i o n o f t h e impinging a r s e n i c molecular beam species. Tetrameric molecules (As4) were obtained by standard evaporation o f elemen- t a l arsenic, whereas d i m e r i c molecules (As2) were generated e i t h e r by incongruent evaporation oP GaAs i n a separate source o r by c r a c k i n g o f As4 i n a s i n g l e two-zone e f f u s i o n c e l l . The r e s u l t s o f combined H a l l e f f e c t , low-temperature ? E 3 Z DLTS measurements demonstrate t h a t a d i r e c t c o r r e l a t i o n e x i s t s between t h e a r s e n i c spe- c i e s used and t h e i n c o r p o r a t i o n o f p o i n t d e f e c t s as w e l l as o f amphoteric dopants.

The low-temperature PL measurements c o n f i r m t h a t our previous o b s e r v a t i o n o f dePect induced bound e x c i t o n l i n e s i s indeed caused by t h e i n t e r a c t i o n o f t e t r a m e r i c a r s e n i c species and n o t by any e x t e r n a l i m p u r i t y from separate source m a t e r i a l s need- ed f o r As2 and As4. T% i n t e n s i t y of those e x t r a emission l i n e s between 1.504 and 1.511 eV can be reduced t o below t h e d e t e c t i o n l i m i t by c r a c k i n g As4 i n t o As2 spe- c i e s i n a s i n g l e two-zone e f f u s i o n c e l l arrangement.

The behaviour o f t h e i n t e n s i t y o f t h e d e f e c t r e l a t e d PL emission l i n e s was found t o be d i r e c t l y c o r r e l a t e d w i t h t h e c o n c e n t r a t i o n o f t h r e e deep s t a t e s (111, M3, W4) which a r e c h a r a c t e r i s t i c o f MBE GaAs f i l m s grown under A s - s t a b i l i z e d (2x4) sur- face r e c o n s t r u c t i o n . The c o n c e n t r a t i o n o f t h e e l e c t r o n t r a p s due t o d e f e c t r e l a t e d deep c e n t e r s may be e a s i l y m o d i f i e d by changing t h e impinging As4/As2 f l u x r a t i o v i a t h e c r a c k e r temperature. Thus, a s u b s t a n t i a l r e d u c t i o n by a f a c t o r o f f i v e has been achieved, when a pure d i m e r i c a r s e n i c source i s used.

Fvrthermore, we p o i n t o u t t h a t t h e i n c o r p o r a t i o n o f p o i n t d e f e c t r e l a t e d cen- t e r s as w e l l as o f amphoteric doping i m p u r i t i e s i s p a r t i c u l a r l y s e n s i t i v e t o t h e s u r f a c e chemistry involved. k l h i l e Asp species impinging on t h e growing (10C) GaAs s u r f a c e undergo a r a t h e r elementary process o f d i s s o c i a t i v e chemi s o r p t i o n ( f i r s t - o r - der process) i n v o l v i n g a s i n g l e Ga s u r f a c e atom C21, t h e As4 species must encounter a p a i r w i s e i n t e r a c t i o n o fi v e l y bbvl ky u n i t s adsorbed on adjacent p a i r s o f Ga s u r f a c e atcms [I]. As a consequence, t h e steady-state a r s e n i c surface c o n c e n t r a t i o n i s much h i g h e r w i t h impinging As2 t h a n w i t h Asq, a l l o t h e r growth c o n d i t i o n s i n c l u d - i n g t h e observed s u r f a c e r e c o n s t r u c t i o n being constant. T h i s reduces c o n s i d e r a b l y t h e amount o'f vacancies r e s p o n s i b l e f o r n a t i v e d e f e c t f o r m a t i o n as w e l l as f r e e As s i t e s a v a i l a b l e f o r 6e i n c o r p o r a t i o n as acceptors. I n good accordance w i t h o u r r e - s u l t s on t h e i n t e n s i t y o f the e x t r a

PL

l i n e s and on t h e c o n c e n t r a t i o n o f deep t r a p s we obtained s u b s t a n t i a l l y lower autocompensation r a t i o s i n Ge-doped n-GaAs samp+es u s i v g As2 i n s t e a d o f Asq as a source o f arsenic.

F o r amphoteric dopant i n c o r p o r a t i o n i n MB€ GaAs i t i s f i n a l l y i m p o r t a n t t o no- t i c e t h a t t h e surface p o p u l a t i o n o f vacancies a v a i l a b l e f o r s i t e occupation d u r i n g growth does n o t o n l y depend on t h e e x t e r n a l f l u x e s b u t a l s o on t h e i n t e r n a l sources o f re-evaporating g a l 1 ium and arsenic. M h i l e i n agreement w i t h Teramoto' s theory

[ I 9 1 an e x t e r n a l f l u x o f As4 has o n l y a minor i n f l u e n c e on t h e slope o f t h e autocom- pensation r a t i o [Ge ]/[Ge I versus 1/T p l o t , t h e e x t e r n a l f l u x o f As2 y i e l d s a much steeper slope

8f

t h a t G ? + e l a t i o n in d i c a t i n g i t s s t r o n g i n f l u e n c e on t h e steady- s t a t e s u r f a c e p o p u l a t i o n of f r e e As s i t e s a v a i l a b l e f o r Ge acceptor i n c o r p o r a t i o n . This i s a d i r e c t consequence of t h e increased growth surface coverage w i t h a r s e n i c a r i s i n g from t h e r a t h e r elementary s u r f a c e chemistry involved.

Acknowledgement.

-

This work was sponsored by t h e Bundesministerium

f u r

Forschung und Technologie o f t h e Federal Republic o f Germany.

(10)

References

[I] FOXON C.T. and JOYCE B.A., Surf. Sci.

-

50 (1975) 434.

[23 FOXON C.T. and JOYCE B.A., Surf. Sci.

-

64 (1977) 293.

[3] FOXON C.T., HARYEY J.R., and JOYCE B.A., J. Phys. Chem. S o l i d s

-

34 (1973) 1693.

[41 PANISH M.B., J. Electrochem. Scc.

-

127 (1980) 2729.

[5] CALAWA A.R., Appl. Phys. L e t t .

28

(1981) 701.

[6] CHO A.Y. and HAYASHI I., S o l i d S t a t e Electron. 14 (1971) 125.

-

[7] NEAVE J.H., BLOOD P., and JOYCE B.A., Appl. Phys. L e t t .

-

36 (1980) 311.

C81 KOFiZEL H. and PLOOG K., Appl. Phys. L e t t .

-

37 (1980) 416.

[91 PLOOG K., i n CRYSTALS, GROWTH, PROPERTIES, AND APPLICATIONS ed. FREYHARDT H.C.

(Berlin-Heidelberg: Springer, 1980) 73.

ClOl KONZEL H., KNECHT J., JUNG H., WONSTEL K., and PLOOG K., Appl. Phys. A28

(1982) 167.

--

1111 WAGNER E.E., HILLER D., and MARS D.E., Rev. Sci. Instrum.51

-

(1980) 1205.

1121 LANG D.V., CHO A.Y., GOSSARD A.C., ILESEMS M., and WIEGMFiNN W., J.App1 .Phys.

47 (1976) 2558.

[ I 3 1 HEIR 8. and HIESINGER P., Phys. Stat. Sol. (b)

-

66 (1974) 461.

1141 SCOTT G.B., DUGGAN G., DAMSON P., and WEIMANN G., J. Appl. Phys. 52 (1981)

6888.

--

[I51 CHO A.Y., and HAYASHI I., J. Appl. Phys.

42

(1971) 4422.

1161 NOOO C.E.C., WCIODCOCI(. J., and HARRIS J.J., I n s t . Phys. Conf. Ser. No.!:

(1979) 28.

[ I 7 1 KDNZEL H., FISCHER A., and PLOOG K., Appl. Phys.

-

22 (1980) 23.

1181 NEAVE J.H. and JOYCE B.A., J. Cryst. Growth

44

(1978) 387.

1191 TERAMOTO I., J. Phys. Chem. S o l i d s

33

(1972) 2089.

Références

Documents relatifs

Later in the clinical course, measurement of newly established indicators of erythropoiesis disclosed in 2 patients with persistent anemia inappropriately low

Households’ livelihood and adaptive capacity in peri- urban interfaces : A case study on the city of Khon Kaen, Thailand.. Architecture,

3 Assez logiquement, cette double caractéristique se retrouve également chez la plupart des hommes peuplant la maison d’arrêt étudiée. 111-113) qu’est la surreprésentation

Et si, d’un côté, nous avons chez Carrier des contes plus construits, plus « littéraires », tendant vers la nouvelle (le titre le dit : jolis deuils. L’auteur fait d’une

la RCP n’est pas forcément utilisée comme elle devrait l’être, c'est-à-dire un lieu de coordination et de concertation mais elle peut être utilisée par certains comme un lieu

The change of sound attenuation at the separation line between the two zones, to- gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion

Si certains travaux ont abordé le sujet des dermatoses à l’officine sur un plan théorique, aucun n’a concerné, à notre connaissance, les demandes d’avis

Using the Fo¨rster formulation of FRET and combining the PM3 calculations of the dipole moments of the aromatic portions of the chromophores, docking process via BiGGER software,