• Aucun résultat trouvé

TEMPERATURE DEPENDENCE OF NMR T1 AND χ IN Br3, AsF6-DOPED (CH)x

N/A
N/A
Protected

Academic year: 2021

Partager "TEMPERATURE DEPENDENCE OF NMR T1 AND χ IN Br3, AsF6-DOPED (CH)x"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223032

https://hal.archives-ouvertes.fr/jpa-00223032

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TEMPERATURE DEPENDENCE OF NMR T1 AND χ IN Br3, AsF6-DOPED (CH)x

K. Kume, K. Mizuno, K. Mizoguchi, K. Nomura, H. Takayama, S. Ishihara, J.

Tanaka, M. Tanaka, H. Fujimoto, H. Shirakawa

To cite this version:

K. Kume, K. Mizuno, K. Mizoguchi, K. Nomura, H. Takayama, et al.. TEMPERATURE DEPEN-

DENCE OF NMR T1 AND χ IN Br3, AsF6-DOPED (CH)x. Journal de Physique Colloques, 1983,

44 (C3), pp.C3-353-C3-356. �10.1051/jphyscol:1983371�. �jpa-00223032�

(2)

JOURNAL DE PHYSIQUE

Colloque C3, supplément au n°6, Tome 44, juin 1983 page C3-353

TEMPERATURE DEPENDENCE OF NMR T1 AND X I N B r3, AsF6"DOPED ( C H ) x

K. Kume*, K. Mizuno*, K. Mizoguchi* , K. Nomura*, H. Takayama*, S. Ishihara*, J . Tanaka**, M. Tanaka** , H. Fujimoto**and H. Shirakawa***

* Department Phys. Tokyo Metropolitan Univ., 158 Japan Department Chem. Nagoya Univ., 464 Japan

***Inst. Materials Soi., Univ. of Tsukuba, 305 Japan

Résumé - Nous avons mesuré la dépendance en température du temps de relaxa- tion Tj de RMN des protons et de la susceptibilité paramagnétique de Pauli X_

dans le polyacétylène (CH)x dopé avec Br^ et AsFg. Une évaluation de la conductibilité microscopique a^MR est obtenue à partir de ces résultats et comparée à la conductibilité à courant continu Opr-

Abstract - We have measured the temperature dependence of proton NMR Ti and Pauli paramagnetic susceptibility Xp in Br3- and AsF6-doped (CH)x. The microscopic conductivity O"NMR n a s been calculated from them, and compared with 0]x>

I t i s well known that polyacetylene (CH)x becomes metallic when doped with acceptor or donor molecules. In this work we have measured the temperature dependence of both proton NMR relaxation time Tj and paramagnetic susceptibility of AsF&- and Br3- doped trans-(CH)x. From the T-proportional metallic part of relaxation rates Tj-1 and the T-independent Pauli part Xp of magnetic susceptibility, we have calculated the diffusion constant DM and the microscopic conductivity cr^MR of metallic electrons along (CH)x chains.

The formula used to obtain DM and Oj^^ were the same as used by Nechtschein et al in the room temperature proton NMR work on AsF6-doped (CH)x / l / . In the metallic s t a t e the proton NMR relaxation rate T^"^ i s connected with the Pauli susceptibility Xp through following equation.

V 1 = kBTXp [ - | - d2f ( a )n)+( a2 + ^ - d2) f ( c oe) ] ,

f(aO = (2D„ a))~1/2 . (1)

As the isotropic part of hyperfine field | a / ye| is known as 23.4 Gauss / 2 / , and the r a t i o of dipolar part d to isotropic one has been determined as d2/a2^0.25 / 1 , 3 / by the Overhauser experiment, we can obtain the diffusion constant D„ from eq. CI) • Using this D„, the mean free path Jl and the microscopic conductivity CNMR a r e

derived through following two equations / 4 , 5 / , I = 2irjrf XpD„c„ ,

0NMR = 2*1%l O ^ . W

where cN and 2 are the l a t t i c e constant and the cross-sectional area of a CCH)x chain, respectively. In following sections the obtained aj^R will be compared with

^DC which is measured with the usual four-terminal method on the same sample.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983371

(3)

JOURNAL DE PHYSIQUE

I - AsF6-DOPED (CH) x

Figure 1 shows t h e experimental r e s u l t on t e m p e r a t u r e dependence of p r o t o n NMR r e - l a x a t i o n r a t e ~ ~i n AsFg-doped trans-(CH)x. - 1 The r e s u l t i s i n t e r p r e t e d as a super- p o s i t i o n of two c o n t r i b u t i o n s . The f i r s t i s a T - p r o p o r t i o n a l one due t o m e t a l l i c o r i g i n . This c o n t r i b u t i o n becomes dominant a t temperatures above 200 K . The second i s a hump of Bloembergen type below 200 K . That i s considerd t o be due t o t h e mod- u l a t i o n of p r o t o n magnetic d i p o l a r i n t e r a c t i o n , which i s caused by t h e molecular motion o f (CH)x c h a i n s . The peak p o s i t i o n was found t o s h i f t towards t h e low temperature s i d e , a s lowering t h e NMR Larmor frequency down t o 5.0 MHz.

The p r o t o n m a g n e t i z a t i o n decay curve from which t h e above T i o f m e t a l l i c s t a t e was determined, was s i n g l e - e x p o n e n t i a l e x c e p t a s m a l l i n i t i a l drop. I n samples of semi- conducting s t a t e o f dopant c o n c e n t r a t i o n s below AsF6/CQ0.03, t h e decay curve was n o n - s i n g l e - e x p o n e n t i a l . This means t h a t t h e low c o n c e n t r a t i o n samples a r e inhomoge- neous

.

The degree of d e v i a t i o n from s i n g l e - e x p o n e n t i a l was h e a v i e r i n c i s - s t a r t e d sample t h a n i n t r a n s - s t a r t e d one. Because o f t h o s e non-single-exponential decay curves t h e T i r e s u l t f o r low c o n c e n t r a t i o n samples i s n o t shown i n F i g . 1.

The s p i n paramagnetic s u s c e p t i b i l i t y was measured with t h e Schumacher-Slichter ESR method / 6 / on t h e same sample a s NMR. The T-independent P a u l i p a r t

xp

was o b t a i n e d from a temperature dependence experiment. The r e s u l t i s shown i n F i g . 2 as a func- t i o n o f dopant AsF6 c o n c e n t r a t i o n , which was determined by a 1 9 ~ NMR experiment.

The measured

xp

was found t o change i n o r d e r o f (TIT)-1, a s n a t u r a l l y expected. The

xp

o b t a i n e d i n t h i s experiment was s i m i l a r t o t h o s e r e p o r t e d e a r l i e r / 7 , 8 / .

The microscopic c o n d u c t i v i t y UNMR was c a l c u l a t e d through e q s . ( I ) , (2) and (3) and l i s t e d i n Table I . I n t h i s Table i t i s a l s o shown ODC measured with t h e u s u a l f o u r - t e r m i n a l method. The r e a s o n why UNMR i s s u b s t a n t i a l l y l a r g e r than ODC, w i l l be due t o t h e f a c t t h a t t h e l a t t e r i s l i m i t e d by t h e i n t e r - f i b r i l hopping r a t e .

Figure 3 shows t h e temperature dependence o f p r o t o n NMR r e l a x a t i o n r a t e T ~ - ' i n Br3- doped trans-(CH)x. The f e a t u r e of t h i s r e s u l t i s t h a t t h e hump of Bloembergen type i s a b s e n t . That i s i n c o n t r a s t t o o t h e r cases such as AsFg-doped, 13-doped /9/ o r p r i s t i n e / 9 / trans-(CH)x. Because t h e hump i s a b s e n t i n our Br3-doped c a s e , t h e m e t a l l i c TlT=const-behaviour i s seen over t h e e n t i r e temperature range between 4.2 K

Fig. 1 - Proton NMR r e l a x a t i o n r a t e T ~ i n - ~ Fig. 2 - P a u l i paramagnetic s u s - AsFg-doped t r a n s - (CHI x vs temperature T . c e p t i b i l i t y

xp

(Shumacher-Slichter AsF6/C : o 4.0 %, 5 . 2 %, o 7 . 7 % . ) vs AsF6 c o n c e n t r a t i o n .

(4)

Fig. 3

-

P r o t o n NMR r e l a x a t i o n r a t e T ~ - ' Fig. 4 - P a u l i paramagnetic s u s c e p t i b i l i - i n Br3-doped trans-(CH)x vs temperature t y

x

( s t a t i c Faraday balance) vs B r 3 T. Br3/C : o 7.3 % . c o n c e n t r a t i o n . P

and 300 K . The f i n i t e T ~ - ' a t T=O w i l l be due t o f i x e d paramagnetic i m p u r i t i e s . A s i m i l a r experimental r e s u l t on a d i f f e r e n t Brj-doped sample was a l r e a d y r e p o r t e d i n o u r p r e v i o u s paper / l o / .

To o b t a i n t h e P a u l i paramagnetic s u s c e p t i b i l i t y

xp,

we f i r s t a p p l i e d t h e Schumacher- S l i c h t e r ESR method. However, t h e o b t a i n e d v a l u e was a s s m a l l as ? . 1 ~ 1 0 - ~ emu/mole- carbon. The o ~ ~ ~ which was c a l c u l a t e d from t h i s v a l u e was much s m a l l e r t h a n a D c . Next, we a p p l i e d t h e method o f s t a t i c Faraday b a l a n c e . Five samples were prepared, o f which c o n c e n t r a t i o n s were determined by weight uptake. To prevent t h e outgoing of dopant B r , t h e samples were packed i n t h i n p o l y e t h l e n e b a g s . By s e p a r a t i n g t h e inverse-T Curie p a r t from experimental d a t a of temperature dependence, t h e T-inde- pendent p a r t was determined. When t h e T-independent p a r t was p l o t t e d a g a i n s t t h e c o n c e n t r a t i o n , we found a r a t h e r abrupt i n c r e a s e i n i t between t h e two samples of Br3/C=0.022 and 0.030, b e s i d e s t h e s t e a d y decrease p r o p o r t i o n a l t o t h e dopant con- c e n t r a t i o n , which was a s c r i b e d t o diamagnetism o f dopants. Between t h e two samples we n o t i c e d a change of c o l o u r i n d u l l s u r f a c e of (CH)x f i l m . We i d e n t i f i e d t h e change a s a t r a n s i t i o n t o m e t a l l i c s t a t e . The i n c r e a s e i n t h e s u s c e p t i b i l i t y when t h e t r a n s i t i o n i s crossed w i l l n a t u r a l l y be a s c r i b e d t o t h e appearance of P a u l i paramagnetic s u s c e p t i b i l i t y . I n Fig. 4 t h u s o b t a i n e d

x

was p l o t t e d . For t h e sample of Br3/C=0.073, on which NMR T1 was measured, t h e P

xp

was 4 x 1 0 - ~ emu/mole- carbon.

The c a l c u l a t e d oNMR u s i n g t h i s

xp

i s shown i n Table I . I t i s remarkable t h a t ONMR

i s s i m i l a r i n b o t h Br3- and AsFg-doped c a s e s . The 'NF~R i s s u b s t a n t i a l l y l a r g e r than

ODC a l s o i n t h i s Br3-doped c a s e . The cause w i l l be a t t r i b u t e d t o i n t e r - f i b r i l hopping r a t e .

TABLE I

(5)

C3-356 JOURNAL DE PHYSIQUE

For t h e c a s e of 13-doped (CH)x, E p s t e i n e t a1 has o b t a i n e d ~ ~ % 3 x 1 0 - ~ emu/mole-car- bon w i t h t h e method o f Faraday b a l a n c e /XI/. With t h e ESR method no d e t e c t a b l e

xp

has been observed /12/. This d i f f e r e n c e i s s i m i l a r t o o u r Brg-doped case. The dopant c o n c e n t r a t i o n where t h e t r a n s i t i o n t o m e t a l l i c s t a t e occurs i s a l s o s i m i l a r i n t h e Br3- and 13-doped /11/ c a s e s . I n t h e 13-doped case O N M ~ can a l s o be calcu- l a t e d with t h e p r o t o n NMR TI r e p o r t e d b Masin e t a1 /9/.

r

The r e s u l t i s ONMR"J 2 x 1 0 ~ 0-1,-1. This i s l a r g e r t h a n 0 ~ ~ " J 3 ~ 1 0 /13/.

I11 - CONCLUDING REMARKS

I n t h i s p a p e r we were mainly concerned w i t h ONMR i n t h e m e t a l l i c s t a t e which was c a l c u l a t e d from t h e p r o t o n NMR TI and t h e P a u l i paramagnetic s u s c e p t i b i l i t y

xp.

The o b t a i n e d ONMR was l a r g e r t h a n ODC measured w i t h t h e u s u a l f o u r - t e r m i n a l method.

The d i f f e r e n c e was a t t r i b u t e d t o t h e f a c t t h a t t h e ODC i s l i m i t e d by t h e i n t e r - f i b r i l hopping r a t e .

However, t h e p r e s e n t experiment has a f f o r d e d o t h e r new remarkable f a c t s t o be ex- p l a i n e d i n t h e f u t u r e . One o f them i s t h a t i n t h e Br3-doped case t h e

x

measured

with t h e resonance method o f ESR was s m a l l e r t h a n t h a t with t h e s t a t i c g r a d a y method by more t h a n two o r d e r s o f magnitude. This d i f f e r e n c e w i l l be e x p l a i n e d by t h e presence of some broad component i n ESR s p e c t r a . S i m i l a r anomaly h a s a l s o been r e p o r t e d i n t h e 13-doped c a s e . The o t h e r i s t h a t t h e hump o f Bloembergen type i n t h e temperature dependence of p r o t o n NMR TI i s not observed i n the Brj-doped case.

This w i l l b e a t t r i b u t e d t o t h e d i f f e r e n c e i n doped s t r u c t u r e . To s o l v e t h e above q u e s t i o n s f u r t h e r s t u d i e s w i l l be r e q u i r e d .

REFERENCES

(1) NECHTSCHEIN M. DEVREUX F . GREENE R.L. CLARKE T.C. and STREET G . B . , Phys. Rev.

L e t t .

44

(1980) 356.

(2) MACCONNEL H.M., J. Chem. Phys.

24

(1956) 532.

( 3 ) HOLCZER K . BOUCHER J . P . DEVREUX F. and NECHTSCHEIN M., Phys. Rev.

23

(1981) 1051.

(4) DEVREUX F. and NECHTSCHEIN M . , Quasi One-Dimensional Conductors e d i t e d by BARISIC S . , L e c t u r e notes i n P h y s i c s Vol 95 (Springer-Verlag, New York, 1979) p 145.

(5) ZIMAN J . M . , P r i n c i p l e s of t h e Theory o f S o l i d s , (Cambridge U n i v e r s i t y P r e s s , 1976)

.

(6) SCHUMACHER R.T. and SLICHTER C.P., Phys. Rev.

101

(1956) 58.

(7) IKEHATA S . KAUFER J . WOERNER T. PRON A. DRW M.A. SIVAK A. HEEGER A . J . and MACDIARMID A.G., Phys. Rev. L e t t .

5

(1980) 1123.

(8) TOMKIEWICZ Y . SCHULTZ T.D. BROM H .B. and TARANKO A.R., Phys. Rev.

24

(1981)4348.

(9) MASIN F. GUSMAN G . and DELTOUR R., S o l i d S t . Commun.

40

(1981) 513.

(10) KUME K . MIZUNO K . MIZOGUCHI K . NOMURA K . TANAKA J . TANAKA M. and FUJIMOTO H . , Mol. Crys. Liq. Crys.

83

(1982) 1081.

(11) EPSTEIN A.J. ROMMELMANN H. DRW M.A. HEEGER A . J . and MACDIARMID A.G., S o l i d S t . Commun.

38

(1981) 683.

(12) CHIEN J.C.W. WNEK G . E . KARASZ F.E. WARAKOMSKI J . M . DICKINSON L.C. HEEGER A.J.

and MACDIARMID A.G., ~4acromolecules

15

(1982) 614.

(13) CHIANG C . K . DRUY M.A. GAU S.C. HEEGER A . J . LOUIS E . J . MACDIARMID A.G. PARK Y.W.

and SHIRAKAWA H . , J . Amer. Chem. Soc.

100

(1978) 1013.

Références

Documents relatifs

with the structure of this compound below 50 K. The neutron powder profile refinement method has been used to carry out this study. Equality of the CaF6 tilt angles

method is quite adapted for the calculation of the electronic and magnetic characteristics of transition metal nitrides of the M4N perovskite-type structure. The calculated

THE DEPENDENCE OF THE STRUCTURE CONSTANT OF UNIAXIAL PERMALLOY FILMS ON THE EVAPORATION TEMPERATURE AND THE ALLOY COMPOSITION... LAMES MINCES (2 ème partie) ; DOMAINES, DISPERSION

Earlier experiments that have attempted to measure the motion of the soliton and its coupling to the (CH) chain have been in the temperature range from room temperature to 4.2K,

At higher concentration, the MAS and static relaxation become equal, reflecting the fact that the direct relaxation to paramagnetic ions overcome the

We also note that their comparison with data /3/ obtained above 1.5 K (an extrapolation to low temperatures of a plot of C vs.T) leads to an underestimate of the low

At the higher doping ratios ( 2 3-10-4) the F e m i level EF lies in the band tail above the dangling bond levels, so that the recombination rate is determined by a transition

We assume along with them the existence of local mode that may involve one hydrogen atom or a group of atoms hopping over a potential energy barrier AE which separates two