• Aucun résultat trouvé

Neutral sugar side chains of pectins limit interactions with procyanidins

N/A
N/A
Protected

Academic year: 2021

Partager "Neutral sugar side chains of pectins limit interactions with procyanidins"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-02640610

https://hal.inrae.fr/hal-02640610

Submitted on 28 May 2020

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

with procyanidins

Aude Watrelot, Carine Le Bourvellec-Samour, Anne Imberty, Catherine Renard

To cite this version:

Aude Watrelot, Carine Le Bourvellec-Samour, Anne Imberty, Catherine Renard. Neutral sugar side

chains of pectins limit interactions with procyanidins. Carbohydrate Polymers, Elsevier, 2014, 99,

pp.527-536. �10.1016/j.carbpol.2013.08.094�. �hal-02640610�

(2)

Version postprint M anus cr it d ’a ut eur / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt

Carbohydrate Polymers (2014), Vol. 99, p. 527-536, DOI: 10.1016/j.carbpol.2013.08.094 Journal homepage: www.elsevier.com/locate/carbpol

Neutral sugar side chains of pectins limit interactions with procyanidins

AudeA.Watrelota,b,∗,CarineLeBourvelleca,b,AnneImbertyc,CatherineM.G.C.Renarda,b

aINRA,UMR408SécuritéetQualitédesProduitsd’OrigineVégétale,F-84000Avignon,France

bUniversitéd’AvignonetdesPaysdeVaucluse,UMR408SécuritéetQualitédesProduitsd’OrigineVégétale,F-84000Avignon,France

cCentredeRecherchessurlesMacromoléculesVégétales,CERMAV-CNRS(AffiliatedwithUniversitédeGrenoble),B.P.53,F-38041Grenoble,France

Keywords:

Polyphenol Condensedtannins Polysaccharide Rhamnogalacturonan Association ITC

a b s t r a c t

Interactions between seven hairy regions of pectins, rhamnogalacturonans II and arabinogalactan–proteins and procyanidins with different average degrees of polymerization, low (DP9)andhigh(DP30),wereinvestigatedbyisothermaltitrationcalorimetryandabsorptionanalysis tostudytheimpactofneutralsugarsidechainsofpectinsontheseassociations.Associationsbetween pecticfractionsandprocyanidinsinvolvedhydrophobicinteractionsandhydrogenbonds.Nodifference inassociationconstantsbetweenvarioushairyregionsandprocyanidinsDP9wasfound.Nevertheless, arabinanchainsshowedlowerassociationconstants,andhairyregionsofpectinswithonlymonomeric sidechainsshowedhigherassociationwithprocyanidinDP30.Onlyverylowaffinitieswereobtained withrhamnogalacturonansIIandarabinogalactan–proteins.Aggregationcouldbeobservedonlywith theprocyanidinsofDP30andtheprotein-richarabinogalactan–protein.Associationswereobtainedat bothdegreesofpolymerizationoftheprocyanidins,butdiffereddependingonneutralsugarcomposition andthestructureofpecticfractions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Pectinsarecomplexpolysaccharidesofplantcellwalls,present mostly in themiddle lamellaand primary wall. Theycomprise smooth and hairy regions. The “smooth regions”, also known as homogalacturonans (HGs),consist of a long chain of (14) linked-d-galacturonic acid (GalpA) with various degrees of methylationand/oracetylation.Thehairyregions,namedrhamno- galacturonans(RGs),areoftwotypes(IandII)(Caffall&Mohnen, 2009;DeVries,Rombouts,Voragen,&Pilnik1982;Thomas,McNeil, Darvill,&Albersheim,1987).RhamnogalacturonansIareformed by the repeating unit 4)--d-GalpA-(12)--l-Rhap-(1), the rhamnose residues of the RG fractions being decorated by long side-chains composed mostly of galactose and arabinose (Ridley, O’Neill, &Mohnen, 2001; Voragen,Coenen, Verhoef, &

Schols, 2009). RG I presents this strictly alternating RG back- bone (De Vrieset al.,1982; Renard,Crépeau,&Thibault,1995;

Schols, Posthumus, & Voragen, 1990), while the misleadingly namedRGIIpossessesabackboneof(14)linked-d-GalpAas

Corresponding authorat: INRA, UMR408Sécurité et Qualité desProduits d’OrigineVégétale,DomaineSaint-Paul,SiteAgroparc,84914AvignonCedex9, France.Tel.:+330432722537;fax:+330432722492.

E-mailaddresses:watrelotaude@yahoo.fr,aude.watrelot@avignon.inra.fr (A.A.Watrelot),carine.lebourvellec@avignon.inra.fr(C.LeBourvellec).

homogalacturonans with side chains containing rhamnose and a varietyof raremonosaccharides (Pérez,Rodríguez-Carvajal, &

Doco,2003).Arabinogalactan–proteins(AGPs)areoftenassociated withpectinsbecausebothmoleculescontainasimilarstructural motifoftypeIIgalactans,i.e.(13)and(16)linkedgalactans ramifiedwitharabinanoligomers(Voragenetal.,2009).However, inAGPsthearabinogalactandomainsareconnectedviaaspecific hydroxyproline-richprotein(Clarke,Anderson,&Stone,1979).

Procyanidins are flavonoids, major polyphenols found in vacuolesoffruitsandvegetables.Theyareasubclassofproantho- cyanidinsderivedfromtheoligomerizationofflavan-3-olsunits andformthecondensedtannins.Theyarecharacterizedbytheir constitutiveunits,theirinterflavaniclinkagesandtheirdegreeof polymerization(Hemingway&Karchesy,1989;Quideau,Deffieux, Douat-Casassus,&Pouységu,2011).Specifically,appleprocyani- dinsarecharacterizedbythepredominanceof()-epicatechinand ofC4–C8interflavaniclinkages(Guyot,Marnet,Laraba,Sanoner,

&Drilleau,1998;Sanoner,Guyot,Marnet,Molle,&Drilleau,1999;

Wojdyło,Oszmianski,&Laskowski,2008).Theycanbeoligomersor polymersandinciderapples,theirnumber-averagedegreeofpoly- merizationrangebetweenDPn4.5–50forvarietiesJeanneRenard andAvrollesrespectively(Sanoneretal.,1999).Theyhavebeen reportedtoexhibitseveralhealtheffectsasantioxidantsandanti- carcinogens,andtoprotectagainstcardiovasculardiseases.

Fruitandvegetableprocessingrupturescells.Thisdisruption leadstoassociationbetweenconstituentsofcellwallsandvacuoles,

(3)

Version postprint M anus cr it d ’a ut eur / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt

www.elsevier.com/locate/carbpol

withaprominentroleofpectinsandprocyanidins(LeBourvellec, Bouchet,&Renard, 2005). The bioavailability of polyphenols is dependentontheirstructureandtheirassociationwithothercom- pounds suchas sugars (Parada &Aguilera, 2007).Procyanidins associatedwithdietaryfiberarenot bioaccessiblein theupper partofthehumanintestine,andtraveltothecolon,wherethey becomefermentablesubstratesforbacterialmicroflora(Cheynier, Sarni-Manchado,&Quideau,2012;Palafox-Carlos,Ayala-Zavala,

&González-Aguilar,2011;Saura-Calixtoetal.,2010), producing metabolitesthat arebothabsorbable andbioactive(Williamson

& Clifford, 2010). In vitro, the interaction between procyani- dins and dietaryfiberreduces thepolysaccharide fermentation andincreasestheproductionofprocyanidincolonicmetabolites (Aura et al., 2012; Saura-Calixto et al., 2010). To understand thehealtheffectofpolyphenolsafterbindingtopolysaccharides suchaspectins,earlierworkdealtwithmechanismsofinterac- tionsbetweenthesetwomacromolecules.Inourpreviouswork (Watrelot, LeBourvellec, Imberty, &Renard 2013), interactions betweenprocyanidinsandpectinswereanalyzed,andtheimpact ofthedegreeofmethylationofsmoothregionsandofthedegreeof polymerizationofprocyanidinscouldbedemonstrated.However, theroleofthehairyregionsofpectinshasnotbeendetermined.

Theaimofthisstudywastoquantifythebindingofaspecificclass ofproanthocyanidins,theprocyanidins,tohairyregionsofpectins.

Isothermaltitrationcalorimetryandaspectrophotometricmethod wereusedtoprobethermodynamicparametersandaggregation phenomenaininteractionsbetweenhairyregionfractionsandpro- cyanidinswithdifferentaveragedegreesofpolymerization:low (DP9)andhigh(DP30).

2. Materialsandmethods

2.1. Chemicals

Methanol,acetonitrile,andacetoneofchromatographicquality werefromBiosolve(Distribio,Evry,France).Hexane(Merck,Darm- stadt,Germany)wasofanalyticalquality.Ethanolandacetonewere fromFisherScientific(Strasbourg,France).

SilvernitratewasfromMerck(Darmstadt,Germany).Sodium borohydride (NaBH4), N-methylimidazole, acetic anhydride, toluene--thiolandpectinfromapplewerefromSigma-Aldrich (Deisenhofen, Germany). Chlorogenic acid, (+)-catechin, and ()-epicatechinwerefrom Sigma-Aldrich.4-Coumaricacidwas fromExtrasynthèse(Lyon,France).Phloridzinandsugarstandards were from Fluka (Buchs, Switzerland). Methanol-d3 was from Acros Organics (Geel, Belgium). Enzymatic cocktail Endozym polifruitliq+wasfromSpindalgroupeAEB(Gretz-Armainvilliers, France).Modifiedhairyregions(MHR1)fromapplewerekindly supplied and characterized by Dr. M. C. Ralet (INRA-UR1268 BiopolymèresInteractionsAssemblages,Nantes,France).Modified hairyregionsMHR2,MHR3andMHR4frompear,onionandsoy- bean(SSPS)respectivelywerekindlysuppliedbyDr.HenkSchols (WUAgrotechnology&FoodSciences,Wageningen,Netherlands).

Rhamnogalacturonans of type II monomer and dimer (mRG-II anddRG-II)andarabinogalactan–protein(AGP0andAGP4)were kindlysuppliedby Dr.ClaireDufour(INRA-UMR408 Sécuritéet QualitédesProduitsd’OrigineVégétale,Avignon,France).

2.2. Plantmaterial

Applefruits(MalusdomesticaBorkh.)oftheAvrollesandMarie Ménardvarietieswereharvestedatcommercialmaturityduring the2000seasonintheexperimentalorchardoftheCenterTech- niquedesProductionsCidricoles(CTPC,Sées,France).Fruitswere mechanicallypeeledandcoredaspreviouslydescribedbyGuyot,

Doco,Souquet,Moutounet,andDrilleau(1997)andcortextissues werefreeze-dried.ApplepomacewasfromValdeVireBioactives (Condé-sur-Vire,France).Fibrex615(Sugarbeetpulp)wasfrom NordicSugar(Copenhagen,Denmark).

2.3. Procyanidinextractionandpurification

Procyanidins were extracted from “Marie Ménard” and

“Avrolles”freeze-driedpulpsbysuccessivesolventextractionsand purifiedasdescribedbyWatrelotetal.(2013).Thepurifiedpro- cyanidinfractionsweredesignatedDP9(from“MarieMénard”)and DP30(from“Avrolles”).Inthetwofractions,()-epicatechinwas thepredominantconstitutiveunit,accountingformorethan95%

and88%inDP30andDP9respectively.Fordetails,seeWatrelot etal.(2013).

2.4. Rhamnogalacturonanpreparation

RhamnogalacturonanswerepreparedasdescribedbyRenard and Jarvis (1999) using 15g/L of apple pectins saponified at 4C, pH>12 and left overnight. The solution was then brought to pH 6 and precipitated with three volumes of an ethanol/water/hydrochloricacidmixture(96:3:1,v/v/v)withstir- ringat4Candleftovernight.Thissuspensionwasfilteredona G0sinteredglassfilter.Afterfiltrationthepecticacidprecipitate waswashed thoroughlywithanethanol/water mixture (70:30, v/v)untilallremainingchlorideionswereeliminated(asverified bysilvernitrateprecipitation).Theresultingpowderwasdriedby solventexchange(ethanol96%andacetone),followedbydrying at40Cinanovenovernight.Thepecticacidwasdissolved(6g/L) andhydrolyzedwithhydrochloricacid(0.25N)for 72hat80C (Thibault,Renard,Axelos,Roger,&Crepeau,1993).Thesupernatant wasconcentratedonarotaryevaporatorbeforedialyzingagainst 0.1MNaClfollowedbywater toeliminatemonomersand neu- traloligomers(galactoseandarabinose).Therhamnogalacturonan oligomers(RG)werefinallyfreeze-dried.

Applehairyregionswereobtainedbyamodifiedalkalineper- oxidetreatmentasdescribedbyRenard,Lahaye,Mutter,Voragen,

&Thibault(1997).Applepomacewassuspendedovernightatroom temperaturewithstirringat50g/L inwater,and pHwasstabi- lizedat>13.Polyphenolsweretheneliminatedbyadding200mL ofhydrogenperoxide(30%).Themediumwaslefttoreactwith stirringfor2h.ThepHwasadjustedto5withaceticacid,andenzy- maticcocktailEndozympolifruitliq+(1mL)wasaddedandleftto actovernightwithstirringatroomtemperature.Thesuspension wasfilteredonanylonmembrane(250mporesize)undervac- uum.Thefiltratewasdialyzedagainst0.1MNaCl,andthenwater at4C.Finally,thefiltratewasfreeze-driedtogivetheapplehairy regionfraction(AHR).

Acid-treatedhairyregions(HR-H)wereobtainedfromsugar beet pulp as described by Ralet, Tranquet, Poulain,Moïse, and Guillon(2010).

Modifiedhairyregions(MHR1)fromapplewerepreparedby themethodofScholsetal.(1990)andwereakindgiftfromDr.M.- C.Ralet.Modifiedhairyregions(MHR2andMHR3)frompearand onionwerepreparedbythemethodofScholsandVoragen(1994).

MHR4fromsoybeanwaspreparedbyCoenen(2007).MHR2,MH3 andMHR4wereakindgiftfromDr.HenkSchols.AllMHRsresulting fromdrasticenzymichydrolysisofplantcellwallswereisolatedas highmolarmasspolymerswitharhamnogalacturonanbackbone.

However,thestructureofthesidechaindependsonthebotanical origin(Table1).MHR1fromapplewasmostlycomposedof- (14)linkedgalactansandarabinans(Renard,Voragen,Thibault,&

Pilnik,1991;Schols&Voragen,1994).Theywerecharacterizedby ahighxylosecontentwithamolarratioXyl:GalAof0.4,whichcor- respondstoxylogalacturonanchains(Schols,Bakx,Schipper,and

(4)

Version postprint M anus cr it d ’a ut eur / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt

Carbohydrate Polymers (2014), Vol. 99, p. 527-536, DOI: 10.1016/j.carbpol.2013.08.094

Journal homepage: www.elsevier.com/locate/carbpolA.A.Watrelotetal./CarbohydratePolymers99 (2014) 527–536 529 Table1

Composition(mg/gdrymatter)andpartitioncoefficientofthedifferentrhamnogalacturonansubfractions.

Samples(mg/g) Kav Rha Fuc Ara Xyl Man Gal Glc GalA Characteristicstructure

RG 0.26 49 3 45 15 10 236 128 458

AHR 0.28 23 2 251 16 30 19 167 Arabinan

HR-H 0.13 143 25 199 437 RGwithmonomericgalactans

PooledSD 1.7 0.1 9.6 0.7 0.9 9.5 5.7 4.5

aMHR1 −0.06 89 9 83 113 134 385 ArabinanTypeIgalactanXylogalacturonan

aMHR2 −0.03 79 240 42 101 209 ArabinanTypeIIgalactan

aMHR3 0.01 132 40 17 7 208 283 TypeIgalactan

bMHR4 nd 41 33 188 52 351 27 165 GalactanXylogalacturonan

cAGP0 0.08 11 1 358 2 18 583 16 28 TypeIIArabinogalactan

cAGP4 0.02 93 2 250 18 23 354 3 180

RG,rhamnogalacturonans;AHR,applehairyregions;HR-H,acid-treatedhairyregions;MHR,modifiedhairyregions(1fromapple,2frompear,3fromonionand4from soybean);AGPs,arabinogalactan–proteins;Kav,partitioncoefficient;Rha,rhamnose;Fuc,fucose;Ara,arabinose;Xyl,xylose;Man,mannose;Gal,galactose;Glc,glucose;

GalA,galacturonicacid.PooledSD:pooledstandarddeviation,n=11.a:ScholsandVoragen(1994);b:Coenen(2007);c:Pellerinetal.(1995).

Voragen,1995).MHR2frompearwasrichinarabinosepresentas (15)-linkedchains(withproportionof71%).Itsgalactanswere predominantlyhighlyramified-(13)and-(16)typeIIgalac- tanandgalactoseresidueswereterminallylinked(withproportion of36%)(Schols&Voragen,1994).MHR3fromonionwasrichin galactosewithhighproportionofterminalgalactoseresidues(58%) and in -(14) linkedtype Igalactan(19%) (Schols& Voragen, 1994),aswasMHR4fromsoybeanwiththeadditionnalpresenceof

-d-Xylsidechainssubstitutedto(1,4)-linkedgalacturonicacid,i.e.

alsoxylogalacturonans(Coenen,Bakx,Verhoef,Schols,&Voragen, 2007;Nakamura,Furuta,Maeda,Nagamatsu,&Yoshimoto,2001).

Polysaccharidesisolatedfromredwine werekindlydonated byDr.C.Dufour(INRA-UMR408SécuritéetQualitédesProduits d’OrigineVégétale,Avignon,France). Rhamnogalacturonans,RG- IIs,werepurifiedasdescribedinPellerinetal.(1996).Fractions mRG-IIanddRG-IIwerepredominantlymonomeric(90%pure)and dimeric(87%pure).Monomeranddimer(mRG-IIanddRG-II)were richinarabinoseandcomposedofrareneutralsugars.Thedimer wasdistinguishedbythepresenceofboron.

TypeIIarabinogalactan–proteinfractions,AGP0andAGP4,were isolatedbyanionexchangechromatographyaccordingtoPellerin, Vidal, Williams, and Brillouet (1995).Fractions weresimilar in termsofneutralsugarcompositionexceptforarabinoseandgalac- tosewithhighercontentinAGP0(35.2%and57.3%,respectively) thanAGP4(27.1%and38.3%,respectively),whileuronicacidcon- tentwashigherinAGP4thanAGP0.Also,non-reducingarabinose and rhamnosewereobserved in bothAGPs, but rhamnosewas 2,4-linkedinAGP4.Galactosewas3,6-linkedmoreinAGP4,but 3,4,6-linkedmoreinAGP0(Pellerinetal.,1995).

2.5. Phasediagram

Toidentifyaggregateformationduringpectin-tannininterac- tions,aspectrophotometricmethodwasusedat25C.Systematic variationofconcentrationsandrelativeamountswascarriedout ona96-well“microplate”.Thiswasdonebyvaryingtheconcen- trations of procyanidins (0, 0.015,0.03, 0.06, 0.117,0.23, 0.47, 0.94,1.875,3.75,7.5,15mmol/L()-epicatechinequivalent)along the rows, and varying the concentrations of hairy regions (0, 0.12, 0.23, 0.47, 0.94, 1.875, 3.75, 7.5mmol/Lgalacturonic acid equivalent) along thecolumns. Solutions wereprepared in cit- rate/phosphate buffer at pH 3.8 and ionic strength 0.1mol/L.

Equal amounts (50L) of procyanidin and hairy region frac- tion solutions weremixed before each spectrum measurement for 20s. Absorbance spectra (200–650nm) were recorded, and absorbance at 650nm was analyzed for each solution using a SAFAS flx-Xenius XM spectrofluorimeter (SAFAS, Monaco).

Control spectra were obtained using wells containing hairy regions alone in bufferand procyanidins alone in buffer. After spectra recording, microplates were centrifuged for 10min at

2100×g, and supernatants of control wells (hairy regions at 7.5mmol/L in buffer (S1A) and procyanidins at 15mmol/L in buffer(S1B))andsupernatantsofwellscontainingprocyanidins at a concentration of 15mmol/L with hairy regions at a con- centration of 7.5mmol/L (S2) were analyzed by high pressure sizeexclusionchromatography(HPSEC)andhigh-performanceliq- uidchromatography–diodearraydetection(HPLC-DAD)todefine changes in partition coefficient(Kav=S2–S1A) ofhairy region fractionsandinaveragedegreeofpolymerizationofflavan-3-ols (DPn=S2-S1B).

2.6. Isothermaltitrationmicrocalorimetry

To measure enthalpy changes associated with hairy region- tannininteractionsat25C,aVP-ITCmicrocalorimeter(Microcal®, GEHealthcare,Northampton,MA,USA)wasused.Toallowcom- parison between the different pectic substrates, and given the polydispersityin molecularweightforbothpecticfractionsand procyanidins,allconcentrationsareexpressedrelativetothemain monomers,i.e.galacturonicacidforpectins and()-epicatechin forprocyanidins.Procyanidinsandhairyregionfractionsweredis- solvedinthesamecitrate/phosphatebufferpH3.8,ionicstrength 0.1mol/L,andfilteredon0.45mmembrane.Allthesolutionswere degassedbeforemeasurements.Thereferencecellwasfilledwith water.Toobtainahyperboliccurveasrecommendedforlowaffin- itysystems(Turnbull&Daranas,2003),differentconcentrationsof compoundsweretested.Thepecticfractionsolutionwasplacedin the1.448mLsamplecellofthecalorimeter,andtheprocyanidin solutionwasloadedintotheinjectionsyringeandtitratedintothe samplecellby30injectionsof10Laliquots.Thedurationofeach injectionwas20s,withaseparatingdelayof5min.Thecontentsof thesamplecellwerestirredthroughouttheexperimentat307rpm toensuremixing.

Rawdata obtainedasa plot ofheat flow (microcaloriesper second) against time (minutes) were then integrated peak-by- peakandnormalizedtoobtainaplotofobservedenthalpychange permoleofinjectant(H,kJmol1)againstthemolarratio(()- epicatechin/galacturonic acid). Peak integration was performed usingMicrocalOrigin7.0(MicrocalSoftware,GEHealthcare).Con- trolexperiments includedthetitration of procyanidinfractions intobuffer,andweresubtractedfromtitrationexperiments.The experimental data were fitted to a theoretical titration curve usingMicrocalOrigin7.0,withH(enthalpychange),Ka(asso- ciationconstant),andn(numberofbindingsitespermolecule)as adjustableparameters,fromtherelationship

Qi= nPtHV0

2

1+At

nPt+ 1

nKaPt

1+ At

nPt + 1 nKaPt

2

4 At

nPt

(1)

Références

Documents relatifs

Our approach, based on molecular dynamics and enhanced sampling or free energy calculation techniques, is not specific to water and could be applied to very different structural

A. - Further-than-third neighbor exchange interactions and quantum fluctuations produce new interesting effects in the phase diagram of the Heisenberg magnet with

On the numerical side, we have studied the ground state properties of the S = 1 chain in a helical magnetic field using the density matrix renormalization group (DMRG) [ 37 , 38

The pure iron scale is formed by three layers of superimposed oxides, corresponding to increasing levels of oxidation from the metal to the atmosphere, the layer of FeO

It has already been shown that procyanidins (condensed tannins) interact with polysaccharides and that the affinity of procyanidins for pectins is higher than for

We present here the influence of the osmotic pressure on removal of procyanidins from apple pieces and their associations with cells walls by binding

Procyanidin adsorption increased as ripening progressed and highly polymerized procyanidins were selectively adsorbed by cell walls. This phenomenon was pronounced by two

Effect of pH on Protein–Procyanidin Interactions Titration curves showing the enthalpy changes with procyanidins of DPn = 5.5 at pH 3.0, 5.5, and 7.5 are presented in Figure 2a