• Aucun résultat trouvé

Study of the 5f electronic states in u, np, pu and am and (u,pu) oxides using high resolution xanes

N/A
N/A
Protected

Academic year: 2021

Partager "Study of the 5f electronic states in u, np, pu and am and (u,pu) oxides using high resolution xanes"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: cea-02437087

https://hal-cea.archives-ouvertes.fr/cea-02437087 Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Study of the 5f electronic states in u, np, pu and am and (u,pu) oxides using high resolution xanes

P. Martin, D. Prieur, R. Bes, R. Belin, M. Strach, D. Manara, C. Valot, T. Vitova, T. Prussman, K. Dardenne, et al.

To cite this version:

P. Martin, D. Prieur, R. Bes, R. Belin, M. Strach, et al.. Study of the 5f electronic states in u, np, pu and am and (u,pu) oxides using high resolution xanes. NuMat2016 The Nuclear Materials Conference, Nov 2016, Montpellier, France. �cea-02437087�

(2)

Context and Objectives

Methods

Study of the 5f electronic states in U, Np, Pu and Am and (U,Pu) oxides using

high resolution XANES

Ph. M. Martin

1

, D. Prieur

2

, R. Bès

3

, R. Belin

4

, M. Strach

1

, D. Manara

2

, Ch. Valot

1

, T. Vitova

5

, T. Prüßmann

5

, K. Dardenne

5

, J. Rothe

5

1-CEA, DEN/DTEC/SECA/LCC, Bagnol sur Cèze, France; 2-European Commission, JRC-Karlsruhe, Germany; 3-Antimatter and Nuclear engineering, Department of applied Physics, Aalto University, Finland; 4- CEA, DEN/DEC/SESC/LLCC, Cadarache, France; 5-Karlsruhe Institute of Technology, Institute for Nuclear Waste

Disposal, Germany

Uranium−plutonium mixed oxide fuels U1−yPuyO2−x are currently studied within the frame of the fourth generation (GEN-IV) of nuclear reactors and more specifically for sodium-cooled fast neutron reactors (SFRs). Because of their specific neutronic spectrum, SFRs will also be able to burn long-lived minor actinides (MAs) such as Am and Np. One of the considered options is to add them homogeneously to the fuel in significant amounts (2−6%). In such complex mixed oxide systems, both the homogeneity of the cation distribution into the fluorite UO2 structure and the oxygen stoichiometry significantly affects most of the fuel properties (thermal conductivity, melting temperature, diffusion phenomena, etc.). These properties depend mainly on the complexity of actinide electronic structures, in particular the unfilled actinide 5f valence shells. The latter can be directly probe with High Resolution X-ray spectroscopy performed at the M4,5 (3d→5f transition) edges of actinides. Here, we show results obtained on binary oxides (UO2, NpO2, PuO2 and AmO2) and U1-yPuyO2 (y=0.24, 0.44 and 0.62) samples combined with theoretical calculations with FDMNES [1] code.

[1] Bunau, O.; Joly, Y. J. Phys.: Condens. Matter 2009, 21, 345501 ; [2] T. Vitova et al., J. Phys. Conf. Ser. 430 (2013) 012117 ; [3] J. Rothe et al., Rev. Sci. Intrum. (2012) 043105 ; [4] T. Truphémus et al., J. Nucl. Mater. 432 (2013) 378–387 ; [5] Y. Lu et al., J. Nucl. Mater. 441 (2013) 411 ; [6] R. Vauchy et al. , Inorg. Chem. 55 (2016) 2123.

To overcome the core-hole limitation in standard XANES measurements , an emission spectrometer can be used to collect High Energy Fluorescence Detected XANES (HERFD-XANES). Such experimental set-up is now available at the INE beamline [2,3] located at the synchrotron source ANKA (Karlsruhe, Germany) and application of HERFD-XANES on highly radioactive materials such as (U,Pu)O2 is now possible.

HERFD spectra collected on stoichiometric samples

• UO2, NpO2, PuO2 and AmO2

• (U,Pu)O2.00 prepared by powder metallurgy process [4]

Purity checked by XRD results

 single face centered cubic phase

Emission spectrometer at INE beamline (ANKA, Germany)

Conclusions

The gain in selectivity and resolution provided by HERFD at M4,5 (3d →5f) edges of actinides (U-Am) allow to precisely probe the 5f (and 6d) occupancy experimentally. Charge transfer between

An valence shells (5f – 6d) and O 2p must be considered in FDMNES calculations to reproduce experiment. PuO2 and AmO2 (with 6d0 in the ground state) experimental spectra are well

reproduced with the following 5f configurations: Pu = 5f4.4 and Am = 5f5.6. For UO2 and NpO2 (with 6d1 in the ground state), 6d and 5f have to be taken into account in the charge transfer with O

2p but results obtained with 6d0 and 6d1 with different 5f occupancies are not satisfactory. Calculations with an intermediate 6d occupancy are in progress. Contrary to the XANES measurements,

the substitution of U by Pu atoms is observed at both U and Pu edges in HERFD-XANES spectra collected on (U,Pu)O2.00 samples [6]. First calculations show that charge transfer has to be

introduced in both U (5f-6d) and Pu (5f ).

Results on binary systems

Measurements on AnO

2 Sample holder Results considering 6d1 0 20 40 60 Np-M 4 no rma lized µ (A.U.) Energy-E0 (eV) 5f2.36d17s2 5f2.26d17s2 5f2.16d17s2 5f2.06d17s2 NpO2

Results on

U

1-y

Pu

y

O

2

(y=0.24, 0.44 and 0.62) samples

0 10 20 30 40 50 0.0 0.5 1.0 1.5 UO2 NpO2 M 4 HERFD XANE S inte nsity (A.U.)

Energy (E-E0) (Ev)

10 20 30 40 50

0.0 0.1

Energy (E-E0) (Ev)

UO

2

&

NpO

2

U : [Rn] 5f

3

6d

1

s

2

|

Np

: [Rn]

5f

4

6d

1

s

2 ΔE = 1.2 eV / 1.0 eV  M4N6 line (Mβ or 3d3/2-4f5/2) 0 10 20 30 40 50 0.0 0.5 1.0 1.5 PuO2 AmO2 M 5 HERFD XANE S inte nsity (A.U.)

Energy (E-E0) (Ev)

10 20 30 40 50

0.0 0.1

Energy (E-E0) (Ev)

Pu

: [Rn]

5f

6

6d

0

s

2

|

Am

: [Rn]

5f

7

6d

0

s

2

PuO

2

&

AmO

2  M5N7 line (Mα or 3d5/2-4f7/2)

ΔE = 1.2 eV / 1.3 eV

PuO

2

 Pu

+4

/ 5f

4

6d

0

Electronic configurations considered : 5f6.0  5f4.0 / O 2p4.0 2p6.0

10 20 30 40 50 0.00 0.05 0.10 0.15 Pu-M 5 no rma lized µ (A.U.) Energy -E0 (eV) PuO2 5f4.46d07s2 5f4.36d07s2 0 20 40 60 Pu-M 5 no rma lized µ (A.U.) Energy -E0 (eV) 5f4.56d07s2 5f4.46d07s2 5f4.36d07s2 5f4.26d07s2 5f4.16d07s2 5f4.06d07s2 PuO2  5f4.0  5f4.5 Pu M5 E0 = 3773 eV

best results = Pu 5f

4.4

 Charge transfer : Pu 5f – O 2p  +1.6 e

-

/ -0,8 e

-AmO

2

 Am

+4

/ 5f

5

6d

0 0 20 40 60 Pu-M 5 no rma lized µ (A.U.) Energy -E0 (eV) 5f5.66d07s2 5f5.56d07s2 5f5.46d07s2 5f5.36d07s2 5f5.26d07s2 AmO2 Am M5 E0 = 3890.5 eV  5f5.2  5f5.6 Electronic configurations : 5f7.0  5f5.0 / O 2p4.0 2p6.0

Best results obtained for Am 5f

5.6

Charge transfer = Am 5f – O p: +1.4 e

-

/ -0,7 e

-Slight decrease of the charge transfer between Pu and Am (Δ = 0.2 e

-

)

 in agreement with 0.14 e

-

obtained by Yu et al [5] extracted from GGA+U calculations

FDMNES calculations for elements with 6d

1

ground states

NpO

2

 Np

+4

/ 5f

3

6d

0 0 20 40 60 Np-M 4 no rma lized µ (A.U.) Energy-E0 (eV) 5f2.36d17s2 5f2.26d17s2 5f2.16d17s2 5f2.06d17s2 NpO2 Np M4 E0 = 3842.2 eV 5f2.0  5f2.0  5f2.2

If charge transfer is only considered Np 5f - O 2p :

Experimental spectrum is not reproduced (WL & resonances)

Calculations with 6d0 (5f3.0-5f4.0)  no improvement

 Charge transfer Np 5f and 6d and O 2p

Same conclusion for UO

2

Calculations in progress

3780 3800 3820 3840 0.0 0.2 0.4 0.6 0.8 1.0 Pu-M 5 n or ma lized µ (A.U.) Energy (eV) U0.76Pu0.24O2.0 U0.56Pu0.44O2.0 U0.38Pu0.62O2.0 PuO2 3770 3775 3780 3785 3790 0.0 0.2 0.4 0.6 0.8 1.0 Pu-M 5 n or ma lized µ (A.U.) Energy (eV) U0.76Pu0.24O2.0 U0.56Pu0.44O2.0 U0.38Pu0.62O2.0 PuO2 WL width  3773.3(3) eV

Pu-M

5

results

U-M

4

results

3722 3724 3726 3728 3730 3732 3734 3736 0.0 0.2 0.4 0.6 0.8 1.0 U-M IV no rma lized HERFD-XANES (A.U.) Energy (eV) UO2.00 U0.75Pu0.25O2.00 U0.54Pu0.46O2.00 U0.38Pu0.62O2.00

• Increase of the WL width but no shift

• No shift of resonance positions

• No broadening of the WL

• Slight shift of the WL to higher energy 3790 3800 3810 3820 3830 3840 0.00 0.05 0.10 0.15 0.20 Pu-M 5 n or ma lized µ (A.U.) Energy (eV) U0.76Pu0.24O2.0 U0.56Pu0.44O2.0 U0.38Pu0.62O2.0 PuO2 PuO2 MOX +20.0 +23.3 +39.0

FDMNES simulation : PuO

2

Vs U

0.50

Pu

0.50

O

2.0

Introduction of charge transfer Pu 5f – O2 p  5f

4.4

3770 3780 3790 0.0 0.2 0.4 0.6 0.8 1.0 Pu-M 5 no rma lized µ (A.U.) Energy (eV) Pu - 5f4.46d07s2 PuO2 U0.50Pu0.50O2.0 3790 3800 3810 3820 3830 3840 0.00 0.02 0.04 0.06 0.08 0.10 Pu-M 5 no rma lized µ (A.U.) Energy (eV) Pu - 5f4.46d07s2 PuO2 U0.50Pu0.50O2.0 WL width  5f band  Not OK !

Comparison

with PuO

2 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 Pu-M 5 no rma lized µ (A.U.) Energy (eV) U0.56Pu0.44O2.0 U0.50Pu0.50O2.0 FDMNES Pu - 5f4.46d07s2 3770 3780 3790 0.0 0.2 0.4 0.6 0.8 1.0 Pu-M 5 n or ma lized µ (A.U.) Energy (eV) U0.56Pu0.44O2.0 U0.50Pu0.50O2.0 FDMNES Pu - 5f4.46d07s2 First results on 50% Pu

• White line width is not reproduced

• Resonance are shifted

Next step = introduction of

charge transfer U 5f-6d + Pu 5f

Finite Difference Method for Near

Edge Structure (FDMNES) code [1]

Local Density Approximation (LDA) - Green Formalism (Multiple scattering)

Input data :

• Crystallographic structure

• Cluster radius = 8 Å (143 atoms) • An and O electronic configuration

FDMNES calculations for elements with 6d

0

ground states

HERFD-XANES experimental Setup

Samples

Calculations

Références

Documents relatifs

F m - h'hite lines at Mq-edges for a-Tho2 and the thorium-containing glass, b-UO2 and the uranium-containing glass - at Mg edge for c-the uranyl nitrate, U02 and the

applicable for small deviations from stoichiomctry, i l will at most show tlie qualitative behaviou~- for biggel' deviations. The experimcntal data discussed

( 2011 ), this paper takes both tem- perature dependent parameters (leakage and conductance) into account in the thermal model. This results in a modified non-linear

The values of the intensity parameters B>kq are obtained by fitting the calculated oscillator strengths to the experimental ones determined from both unpolarized and

Systematics of cumulative fission yields of the Neodymium isotopes for thermal and fast neutron fission of 235 U, 238 U, 238 Pu, 239 Pu, 240 Pu and 241 Pu were obtained by

Diffusion rates were also increased at lower temperatures by fission events (radiation enhanced diffusion [7]).. Whereas D, in UC,,, increases drastically with

Gene expression involved in steroid hormone biosynthesis was affected in both CAR−/− males and females but differed by gender, as confirmed by the hepatic profile of 31 genes

Key words: (multi)fractional Brownian motion, Gaussian fields, Gaussian measures, Abstract Wiener Spaces, multiparameter and set-indexed processes, sample paths properties..