• Aucun résultat trouvé

New existence and uniqueness results for high dimensional fractional differential systems

N/A
N/A
Protected

Academic year: 2021

Partager "New existence and uniqueness results for high dimensional fractional differential systems"

Copied!
13
0
0

Texte intégral

(1)

NEW EXISTENCE AND UNIQUENESS RESULTS FOR HIGH

DIMENSIONAL FRACTIONAL DIFFERENTIAL SYSTEMS

Zoubir Dahmani and Amele Taeb

Abstract.In this paper, using the Caputo fractional derivative approach, we present new results on the existence and uniqueness of solutions to n−dimensional nonlinear coupled systems for differential equations. We also discuss some examples to illustrate the main results.

1. Introduction and Preliminaries

The physical laws of dynamics are not always described by ordinary order dif-ferential equations. In some cases, their behavior is governed by fractional or-der differential equations. For more details, we refer the reaor-der to the books of Hilfer in [14] and Podlubny in [28]. Other research works can be found in [2, 4, 7, 9, 20, 24, 25, 26, 27, 29, 31, 32]. Further, many authors have established the ex-istence and uniqueness of solutions for some fractional systems. The reader may re-fer to the following research papers [1, 3, 5, 6, 8, 10, 11, 12, 15, 16, 17, 18, 19, 21, 33, 34]. These papers treat problems with only one nonlinear term depending on two un-known functions. Other cases, where we have more than one nonlinearity de-pending on some unknown functions, are more complicated and have not been discussed in the above cited works.

In this paper, we are concerned with the following nonlinear system: (1.1) ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎨ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎩ Dα1x 1(t)= m  i=1f 1 i  t, x1(t), x2(t), ..., xn(t), Dβ1x1(t), Dβ2x2(t), ..., Dβnxn(t)  , t ∈ J, Dα2x2(t)= m  i=1f 2 i  t, x1(t), x2(t), ..., xn(t), Dβ1x1(t), Dβ2x2(t), ..., Dβnxn(t)  , t ∈ J, ... Dαnxn(t)= m  i=1f n i  t, x1(t), x2(t), ..., xn(t), Dβ1x1(t), Dβ2x2(t), ..., Dβnxn(t)  , t ∈ J, xk(0)= x  k(0)= ... = x (n−2) k (0)= x (n−1) k (1)= 0, k = 1, 2, ..., n, Received March 20, 2015

2010 Mathematics Subject Classification. 34A34, 34B10.

The authors were supported in part by . . .

(2)

where n− 1 < αk< n, n − 2 < βk< n − 1, k = 1, 2, ..., n, n ∈ N− {1} , J := [0, 1] . The derivatives Dαk and Dβk, k = 1, 2, ..., n, are in the sense of Caputo. The functions 

fk i

k=1,2,...,n

i=1,...,m : J× R2n→ R will be specified later.

We present some basic definitions and properties which are used throughout this paper [13, 22, 28].

Definition 1.1. The Riemann-Liouville fractional integral operator of orderα ≥ 0 for a continuous function f on [0, ∞[ is defined as:

Jαf (t)= 1 Γ (α) t 0 (t− s)α−1f (s) ds, α > 0, t ≥ 0, (1.2) J0f (t)= f (t), t ≥ 0, whereΓ (α) :=0e−xxα−1dx.

Definition 1.2. The Caputo derivative of order α for a function x : [0, ∞) → R, which is at least n−times differentiable can be defined as:

(1.3) Dαx(t)= 1 Γ (n − α) t 0 (t− s)n−α−1x(n)(s) ds= Jn−αx(n)(t), for n− 1 < α < n, n ∈ N∗.

We recall the following lemmas [11, 12, 23, 30]:

Lemma 1.1. Letα > 0. The solution to the differential equation Dαx(t)= 0, is given by

(1.4) x(t)= c0+ c1t+ c2t2+ · · · + cn−1tn−1,

such that cj∈ R, j = 0, ..., n − 1, n = [α] + 1.

Lemma 1.2. Letα > 0. Then

(1.5) JαDαx(t)= x(t) + c0+ c1t+ c2t2+ · · · + cn−1tn−1,

where cj∈ R, j = 0, 1, ..., n − 1, n = [α] + 1.

Lemma 1.3. Let q> p > 0, f ∈ L1([a, b]) . Then DpJqf (t)= Jq−pf (t), t ∈ [a, b] .

Lemma 1.4. Let E be a Banach space. Assume that T : E→ E is completely continuous operator and the set V := x∈ E, x = μTx, 0 < μ < 1 is bounded. Then T has a fixed point in E.

(3)

We prove the following auxiliary result:

Lemma 1.5. Suppose that Qkik=1,...,n

i=1,...,m∈ C ([0, 1] , R) , and consider the problem (1.6) Dαkxk(t)=

m

i=1

Qki(t), t ∈ J, n − 1 < αk< n; k = 1, 2, ..., n, m, n ∈ N∗,

associated with the conditions:

(1.7) xk(0)= x  k(0)= ... = x (n−2) k (0)= x (n−1) k (1)= 0, k = 1, 2, ..., n. Then, we have (1.8) xk(t)= m i=1 t 0 (t− s)αk−1 Γ (αk) Qk i(s) dstn−1 (n−1)!Γ(αk−n+1) m  i=1 1 0 (1− s) αk−nQk i(s) ds, k = 1, 2, ..., n.

Proof. We use Lemma 1.1, Lemma 1.2 and (1.6) . So, we can write

(1.9) xk(t)= m i=1 t 0 (t− s)αk−1 Γ (αk) Q k i(s) ds− c0− c1t− c2t2− ... − cn−1tn−1, where cj∈ R, j = 0, 1, 2, ..., n − 1 and n − 1 < αk< n, k ∈ N∗. For all k= 1, 2, ..., n, j = 0, 1, ..., n − 2, we have

x(kj)(0)= −j!cj. Using Lemma 1.3 and the relation (1.7), we obtain:

(1.10) cj= ⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩ 0, j= 0, 1, ..., n − 2, m  i=1 1 0 (1−s)αk−n (n−1)!Γ(αk−n+1)Qki(s) ds, j = n − 1.

Substituting the values of cjinto (1.9) , we obtain (1.8) . This ends the proof of the auxiliary result.

Now, let us introduce the Banach space:

S :=(x1, x2, ..., xn) : xk∈ C ([0, 1] , R) , Dβkxk∈ C ([0, 1] , R) , k = 1, 2, ..., n. 

equipped with the norm

(1.11) (x1, x2, ..., xn)S= max  x1 , x2 , ..., xn ,Dβ1x1 ,Dβ2x2 , ...,Dβnxn  , such that, xk = sup t∈J |xk(t)| ,Dβkxk = sup t∈J  Dβkx k(t) , k = 1, 2, ..., n.

(4)

2. Main Results

We begin this section by introducing the following hypotheses: (H1) : There exist nonnegative constants

 λk

i 

j, i = 1, ..., m, k = 1, 2, ..., n, j = 1, 2, ..., 2n, such that for all t ∈ [0, 1] and all (x1, x2, ..., x2n),

 y1, y2, ..., y2n  ∈ R2n, we have (2.1)  fik(t, x1, x2, ..., x2n)− fikt, y1, y2, ..., y2n ≤ 2n j=1  λk i  j  xj− yj .

(H2) : The functions fik: [0, 1] × R2n→ R are continuous for each i = 1, 2, ..., m, k =

1, 2, ..., n, m, n ∈ N∗.

(H3) : There exist nonnegative constants



Lk i

k=1,2...,n

i=1,...,m , such that:

for each t∈ J and all (x1, x2, ..., x2n)∈ R2n

(2.2)  fik(t, x1, x2, ..., x2n) ≤ Lki, i = 1, ..., m, k = 1, 2, ..., n.

Then, we consider the following quantities:

Ok = Γ (αΣk k+ 1), Ok= Σk Γαk− βk+ 1 ; Σk = m i=1  λk i  1+  λk i  2+ ... +  λk i  2n  , k = 1, 2, ..., n, (2.3) Ak = 1 Γ (αk+ 1)+ 1 (n− 1)!Γ (αk+ 2 − n), k = 1, 2, ..., n, Ak = 1 Γαk− βk+ 1 + 1 Γn− βk  Γ (αk+ 2 − n), k = 1, 2, ..., n. (2.4)

Now, we are ready to prove the first main result:

Theorem 2.1. If the hypothesis (H1) and the inequality

(2.5) max 1≤k≤n  Ok, Ok  < 1

are satisfied, then (1.1) has a unique solution on J.

Proof. Let us define the nonlinear operator T : S→ S by

(5)

such that Tk(x1, x2, ..., xn) (t)= (2.6) m i=1 t 0 (t− s)αk−1 Γ (αk) ϕ k i(s) ds− tn−1 (n− 1)!Γ (αk− n + 1) m i=1 1 0 (1− s)αk−nϕki(s) ds, k = 1, 2, ..., n, where, ϕk i(s)= fik  s, x1(s), x2(s), ..., xn(s), Dβ1x1(s), Dβ2x2(s), ..., Dβnxn(s)  . We show that the operator T is contractive:

Let (x1, x2, ..., xn), 

y1, y2, ..., yn 

∈ S. Then, for each k = 1, 2, ..., n and t ∈ J, we have:  Tk(x1, x2, ..., xn) (t)− Tk  y1, y2, ..., yn  (t) ≤ (2.7) tαk Γ (αk+ 1) sup s∈J m i=1     fk i  s, x1(s), x2(s), ..., xn(s), Dβ1x1(s), Dβ2x2(s), ..., Dβnxn(s)  − fk i  s, y1(s), y2(s), ..., yn(s), Dβ1y1(s), Dβ2y2(s), ..., Dβnyn(s)  .     By (H1), we can write  Tk(x1, x2, ..., xn)− Tk  y1, y2, ..., yn ≤ 1 Γ (αk+ 1) m i=1  λk i  1+  λk i  2+ ... +  λk i  2n  (2.8) × maxx1− y1 ,x2− y2 , ...,xn− yn ,D β1x1− y1,Dβ2x2− y2,...,Dβnxn− yn. Therefore, for all k= 1, 2, ..., n,

 Tk(x1, x2, ..., xn)− Tky1, y2, ..., yn ≤ (2.9) Σk Γ (αk+ 1)  x1− y1, x2− y2, ..., xn− yn, Dβ1x1− y1, Dβ2x2− y2, ..., Dβnxn− yn S. On the other hand,

 DβkT k(x1, x2, ..., xn) (t)− DβkTky1, y2, ..., yn(t) ≤ (2.10) tαk−βk Γαk− βk+ 1sups∈J m i=1     fiks, x1(s), x2(s), ..., xn(s), Dβ1x1(s), Dβ2x2(s), ..., Dβnxn(s)  − fk i  s, y1(s), y2(s), ..., yn(s), Dβ1y1(s), Dβ2y2(s), ..., Dβnyn(s)   , where k= 1, 2, ..., n.

(6)

Then, for k= 1, 2, ..., n, we have  DβkT k(x1, x2, ..., xn)− DβkTk  y1, y2, ..., yn ≤ (2.11) Σk Γαk− βk+ 1 x1− y1, x2− y2, ..., xn− yn, Dβ1x1− y1, Dβ2x2− y2, ..., Dβnxn− yn S. Using (2.9) and (2.11), we get

 Tk(x1, x2, ..., xn)− Tky1, y2, ..., ynS≤ (2.12) max 1≤k≤n  Ok, Ok   x1− y1, ..., xn− yn, Dβ1x1− y1, ..., Dβnxn− yn S, k = 1, 2, ..., n. Thus, by (2.5) , we deduce that the operator T is contractive. Therefore, by the Banach fixed point theorem, T has a unique fixed point which is a solution of the system (1.1) .

We also prove the result:

Theorem 2.2. Assume that fk

i, i = 1, 2, ..., m, k = 1, 2, ..., n satisfy (H2) and (H3). Then

the nonlinear fractional system (1.1) has at least one solution on J. Proof. The proof will be given in two steps:

A : We show that T is completely continuous:

We begin by proving that T maps bounded sets into bounded sets in S : Let us con-sider the set Bδ:= (x1, x2, ..., xn)∈ S; (x1, x2, ..., xn)S≤ δ, δ > 0

and (x1, x2, ..., xn)∈

Bδ. Then, for each t ∈ J, k = 1, 2, ..., n, and using (H3), we can obtain

Tk(x1, x2, ..., xn) ≤ Γ (αtαk k+ 1)× sups∈J m i=1  fk i  s, x1(s), x2(s), ..., xn(s), Dβ1x1(s), Dβ2x2(s), ..., Dβnxn(s) + 1 (n− 1)!Γ (αk+ 2 − n) sup s∈J m i=1  fk i  s, x1(s), x2(s), ..., xn(s), Dβ1x1(s), Dβ2x2(s), ..., Dβnxn(s) ≤  1 Γ (αk+ 1)+ 1 (n− 1)!Γ (αk+ 2 − n)  m i=1 Lki ≤ Ak m i=1 Lki (2.13)

(7)

and  DβkT k(x1, x2, ..., xn) ≤ tαk−βk Γαk− βk+ 1  × sup s∈J m i=1  fk i  s, x1(s), x2(s), ..., xn(s), Dβ1x1(s), Dβ2x2(s), ..., Dβnxn(s) + tn−βk−1 Γn− βk  Γ (αk+ 2 − n) sup s∈J m i=1 fiks, x1(s), x2(s), ..., xn(s), Dβ1x1(s), Dβ2x2(s), ..., Dβnxn(s)  ≤  1 Γαk− βk+ 1  + 1 Γn− βk  Γ (αk+ 2 − n)  m i=1 Lk i ≤ Ak m i=1 L(2.14)ki. Hence, T (x1, x2, ..., xn)S≤ max  Ak, Ak  m i=1 Lki < ∞.

This means that T maps bounded sets into bounded sets in S.

Thanks to (H2), the operator T is continuous on S. On the other hand, for any

0≤ t1< t2≤ 1 and (x1, x2, ..., xn)∈ Bδ, we have: Tk(x1, x2, ..., xn) (t2)− Tk(x1, x2, ..., xn) (t1) ≤ (2.15) 1 Γ (αk+ 1)  2 (t2− t1)αk+  tαk2 − tαk1 + 1 (n− 1)!Γ (αk+ 2 − n)  tn−1 2 − tn1−1  m i=1 Lk i and  DβkT k(x1, x2, ..., xn) (t2)− DβkTk(x1, x2, ..., xn) (t1) ≤ (2.16)  1 Γαk− βk+ 1  2 (t2− t1)αk−βk+  tαk−βk2 − tαk−βk1 + 1 Γn− βkΓ (αk+ 2 − n)  tn2−βk−1− tn1−βk−1, where, k= 1, 2, ..., n.

The right-hand sides of (2.15) and (2.16) are independent of (x1, x2, ..., xn)∈ Bδand

tend to zero as t2− t1 → 0. Thus T is equi-continuous. Finally, we can see by the

above arguments that T is a completely continuous operator.

B : We consider the setΩ := (x1, x2, ..., xn)∈ S, (x1, x2, ..., xn)= μT (x1, x2, ..., xn), 0 < μ < 1 and show that is bounded:

(8)

Let (x1, x2, ..., xn) ∈ Ω, then xk(t) = μTk(x1, x2, ..., xn) (t). Thus, for each t ∈ J and corresponding to (2.13) and (2.14), we have:

(2.17) xk ≤ μAk m i=1 Lki; Dβkxk ≤ Ak m i=1 Lki, k = 1, 2, ..., n, which implies (x1, x2, ..., xn)S ≤ μ max ⎛ ⎜⎜⎜⎜ ⎜⎝A1 m i=1 L1i, A2 m i=1 L2i, ..., An m i=1 Lni, A1 m i=1 L1i, A2 m i=1 L2i, ..., An m i=1 Lni ⎞ ⎟⎟⎟⎟ ⎟⎠ . < ∞. (2.18) Therefore,Ω is bounded.

Consequently by the steps A, B and using lemma 2.4, we deduce that T has a fixed point which is a solution to (1.1) . Theorem 2.2 is thus proved.

3. Examples

We present two examples to illustrate our main results.

Example 3.1. We begin with the system:

(3.1) ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎨ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎩ D73x1(t)=   x1(t)+x2(t)+x3(t)+D 4 3x1(t)+D 3 2x2(t)+D 5 3x3(t)    9π3  1+x1(t)+x2(t)+x3(t)+D 4 3x1(t)+D 3 2x2(t)+D 5 3x3(t)     + 1 64π2e sin(x 1(t))+sin(x2(t))+sin(x3(t)) et+1 + cos  D43x1(t)  + cosD32x2(t)  − sinD53x3(t)  , t ∈ ]0, 1[ , D94x2(t)= 1 24π3e2t+1  sinD43x1(t)  + sinD32x2(t)  + sinD53x3(t)  + |x1(t)+x2(t)+x3(t)| π+|x1(t)+x2(t)+x3(t)|  + t2 16π2et2+1 ⎛ ⎜⎜⎜⎜

⎜⎜⎝ sin(x1(t))+cos(x2(t))+cos(x3(t))−cos

 D43x1(t)  +sin  D32x2(t)  +sin  D53x3(t) 

e+sin(x1(t))+cos(x2(t))+cos(x3(t))−cos

 D43x1(t)  +sin  D32x2(t)  +sin  D53x3(t)  ⎞ ⎟⎟⎟⎟ ⎟⎟⎠, t ∈ ]0,1[, D83x3(t)= 1 32π ⎛ ⎜⎜⎜⎜

⎜⎜⎝cos(x1(t))+ sin (x2(t))+ sin (x3(t))+   D43x1(t)+D 3 2x2(t)+D 5 3x3(t)     1+D43x1(t)+D 3 2x2(t)+D 5 3x3(t)     ⎞ ⎟⎟⎟⎟ ⎟⎟⎠ + 1 16π(t+e)2 ⎛ ⎜⎜⎜⎜ ⎜⎜⎝sinx1(t)+ sin D 4 3x1(t)+ sin D32x2(t)   x2(t)+x3(t)+D 5 3x3(t)    3πe  1+x2(t)+x3(t)+D 5 3x3(t)     ⎞ ⎟⎟⎟⎟ ⎟⎟⎠, t ∈ ]0,1[ xk(0)= x  k(0)= x  k(1)= 0, k = 1, 2, 3.

For this example, we have:

n= 3, m = 2, α1=73, α2= 94, α3=83, β1= 43, β2=32, β3=53, J = [0, 1] .

On the other hand,

(3.2) f1 1 (t, x1, x2, x3, x4, x5, x6)= |x1+ x2+ x3+ x4+ x5+ x6| 9π3(1+ |x 1+ x2+ x3+ x4+ x5+ x6|) , (3.3) f21(t, x1, x2, x3, x4, x5, x6)= 1 64π2e sin x 1+ sin x2+ sin x3

et+1 + cos x4+ cos x5− sin x6

 ,

(9)

(3.4) f2

1 (t, x1, x2, x3, x4, x5, x6)= 1

24π3e2t+1



sin x4+ sin x5+ sin x6+π + |x|x1+ x2+ x3| 1+ x2+ x3|  , (3.5) f2 2(t, x1, x2, x3, x4, x5, x6)= t 2 16π2et2+1  sin x

1+ cos x2+ cos x3− cos x4+ sin x5+ sin x6

e+ sin x1+ cos x2+ cos x3− cos x4+ sin x5+ sin x6

 , (3.6) f3 1(t, x1, x2, x3, x4, x5, x6)= 1 32π 

cos x1+ sin x2+ sin x3+ |x4+ x5+ x6|

(1+ |x4+ x5+ x6|)  and (3.7) f3 2 (t, x1, x2, x3, x4, x5, x6)= 1 16π (t + e)2 

sin x1+ sin x4+ sin x5+

|x2+ x3+ x6|

3πe (1 + |x2+ x3+ x6|)

 . So, for t∈ [0, 1] and (x1, x2, x3, x4, x5, x6),

 y1, y2, y3, y4, y5, y6  ∈ R6, we have:   f1 1(t, x1, x2, x3, x4, x5, x6)− f11  t, y1, y2, y3, y4, y5, y6 ≤ (3.8) 13x1− y1+13 x2− y2+13x3− y3+ 13 x4− y4+13x 5− y5+13 x6− y6 ,   f1 2(t, x1, x2, x3, x4, x5, x6)− f21  t, y1, y2, y3, y4, y5, y6 ≤ (3.9) 1 64π2e2  x1− y1+ 1 64π2e2  x2− y2+ 1 64π2e2  x3− y3+ 1 64π2e  x4− y4+ 1 64π2e  x5− y5+ 1 64π2e  x6− y6 ,   f2 1(t, x1, x2, x3, x4, x5, x6)− f12  t, y1, y2, y3, y4, y5, y6 ≤ (3.10) 1 24π2ex1− y1+ 1 24π2ex2− y2+ 1 24π2ex3− y3+ 1 24π3ex4− y4+ 1 24π3ex5− y5+ 1 24π3ex6− y6 ,   f2 2(t, x1, x2, x3, x4, x5, x6)− f22  t, y1, y2, y3, y4, y5, y6 ≤ (3.11) 1 16π2  x1− y1+16π12x2− y2+16π12x3− y3+16π12x4− y4+16π12x5− y5+16π12x6− y6 ,   f3 1(t, x1, x2, x3, x4, x5, x6)− f 3 1  t, y1, y2, y3, y4, y5, y6 ≤ (3.12) 1 32πx1− y1 +32π1 x2− y2 +32π1 x3− y3 +32π1 x4− y4 +32π1 x5− y5 +32π1 x6− y6 , and   f3 2(t, x1, x2, x3, x4, x5, x6)− f23  t, y1, y2, y3, y4, y5, y6 ≤ (3.13) 1 16πe2  x1− y1+48π12 e3  x2− y2+48π12 e3  x3− y3+16πe1 2x4− y4+16πe1 2 x5− y5+48π12 e3  x6− y6 . We can take: (3.14) λ1 1  1=  λ1 1  2=  λ1 1  3=  λ1 1  4=  λ1 1  5=  λ1 1  6= 1 9π3,

(10)

(3.15) λ1 2  1=  λ1 2  2=  λ1 2  3= 1 64π2e2,  λ1 2  4=  λ1 2  5=  λ1 2  6= 1 64π2e, (3.16) λ21  1=  λ2 1  2=  λ2 1  3= 1 24π2e,  λ2 1  4=  λ2 1  5=  λ2 1  6= 1 24π3e, (3.17) λ2 2  1=  λ2 2  2=  λ2 2  3=  λ2 2  4=  λ2 2  5=  λ2 2  6= 1 16π2, (3.18) λ3 1  1=  λ3 1  2=  λ3 1  3=  λ3 1  4=  λ3 1  5=  λ3 1  6= 1 32π, and (3.19) λ3 2  1=  λ3 2  4=  λ3 2  5= 1 16πe2,  λ3 2  2=  λ3 2  3=  λ3 2  6= 1 48π2e3. It follows that: (3.20) Σ1= 0.023891, Σ2= 0.044138, Σ3= 0.068076. Since (3.21) Γ (α1+ 1) = 2.778062, Γ (α2+ 1) = 2.549257, Γ (α3+ 1) = 4.012356, (3.22) Γα1− β1+ 1  = 1, Γα2− β2+ 1  = 0.919062, Γα3− β3+ 1  = 1, then it yields that:

O1 = 0.008599, O2= 0.009372, O3= 0.005954, (3.23) O∗1 = 0.023891, O∗2= 0.048025, O∗3= 0.068076, maxO1, O2, O3, O∗1, O∗2, O∗3  < 1.

The condition (2.5) is satisfied. So by Theorem 2.1, we deduce that the system (3.1) has a unique solution on [0, 1].

Example 3.2. To illustrate the second main result, let us consider the system:

(3.24) ⎧ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎨ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎪ ⎪⎩ D94x1(t)= π(t+1) sin  D32x1(t)+D 4 3x2(t)+D 5 4x3(t)  2−cos(x1(t)+x2(t)+x3(t)) + et(t2+1) 2π+cos  x2(t)+D 4 3x2(t)  cos  x3(t)+D 5 4x3(t)  +sin2  x1(t)D32x1(t) , t ∈ ]0, 1[ , D73x2(t)= e 2sin(x 1(t)+x2(t)+x3(t)) 2π+cos  D32x1(t)+D 4 3x2(t)+D 5 4x3(t)  + 3t2cos(x 2(t)+x3(t)) et2+1−cos  x1(t)−D 3 2x1(t)+D 4 3x2(t)+D 5 4x3(t) , t ∈ ]0, 1[ , D52x3(t)= sin(x3(t)) 2e+cox  x1(t)+x2(t)+D 3 2x1(t)+D 4 3x2(t)+D 5 4x3(t)  + cos (x1(t)+ x2(t)+ x3(t)) sin  D32x1(t)+ D43x2(t)+ D54x3(t)  , t ∈ ]0, 1[ , xk(0)= x  k(0)= x  k(1)= 0, k = 1, 2, 3.

(11)

We have: n= 3, m = 2, α1= 94, β1=32;α2= 37, β2=43, α3= 52, β3=54, J = [0, 1] . Since (3.25)  f1 1(t, x1, x2, x3, x4, x5, x6) =   π (t + 1) sin (x + x2− cos (x1+ x2+ x5+ x3)6) ≤ 2π, (3.26)  f1 2 (t, x1, x2, x3, x4, x5, x6) =    e tt2+ 1

2π + cos (x2+ x5) cos (x3+ x6)+ sin2(x1x4)

   ≤πe, (3.27)  f2 1(t, x1, x2, x3, x4, x5, x6) =    e 2sin (x 1+ x2+ x3) 2π + cos (x4+ x5+ x6)    ≤ e 2 2π − 1, (3.28)  f2 2(t, x1, x2, x3, x4, x5, x6) =    3t 2cos (x 2+ x3) et2+1− cos (x 1− x4+ x5+ x6)    ≤e− 13 ,   f3 1(t, x1, x2, x3, x4, x5, x6) =   2e+ cox (x1+ xsin x2+ x3 4+ x5+ x6) ≤ 2e1− 1 and   f3 2(t, x1, x2, x3, x4, x5, x6) = |cos (x1+ x2+ x3) sin (x4+ x5+ x6)| ≤ 1,

then, we can see that the functionsfk i

k=1,2,3

i=1,2 are continuous and bounded on [0, 1] × R 6. So,

by Theorem 2.2, the system (3.24) has at least one solution on [0, 1].

R E F E R E N C E S

1. A.P. Agrawal, M. Benchora and B.A. Slimani: Existence Results For Differential Equations

With Fractional Order And Impulses, Mem. Differential Equations Math. Phys., 44, (2008),

pp., 1-21.

2. A.P. Agrawal, J.A. Tenreiro Machado, J. Sabatier: Fractional Derivatives And Their

Appli-cations, Nonlinear Dynamics, Vol. 38, No. 1-4, (2004), pp., 14-24.

3. A. Anber, S. Belarbi, Z. Dahmani: New Existence And Uniqueness Results For Fractional

Differential Equations, An. St. Univ. Ovidius Constant, (2013), pp., 33-41.

4. C.T.H. Baker, K. Burrage, N.J. Ford: Evolutionary Problems, Journal Of Computational And Applied Mathematics, Vol. 205, No. 2, (2007), pp., 377-427.

5. D. Baleanu, S. Zahra Nazemi and S. Rezapour: The Existence Of Solution For A n

Di-mensional System Of Multiterm Fractional Integrodifferential Equations With Antiperiodic Boundary Value Problems, Abstract and Applied Analysis, Vol (2013), 7 pages.

6. S. Belarbi, Z. Dahmani: Existence Of Solutions For Multi-Points Fractional Evolution

Equa-tions, Appl. Appl. Math., Vol. 9, (2014), pp., 416-427.

7. M. Benchohra, S. Hamani, S.K. Ntouyas: Boundary Value Problems For Differential

Equa-tions With Fractional Order And Nonlocal CondiEqua-tions, Nonlinear Anal., 71, (2009), pp.,

2391-2396.

8. M.E. Bengrine, Z. Dahmani: Boundary Value Problem For Fractional Differential Equations, Int. J. Open Problems Compt. Math., 5(4), (2012), pp., 7-15.

(12)

9. A. Blumen, J. Klafter, R. Hilfer, R. Metzler: Strange Kinetics, Chemical Physics, Vol. 284, No.1, (2002), pp., 15-31, 104-301.

10. Z. Cui. P. Yu, Z. Mao: Existence Of Solutions for Nonlocal Boundary Value Problems Of

Nonlinear Fractional Differential Equations, Advances In Dynamical Systems And

Appli-cations, 7(1), (2012), pp., 31-40.

11. Z. Dahmani, L. Tabharit: Fractional Order Differential Equations Involving Caputo Deriva-tive, Theory And Applications Of Mathematics & Computer Science, 4 (1), (2014), pp., 40-55.

12. M. Gaber, M.G. Brikaa: Existence Results For A Coupled System Of Nonlinear Fractional

Differential Equation With Three Point Boundary Conditions, Journal of Fractional Calculus

And Applications, Vol. 3 (21), (2012), pp., 1-10.

13. R. Gorenflo, F. Mainardi: Fractional Calculus: Integral And Differential Equations Of

Frac-tional Order, Fractals And FracFrac-tional Calculus In Continuum Mechanics. Springer-Verlag

Vienna, (1997), pp., 291-348.

14. R. Hilfer: Applications Of Fractional Calculus In Physics, World Scientific, River Edge, New Jersey, (2000).

15. M. Houas, Z. Dahmani: New Results For A Coupled System Of Fractional Differential

Equations, Ser. Math. Inform., Vol. 28, No. 2, (2013), pp., 133-150.

16. M. Houas, Z. Dahmani: New Fractional Results For A Boundary Value Problem With Caputo

Derivative, Int. J. open Problems Compt. Math., 6(2), (2013), pp., 30-42.

17. M. Houas, Z. Dahmani, M. Benbachir: New Results For A Boundary Value Problem For

Differential Equations Of Arbitrary Order, International Journalof Modern Mathematical

Sciences, 7(2), (2013), pp., 195-211.

18. M. Houas, Z. Dahmani: New Results For A Caputo Boundary Value Problem, American Journal of Computational And Applied Mathematics, 3(3), (2013), pp., 143-161. 19. W.H. Jiang: Solvability For A Coupled System Of Fractional Differential Equations At

Reso-nance, Nonlinear Anal. Real World Appl., 13, (2012), pp., 2285-2292.

20. A.A. Kilbas, S.A. Marzan: Nonlinear Differential Equation With The Caputo Fraction

Deriva-tive In The Space Of Continuously Differentiable Functions, Differ. Equat., 41(1), (2005), pp.,

84-89.

21. M. Li, Y. Liu: Existence And Uniqueness Of Positive Solutions For A Coupled System Of

Nonlinear Fractional Differential Equations, Open Journal Of Applied Sciences, 3, (2013),

pp., 53-61.

22. F. Mainardi: Fractional Calculus: Some Basic Problems In Continum And Statistical

Mechan-ics, Fractals and Fractional Calculus In Continuum MechanMechan-ics, (1999).

23. K.S. Miller, B. Ross: An Introduction To The Fractional Calculus And Fractional Differential

Equations. Wiley, New York, (1993).

24. K.B. Oldham, J. Spanier: The Fractional Calculus, Academic Press, New York, (1974). 25. M.D. Ortigueira, J.A. Tenreiro Machado: Fractional Signal Processing And Applications,

Signal Processing, Vol. 83, No. 11, (2003), pp., 2285-2480.

26. M.D. Ortigueira, J.A. Tenreiro Machado: Fractional Calculus Applications In Signals And

Systems, Signal Processing, Vol. 86, No. 10, (2006), pp., 2503-3094.

27. A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot: Frequency-Band Complex

Noninteger-Differentiator: Characterization And Synthesis. IEEE Transactions On Circuits And Systems

(13)

28. L. Podlubny: Fractional Differential Equations, Academic Press, New York, (1999). 29. Y.A. Rossikhin, M.V. Shitikova: Applications Of Fractional Calculus To Dynamic Problems

Of Linear And Nonlinear Hereditary Mechanics Of Solids, Applied Mechanics Reviews 50,

(1997), pp., 15-67.

30. D.R. Smart: Fixed point Theorems, Cambridge University Press, (1980).

31. L. Sommacal, P. Melchior, A. Oustaloup, J.M. Cabelguen, A.J. Ijspeert: Fractional

Multi-Models Of The Frog Gastrocnemius Muscle, Journal Of Vibration And Control, 14(9-10),

(2008), pp., 1415-1430.

32. J.A. Tenreiro Machado: Fractional Order Systems, Nonlinear Dynamics, Vol. 29, No. 1-4, (2002), pp., 13-23.

33. G.T. Wang, B. Ahmad and L. Zhang: A Coupled System Of Nonlinear Fractional Differential

Equations With Multi Point Fractional Boundary conditions On An Bounded Domain, App.

Anal., Article ID 248709, 2012, (2012), 11 pages.

34. Y.H. Zhang, Z.B. Bai: Existence Of Solutions For Nonlinear Fractional Three Point Boundary

Value Problems At Resonance, J. Appl. Math. Comput., 36, (2011), pp., 417-440.

Zoubir DAHMANI Laboratory LPAM Faculty of SEI

UMAB, University of Mostaganem zzdahmani@yahoo.fr

Amele TA¨IEB Faculty of SEI

Department of Mathematics and Informatics UMAB, University of Mostaganem

Références

Documents relatifs

Algorithms do not drive metabolomics investigation; however the objectives of these investigations can only be achieved by utilizing an appropriate data treatment and analysis

Tableau 17 : Fréquence des étiologies selon le terme de survenue de l’hémorragie Tableau 18 : fréquence des étiologies selon l’abondance de l’hémorragie Tableau 19 :

Keywords Plate theory · Bending-Gradient theory · Heterogeneous plates · Mathematical Justification · Boundary conditions · Existence and uniqueness of solution · Variational

Though no major changes were made to the gamma spectrometry instrumentation of the CET compared with the previous VERDON tests [4], a new gamma device has

Armstrong ​et al ​ report no effect of white light on the activity of Chlamydomonas reinhardtii ​ ( ​Cr ​ ) and ​Clostridium acetobutylicum (​Ca ​

In particular, by modeling the behavior of fiscal policy through a feedback rule similar to monetary Taylor rules, Bohn established a simple, elegant condition on the feedback effect

Changes in the geographical distribution of economic activities, which are in the nature of the growth process, may go hand-to-hand with internal distortions in the structure

(26) In the the proof of this theorem we shall use an extension to viscosity solutions of fully nonlinear systems a maximum principle in narrow domains, proved by Cabre [6] in the