• Aucun résultat trouvé

Pespectives vaccinales

N/A
N/A
Protected

Academic year: 2022

Partager "Pespectives vaccinales"

Copied!
61
0
0

Texte intégral

(1)

Perspectives vaccinales

Odile Launay

Cours d’Automne en Chimiothérapie anti infectieuse et vaccinologie

Veyrier du Lac, 12 octobre 2021

(2)

Liens d’intérêt

• Recherches/essais cliniques : MSD, GSK bio, spmsd, Sanofi Pasteur, Janssen, Pfizer

• Advisory Boards : spmsd, Sanofi Pasteur, Janssen, Pfizer

• Cours, formations : Pfizer, MSD, Sanofi Pasteur

• Aides pour des recherches : MSD, GSK bio, spmsd, Sanofi Pasteur,

Janssen, Pfizer

(3)

Histoire de la

vaccination

(4)

Histoire de la

vaccination

(5)

Histoire de la

vaccination

(6)

Histoire de la

vaccination

(7)

Histoire de la

vaccination

(8)

Histoire de la

vaccination

(9)

Evolution des technologies vaccinales

1790 1880 1890 1920 1930 1950 1960 1970 1980 1990 2000 2010 2020 2021 2022

Smallpox (1798)

Rabies (1885) Yellow Fever (1935)

Tuberculosis (1927)

Oral Polio (1963) Measles (1963) Mumps (1967)

Rubella (1969)

1stGen Rotavirus (1999) Cholera (1994)

Adenovirus (1980) Varicella (1995) Typhoid (1989)

Typhoid (1896) Cholera (1896) Plague (1897)

Pertussis (1926) Typhus (1926)

Influenza (1936)

IM Polio (1955)

Tick-Born Encephalitis (1981) Rabies (1980)

Hep A (1996) Japanese Encephalitis (1992)

Cholera WC-rBS(1991)

Cholera WC Only (2009)

PCV7(2000) Acellular Pertussis (1996)

Anthrax PS (1970) Tetanus Toxoid (1926)

Diphtheria Toxoid (1923)

Plasma Derived Hep B (1981) Men PS (1974)

Typhoid (Vi) PS (1994)

Pneumo PS (1977)

Men Conj (2005) Hib PS (1985)

PCV13 (2010) Hib conj (1992)

Hep B Surface Antigen (1986) Cholera Toxin B (1993)

Lyme OspA (1998)

4V HPV (2006) 9V HPV (2018) 4V-MnB (2014) Men ACWY Conj (2010)

2V-MnB (2017)

Ebola (2020) Hep E( 2012)

Dengue(2018) Shingles (2006)

Live Attenuated

Inactivated/Killed Whole Organism Protein or Polysaccharide Genetically Engineered Engineered viruses

Covid19

ARNm

(10)

Couvertures

vaccinales

(11)

Vaccination COVID 19 dans le

monde (au 29 septembre 2021)

• 45% de la population mondiale vaccinée 1 dose, MAIS seulement 2,3% dans les pays à faibles

revenus

• Au total 6,2 milliards de doses administrées, actuellement 26,02 millions par jour

11

https://ourworldindata.org/covid-vaccinations/

(12)

Impact des

vaccins

(13)

Innovation vaccinale

(14)

Innovation vaccinale

(15)

Paludisme

• En 2019:

• 229 millions de cas / an dans le monde

• 409 000 décès/an

• Décès > 260 000 enfants

africains < 5 ans chaque

année

(16)

Mosquirix™: RTS,S/AS01

• Mosquirix : vaccin développé par GSK et le Walter reed

• Vaccin actif à la phase pré erythrocytaire de l’infection

RTS,S: vaccin de type VLP: vaccine like particule Protéine de surface du sporozoïte de Plasmodium

falciparum (circumsporozoïte), produite dans levures et AgHBs adjuvanté avec AS01 (liposomes, QS21, saponine) Protection contre le paludisme : 56% à un an, 36% sur une durée médiane de 48 mois

• Programme d’implémentation pilote (Malawi,Ghana,

Kenya) en cours

(17)

Mosquirix™:

RTS,S/AS01

• 6861 nourrissons agés de 5-17 mois

• Mali et Burkina Faso

• 3 bras en dble aveugle:

• Chimioprophylaxie (sulfadoxine–

pyrimethamine and amodiaquine)

• Vaccination une dose chaque année,

• combinaison des 2

Suivi pendant 3 ans

• Non infériorité du vaccin vs chimioprophylaxie seule

• Supériorité de la combinaison vs les 2

autres bras

(18)

• Vaccin actif à la phase pré erythrocytaire de l’infection

R21: vaccin VLP, protéine de surface du sporozoïte de Plasmodium falciparum (circumsporozoïte), produite dans Hansenula polymorpha (Serum Institute of

India), et AgHBs

adjuvanté avec Matrix M (adjuvant Novavax) (saponine)

• Nourrissons 5-17 mois

• 2 bras vaccins (Adjuvant a 25 et 50 microgrammes) vs vaccin rabique 3 doses et rappel à un an

• Protection contre le paludisme à 6 mois : 74% (95%

CI 63–82) groupe 1,77% (67–84) groupe 2

A 1 an, 77% (67–84) groupe 1.

Vaccin palu

R21/Matrix-M

(19)

Vaccin palu

R21/Matrix-M

(20)

Innovation vaccinale

(21)

Tuberculose

• Malgé vaccination universelle nnés et nourrissons dans les pays endemiques, la tuberculose est la 1ere case de décès par infection dans la monde:

• environ 1.4 millions de décès par an

• ¼ de la population mondiale est infecté 5-10%

vontdevelopper la tuberculose maladie

• Cause majeure d’AB resistance: en 2019, 3.3% des nouveaux cas et 17,7% des cas prealablement

traités

(22)

Vaccin Tuberculose

(23)

Vaccin Tuberculose

(24)

24

Vaccin tuberculose

Kenya, AFS, Zambie Aout 2014 – Nov 2015

Financement GSK

Protéine de fusion recombinante M72 +

Adjuvant : AS01

Tait et al., NEJM 2019 PMID 31661198

T h e ne w e ngl a nd jou r na l o f m e dicine

n engl j med 381;25 nejm.org December 19, 2019 2429

The authors’ full names, academic de- grees, and affiliations are listed in the Appendix. Address reprint requests to Dr. Van Der Meeren at GlaxoSmithKline, 20 Fleming Ave., 1300 Wavre, Belgium, or at olivier . x . van-der-meeren@ gsk . com.

Drs. Tait and Hatherill and Drs. Wilkinson and Roman contributed equally to this article.

This article was published on October 29, 2019, at NEJM.org.

N Engl J Med 2019;381:2429-39.

DOI: 10.1056/NEJMoa1909953 Copyright © 2019 Massachusetts Medical Society.

BACKGROUND

Results of an earlier analysis of a trial of the M72/AS01

E

candidate vaccine against Myco- bacterium tuberculosis showed that in infected adults, the vaccine provided 54.0% protection against active pulmonary tuberculosis disease, without evident safety concerns. We now report the results of the 3-year final analysis of efficacy, safety, and immunogenicity.

METHODS

From August 2014 through November 2015, we enrolled adults 18 to 50 years of age with M. tuberculosis infection (defined by positive results on interferon-γ release assay) without evidence of active tuberculosis disease at centers in Kenya, South Africa, and Zambia. Participants were randomly assigned in a 1:1 ratio to receive two doses of either M72/AS01

E

or placebo, administered 1 month apart. The primary objective was to evaluate the efficacy of M72/AS01

E

to prevent active pulmonary tuberculosis disease according to the first case definition (bacteriologically confirmed pulmonary tubercu- losis not associated with human immunodeficiency virus infection). Participants were followed for 3 years after the second dose. Participants with clinical suspicion of tuber- culosis provided sputum samples for polymerase-chain-reaction assay, mycobacterial culture, or both. Humoral and cell-mediated immune responses were evaluated until month 36 in a subgroup of 300 participants. Safety was assessed in all participants who received at least one dose of M72/AS01

E

or placebo.

RESULTS

A total of 3575 participants underwent randomization, of whom 3573 received at least one dose of M72/AS01

E

or placebo, and 3330 received both planned doses. Among the 3289 participants in the according-to-protocol efficacy cohort, 13 of the 1626 partici- pants in the M72/AS01

E

group, as compared with 26 of the 1663 participants in the placebo group, had cases of tuberculosis that met the first case definition (incidence, 0.3 vs. 0.6 cases per 100 person-years). The vaccine efficacy at month 36 was 49.7%

(90% confidence interval [CI], 12.1 to 71.2; 95% CI, 2.1 to 74.2). Among participants in the M72/AS01

E

group, the concentrations of M72-specific antibodies and the frequen- cies of M72-specific CD4+ T cells increased after the first dose and were sustained throughout the follow-up period. Serious adverse events, potential immune-mediated diseases, and deaths occurred with similar frequencies in the two groups.

CONCLUSIONS

Among adults infected with M. tuberculosis, vaccination with M72/AS01

E

elicited an im- mune response and provided protection against progression to pulmonary tuberculosis disease for at least 3 years. (Funded by GlaxoSmithKline Biologicals and Aeras; Clinical- Trials.gov number, NCT01755598.)

ABS TR ACT

Final Analysis of a Trial of M72/AS01 E Vaccine to Prevent Tuberculosis

D.R. Tait, M. Hatherill, O. Van Der Meeren, A.M. Ginsberg, E. Van Brakel, B. Salaun, T.J. Scriba, E.J. Akite, H.M. Ayles, A. Bollaerts, M.-A. Demoitié, A. Diacon, T.G. Evans, P. Gillard, E. Hellström, J.C. Innes, M. Lempicki,

M. Malahleha, N. Martinson, D. Mesia Vela, M. Muyoyeta, V. Nduba, T.G. Pascal, M. Tameris, F. Thienemann, R.J. Wilkinson, and F. Roman

Original Article

The New England Journal of Medicine

Downloaded from nejm.org at INSERM DISC DOC on August 4, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

(25)

Vaccin tuberculose

25

Tait et al., NEJM 2019 PMID 31661198

Efficacité

T h e ne w e ngl a nd jou r na l o f m e dicine

n engl j med 381;25 nejm.org December 19, 2019 2429

The authors’ full names, academic de- grees, and affiliations are listed in the Appendix. Address reprint requests to Dr. Van Der Meeren at GlaxoSmithKline, 20 Fleming Ave., 1300 Wavre, Belgium, or at olivier . x . van-der-meeren@ gsk . com.

Drs. Tait and Hatherill and Drs. Wilkinson and Roman contributed equally to this article.

This article was published on October 29, 2019, at NEJM.org.

N Engl J Med 2019;381:2429-39.

DOI: 10.1056/NEJMoa1909953 Copyright © 2019 Massachusetts Medical Society.

BACKGROUND

Results of an earlier analysis of a trial of the M72/AS01

E

candidate vaccine against Myco- bacterium tuberculosis showed that in infected adults, the vaccine provided 54.0% protection against active pulmonary tuberculosis disease, without evident safety concerns. We now report the results of the 3-year final analysis of efficacy, safety, and immunogenicity.

METHODS

From August 2014 through November 2015, we enrolled adults 18 to 50 years of age with M. tuberculosis infection (defined by positive results on interferon-γ release assay) without evidence of active tuberculosis disease at centers in Kenya, South Africa, and Zambia. Participants were randomly assigned in a 1:1 ratio to receive two doses of either M72/AS01

E

or placebo, administered 1 month apart. The primary objective was to evaluate the efficacy of M72/AS01

E

to prevent active pulmonary tuberculosis disease according to the first case definition (bacteriologically confirmed pulmonary tubercu- losis not associated with human immunodeficiency virus infection). Participants were followed for 3 years after the second dose. Participants with clinical suspicion of tuber- culosis provided sputum samples for polymerase-chain-reaction assay, mycobacterial culture, or both. Humoral and cell-mediated immune responses were evaluated until month 36 in a subgroup of 300 participants. Safety was assessed in all participants who received at least one dose of M72/AS01

E

or placebo.

RESULTS

A total of 3575 participants underwent randomization, of whom 3573 received at least one dose of M72/AS01

E

or placebo, and 3330 received both planned doses. Among the 3289 participants in the according-to-protocol efficacy cohort, 13 of the 1626 partici- pants in the M72/AS01

E

group, as compared with 26 of the 1663 participants in the placebo group, had cases of tuberculosis that met the first case definition (incidence, 0.3 vs. 0.6 cases per 100 person-years). The vaccine efficacy at month 36 was 49.7%

(90% confidence interval [CI], 12.1 to 71.2; 95% CI, 2.1 to 74.2). Among participants in the M72/AS01

E

group, the concentrations of M72-specific antibodies and the frequen- cies of M72-specific CD4+ T cells increased after the first dose and were sustained throughout the follow-up period. Serious adverse events, potential immune-mediated diseases, and deaths occurred with similar frequencies in the two groups.

CONCLUSIONS

Among adults infected with M. tuberculosis, vaccination with M72/AS01

E

elicited an im- mune response and provided protection against progression to pulmonary tuberculosis disease for at least 3 years. (Funded by GlaxoSmithKline Biologicals and Aeras; Clinical- Trials.gov number, NCT01755598.)

ABS TR ACT

Final Analysis of a Trial of M72/AS01 E Vaccine to Prevent Tuberculosis

D.R. Tait, M. Hatherill, O. Van Der Meeren, A.M. Ginsberg, E. Van Brakel, B. Salaun, T.J. Scriba, E.J. Akite, H.M. Ayles, A. Bollaerts, M.-A. Demoitié, A. Diacon, T.G. Evans, P. Gillard, E. Hellström, J.C. Innes, M. Lempicki,

M. Malahleha, N. Martinson, D. Mesia Vela, M. Muyoyeta, V. Nduba, T.G. Pascal, M. Tameris, F. Thienemann, R.J. Wilkinson, and F. Roman

Original Article

The New England Journal of Medicine

Downloaded from nejm.org at INSERM DISC DOC on August 4, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

Immunogénicité

N = 244

Sécurité

Nombre EIG similaire dans les 2 groupes

n engl j med 381;25 nejm.org December 19, 2019

2437

Trial of M72/AS01E Vaccine to Prevent Tuberculosis

T cells) (Fig. 3D), whereas there was little differ- ence between the two countries in the frequen- cies of T cells that expressed interferon-γ alone or interferon-γ in addition to other immune markers (Fig. 3E). The median frequencies of CD4+

T cells at month 2 that expressed interferon-γ

alone were 1134.0 and 450.0 per million CD4+

T cells in South Africa and Kenya, respectively.

Results of a post hoc analysis of the frequency of M72-specific CD4+ T cells expressing inter- feron-γ alone or interferon-γ in addition to other immune markers at month 2 — stratified ac-

GeometricMeanAnti-M72IgGAntibody Concentration(ELISAunits/ml) 1000

100

10

1

Randomization 2 12 24 36

Month Month

C

M72-Specific CD4+ T Cells in the M72/AS01E Group According to Expression of Immune Markers

D

M72-Specific CD4+ T Cells According to Country

A

Anti-M72 IgG Antibodies

M72/AS01E Placebo

MedianT-CellFrequency (cells/millionCD4+Tcells) 1800

1400 1600

1200 1000

600 400 800

200 0 Interferon-γ TNF-α Interleukin-2 CD40L

Month 2 Month 12 Month 24 Month 36

Randomization

MedianPolypositiveT-CellFrequency (cells/millionCD4+Tcells) 20,000 15,000 12,500 10,000

5,000

0

Randomization 2 12 24 36

B

M72-Specific Polypositive CD4+ T Cells

M72/AS01E Placebo

Randomization 2 12 24 36

Month Month

Kenya South Africa

MedianT-CellFrequency (cells/millionCD4+Tcells) MedianT-CellFrequency (cells/millionCD4+Tcells)

25,000

24,000 16,000 14,000 12,000 10,000

6,000 4,000 2,000 8,000

0

25,000

24,000 16,000 14,000 12,000 10,000

6,000 4,000 2,000 8,000

0

Randomization 2 12 24 36

E

M72-Specific CD4+ T Cells Expressing Interferon-γ Kenya South Africa Overall

+ − + + + − − − + + + − − − +

+ + − + + − + + − − + − − + −

+ + + − + + − + − + − − + − −

+ + + + − + + − + − − + − − −

Median Max Q3 Min Q1

Median Max Q3 Min Median Q1

Max Q3 Min Q1 1.6

547.0

41.5 30.6 27.0

1.6 1.6 1.7 1.6 1.6

Assay cutoff: 2.8

The New England Journal of Medicine

Downloaded from nejm.org at INSERM DISC DOC on August 4, 2020. For personal use only. No other uses without permission.

Copyright © 2019 Massachusetts Medical Society. All rights reserved.

(26)

Innovation vaccinale

(27)

Vaccin Dengue

• 390 millions de cas par an

• 500 000 hospitalisations

• Environ 20 000 deces

• Transmis par Aedes aegypti et Aedes albopictus

• 4 serotypes différents

• Les infections secondaires souvent plus graves

• 1 vaccin commercialisé

Dengvaxia

(28)

Vaccin Dengue

(29)

Vaccin Dengue

(30)

30

Vaccin Dengue

Biswal et al., Lancet 2020

EV IC95% EV IC95%

Globale Dengue 73% [67-79]

Globale Dengue Grave 90% [83-95]

Séropositifs 76% [69-82]

Séronégatifs 66% [49-78]

DENV2 95% [90-98]

DENV1 70% [55-80]

DENV3 49% [27-64]

DENV4 51% [-69-86]

Articles

www.thelancet.com Vol 395 May 2, 2020 1423

Efficacy of a tetravalent dengue vaccine in healthy children aged 4–16 years: a randomised, placebo-controlled,

phase 3 trial

Shibadas Biswal*, Charissa Borja-Tabora*, Luis Martinez Vargas, Hector Velásquez, Maria Theresa Alera, Victor Sierra,

Edith Johana Rodriguez-Arenales, Delia Yu, V Pujitha Wickramasinghe, Edson Duarte Moreira Jr, Asvini D Fernando, Dulanie Gunasekera, Pope Kosalaraksa, Felix Espinoza, Eduardo López-Medina, Lulu Bravo, Suely Tuboi, Yanee Hutagalung, Pedro Garbes, Ian Escudero, Martina Rauscher, Svetlana Bizjajeva, Inge LeFevre, Astrid Borkowski, Xavier Saez-Llorens*, Derek Wallace*, for the TIDES study group†

Summary

Background A substantial unmet need remains for safe and effective vaccines against dengue virus disease, particularly for individuals who are dengue-naive and those younger than 9 years. We aimed to assess the efficacy, safety, and immunogenicity of a live attenuated tetravalent dengue vaccine (TAK-003) in healthy children aged 4–16 years.

Methods We present data up to 18 months post-vaccination from an ongoing phase 3, randomised, double-blind trial of TAK-003 in endemic regions of Asia and Latin America (26 medical and research centres across Brazil, Colombia, Dominican Republic, Nicaragua, Panama, Philippines, Sri Lanka, and Thailand). Healthy children aged 4–16 years were randomly assigned 2:1 (stratified by age and region) to receive two doses of TAK-003 or two doses of placebo, 3 months apart. Investigators, participants and their parents or guardians, and sponsor representatives advising on trial conduct were masked to trial group assignments. Participants presenting with febrile illness were tested for virologically confirmed dengue (VCD) by serotype-specific RT-PCR. In timeframes beginning 30 days post-second dose, the primary endpoint (overall vaccine efficacy) was assessed in the first 11 months, and the secondary endpoints (efficacy by baseline serostatus, serotype, hospitalised dengue, and severe dengue) in the first 17 months. This study is registered with ClinicalTrials.gov, NCT02747927.

Findings 20 099 participants were randomly assigned and vaccinated between Sept 7, 2016, and Aug 18, 2017;

19 021 (94·6%) were included in the per protocol analysis, and 20 071 (99·9%) in the safety set. The primary endpoint was achieved with an overall vaccine efficacy of 80·2% (95% CI 73·3 to 85·3; 61 cases of VCD in the TAK-003 group vs 149 cases of VCD in the placebo group). In the secondary endpoint assessment timeframe, an overall vaccine efficacy of 73·3% (95% CI 66·5 to 78·8) was observed. Analysis of secondary endpoints showed efficacies of 76·1%

(95% CI 68·5 to 81·9) in individuals who were seropositive at baseline, 66·2% (49·1 to 77·5) in individuals who were seronegative at baseline, 90·4% (82·6 to 94·7) against hospitalised dengue, and 85·9% (31·9 to 97·1) against dengue haemorrhagic fever. Efficacy varied by individual serotypes (DENV 1, 69·8% [95% CI 54·8 to 79·9]; DENV 2, 95·1%

[89·9 to 97·6]; DENV 3, 48·9% [27·2 to 64·1]; DENV 4, 51·0% [–69·4 to 85·8]). Cumulative rates of serious adverse events were similar in TAK-003 (4·0%) and placebo (4·8%) recipients, and were consistent with expected medical disorders in the study population. Infection was the most frequent reason leading to serious adverse events.

20 participants (<0·1% of the safety set) were withdrawn from the trial due to 21 adverse events by the end of part two;

14 of these participants received TAK-003 and six received placebo.

Interpretation TAK-003 was well tolerated and efficacious against symptomatic dengue in children regardless of serostatus before immunisation. Vaccine efficacy varied by serotype, warranting continued follow-up to assess longer- term vaccine performance.

Funding Takeda Vaccines.

Copyright © 2020 Elsevier Ltd. All rights reserved.

Introduction

Almost half of the global population live in dengue- endemic areas, with the highest burden of disease observed in the Americas and Asia.1–4 According to one estimate, 390 million cases of dengue infection occur annually and 96 million of those manifest clinically.1,2 Dengue—a leading cause of hospitalisation and death among children and adults in most Asian and Latin

American countries—is characterised by periodic outbreaks, which have a substantial effect on human health and on global and national economies.5 Dengue is caused by four virus serotypes (DENV 1–4), which are transmitted by mosquito vectors.6 A tetravalent dengue vaccine (CYD-TDV; Dengvaxia, Sanofi Pasteur, Lyon, France) is approved in several endemic countries for individuals aged 9 years and older who have evidence of

Lancet 2020; 395: 1423–33 Published Online March 17, 2020 https://doi.org/10.1016/

S0140-6736(20)30414-1 See Comment page 1402 See Articles page 1434

*Authors share first and last place authorship equally

†Collaborators are listed in the appendix

Takeda Vaccines, Boston, MA, USA (S Biswal MD, P Garbes MD, D Wallace MBBS); Research Institute For Tropical Medicine, Muntinlupa, Philippines (C Borja-Tabora MD); Centro de Atención e Investigación Médica, Dominicana, Santo Domingo, Dominican Republic (L Martinez Vargas MD);

Centro de Atención e Investigación Médica, Acacias, Colombia (H Velásquez MD);

Philippines-Armed Forces Research Institute of Medical Sciences Virology Research Unit, Cebu City, Philippines (M Theresa Alera MD); Centro de Atención e Investigación Médica, Yopal, Colombia (V Sierra MD); Centro de Atención e Investigación Médica, Aguazul, Colombia (E Johana Rodriguez- Arenales MD); De La Salle Medical and Health Sciences Institute, Dasmariñas, Philippines (D Yu MD);

University of Colombo, Colombo, Sri Lanka (V P Wickramasinghe MD);

Associação Obras Sociais Irmã Dulce Hospital Santo Antônio and Oswaldo Cruz Foundation, Bahia, Brazil

(Prof E Duarte Moreira Jr MD);

Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka (Prof A D Fernando MD); Faculty of Medical Sciences, University of Sri Jayawardenenpura, Gangodawila, Sri Lanka

26 centres,

8 pays (47% Asie, 53 Am Latine) N= 20 100, 2:1

2 doses TAK 003 ou Placebo (J1, M3) Suivi 18 mois

Efficacité similaire en fonction statut

sero +/- pour DENV1 et 2

(31)

31

Vaccin Dengue

Biswal et al., Lancet 2020

EV IC95% EV IC95%

Globale Dengue 73% [67-79]

Globale Dengue Grave 90% [83-95]

Séropositifs 76% [69-82]

Séronégatifs 66% [49-78]

DENV2 95% [90-98]

DENV1 70% [55-80]

DENV3 49% [27-64]

DENV4 51% [-69-86]

Articles

www.thelancet.com Vol 395 May 2, 2020 1423

Efficacy of a tetravalent dengue vaccine in healthy children aged 4–16 years: a randomised, placebo-controlled,

phase 3 trial

Shibadas Biswal*, Charissa Borja-Tabora*, Luis Martinez Vargas, Hector Velásquez, Maria Theresa Alera, Victor Sierra,

Edith Johana Rodriguez-Arenales, Delia Yu, V Pujitha Wickramasinghe, Edson Duarte Moreira Jr, Asvini D Fernando, Dulanie Gunasekera, Pope Kosalaraksa, Felix Espinoza, Eduardo López-Medina, Lulu Bravo, Suely Tuboi, Yanee Hutagalung, Pedro Garbes, Ian Escudero, Martina Rauscher, Svetlana Bizjajeva, Inge LeFevre, Astrid Borkowski, Xavier Saez-Llorens*, Derek Wallace*, for the TIDES study group†

Summary

Background A substantial unmet need remains for safe and effective vaccines against dengue virus disease, particularly for individuals who are dengue-naive and those younger than 9 years. We aimed to assess the efficacy, safety, and immunogenicity of a live attenuated tetravalent dengue vaccine (TAK-003) in healthy children aged 4–16 years.

Methods We present data up to 18 months post-vaccination from an ongoing phase 3, randomised, double-blind trial of TAK-003 in endemic regions of Asia and Latin America (26 medical and research centres across Brazil, Colombia, Dominican Republic, Nicaragua, Panama, Philippines, Sri Lanka, and Thailand). Healthy children aged 4–16 years were randomly assigned 2:1 (stratified by age and region) to receive two doses of TAK-003 or two doses of placebo, 3 months apart. Investigators, participants and their parents or guardians, and sponsor representatives advising on trial conduct were masked to trial group assignments. Participants presenting with febrile illness were tested for virologically confirmed dengue (VCD) by serotype-specific RT-PCR. In timeframes beginning 30 days post-second dose, the primary endpoint (overall vaccine efficacy) was assessed in the first 11 months, and the secondary endpoints (efficacy by baseline serostatus, serotype, hospitalised dengue, and severe dengue) in the first 17 months. This study is registered with ClinicalTrials.gov, NCT02747927.

Findings 20 099 participants were randomly assigned and vaccinated between Sept 7, 2016, and Aug 18, 2017;

19 021 (94·6%) were included in the per protocol analysis, and 20 071 (99·9%) in the safety set. The primary endpoint was achieved with an overall vaccine efficacy of 80·2% (95% CI 73·3 to 85·3; 61 cases of VCD in the TAK-003 group vs 149 cases of VCD in the placebo group). In the secondary endpoint assessment timeframe, an overall vaccine efficacy of 73·3% (95% CI 66·5 to 78·8) was observed. Analysis of secondary endpoints showed efficacies of 76·1%

(95% CI 68·5 to 81·9) in individuals who were seropositive at baseline, 66·2% (49·1 to 77·5) in individuals who were seronegative at baseline, 90·4% (82·6 to 94·7) against hospitalised dengue, and 85·9% (31·9 to 97·1) against dengue haemorrhagic fever. Efficacy varied by individual serotypes (DENV 1, 69·8% [95% CI 54·8 to 79·9]; DENV 2, 95·1%

[89·9 to 97·6]; DENV 3, 48·9% [27·2 to 64·1]; DENV 4, 51·0% [–69·4 to 85·8]). Cumulative rates of serious adverse events were similar in TAK-003 (4·0%) and placebo (4·8%) recipients, and were consistent with expected medical disorders in the study population. Infection was the most frequent reason leading to serious adverse events.

20 participants (<0·1% of the safety set) were withdrawn from the trial due to 21 adverse events by the end of part two;

14 of these participants received TAK-003 and six received placebo.

Interpretation TAK-003 was well tolerated and efficacious against symptomatic dengue in children regardless of serostatus before immunisation. Vaccine efficacy varied by serotype, warranting continued follow-up to assess longer- term vaccine performance.

Funding Takeda Vaccines.

Copyright © 2020 Elsevier Ltd. All rights reserved.

Introduction

Almost half of the global population live in dengue- endemic areas, with the highest burden of disease observed in the Americas and Asia.1–4 According to one estimate, 390 million cases of dengue infection occur annually and 96 million of those manifest clinically.1,2 Dengue—a leading cause of hospitalisation and death among children and adults in most Asian and Latin

American countries—is characterised by periodic outbreaks, which have a substantial effect on human health and on global and national economies.5 Dengue is caused by four virus serotypes (DENV 1–4), which are transmitted by mosquito vectors.6 A tetravalent dengue vaccine (CYD-TDV; Dengvaxia, Sanofi Pasteur, Lyon, France) is approved in several endemic countries for individuals aged 9 years and older who have evidence of

Lancet 2020; 395: 1423–33 Published Online March 17, 2020 https://doi.org/10.1016/

S0140-6736(20)30414-1 See Comment page 1402 See Articles page 1434

*Authors share first and last place authorship equally

†Collaborators are listed in the appendix

Takeda Vaccines, Boston, MA, USA (S Biswal MD, P Garbes MD, D Wallace MBBS); Research Institute For Tropical Medicine, Muntinlupa, Philippines (C Borja-Tabora MD); Centro de Atención e Investigación Médica, Dominicana, Santo Domingo, Dominican Republic (L Martinez Vargas MD);

Centro de Atención e Investigación Médica, Acacias, Colombia (H Velásquez MD);

Philippines-Armed Forces Research Institute of Medical Sciences Virology Research Unit, Cebu City, Philippines (M Theresa Alera MD); Centro de Atención e Investigación Médica, Yopal, Colombia (V Sierra MD); Centro de Atención e Investigación Médica, Aguazul, Colombia (E Johana Rodriguez- Arenales MD); De La Salle Medical and Health Sciences Institute, Dasmariñas, Philippines (D Yu MD);

University of Colombo, Colombo, Sri Lanka (V P Wickramasinghe MD);

Associação Obras Sociais Irmã Dulce Hospital Santo Antônio and Oswaldo Cruz Foundation, Bahia, Brazil

(Prof E Duarte Moreira Jr MD);

Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka (Prof A D Fernando MD); Faculty of Medical Sciences, University of Sri Jayawardenenpura, Gangodawila, Sri Lanka

26 centres,

8 pays (47% Asie, 53 Am Latine) N= 20 100, 2:1

2 doses TAK 003 ou Placebo (J1, M3) Suivi 18 mois

Efficacité similaire en fonction statut

sero +/- pour DENV1 et 2

(32)

Innovation vaccinale

(33)

Vaccin CMV

(34)

Innovation vaccinale

(35)

Vaccin VIH

(36)

Vaccin VIH

• Essai HVTN 702

• Combinaison vaccin vectorisé ALVAC M0, M1,+ protéine recombinante GP120 clade C adjuvanté MF59 M3, M6, M12, M18

• 5404 participants (70% femmes), phase 2b-3,

• Afrique du sud

• Analyse intermédiaire M24:

inefficacité, 138 cas dans le

groupe vaccin, 133 dans le groupe placebo

• Arret de l’essai

(37)

Vaccin VIH

• Analyse par sous groupe

• Pas d’efficacité selon le sexe

• Pas d’efficacité selon l’âge de

vaccination

(38)
(39)

VRS

39

•Principale cause virale d’infection respiratoire sévère et d’hospitalisation du jeune enfant

•> 60% des nourrissons avant l’âge de 1 an, 100% avant l’âge de 2 ans

•Pic d’hospitalisation chez le nourrisson entre 2 et 3 mois

•Risque d’infection sévère chez l’enfant jusqu’à l’âge de 5 ans

•Nourrissons à risque: prématurité, âge < 6mois, co morbidité cardiaque ou pulmonaire

•Pas d’immunité persistance, ré infection au cours de la vie tous les 3-5 ans

•Sévérité chez les personnes âgées et fragiles (co morbidités cardiaques ou pulmonaires) et en cas de déficit immunitaire portant sur l’immunité cellulaire CD8 (DCS, allogreffe de moelle, transplantation rénale ou

sujets âgés)

(40)

Chez l’enfant de moins de 5 ans dans le Monde en 2015

- 33 millions de cas - 3,2 millions

d’hospitalisations - 118 200 décès

VRS

(41)

Chez l’adulte:

- 10 000 décès par an aux USA chez l’adulte de plus de 65 ans - Autres terrains à risque:

- Immunodéprimés - BPCO

VRS

(42)

Les cibles pour un vaccin anti VRS

(43)
(44)

44

• Vaccin nanoparticule (Novavax) Protein F VRS

• Vaccination 2:1 vs placebo

• Femmes enceintes 28SA et 36 SA

• Suivi enfants jusqu’à M6 pour l’efficacité 1 an pour la sécurité

• Critère principal: infection respiratoire basse avant 3 mois

4636 femmes incluses`

87 sites dans le Monde

Arret du developpement efficacité insuffisante

Vaccin VRS

(45)

45

• Nirsevimab (SP/AZ)

• IgG1 kappa monoclonale

• Proteine recombinante

dirigée contre un épitope conservé présent sur la protéine de fusion du VRS

½ vie prolongée permettant une injection couvrant la période de circulation du VRS (5 mois)

• Une injection chez des nourrissons nés prematurés

• Randomisation 2:1 (969:484)

• Efficacité:

• réduction de 70% des infections respiratoires basses

• 78% des infections respiratoires basses hospitaliées

Ac monoclonaux VRS

(46)

46

• Essai de phase 2b ‘challenge’

• Volontaires randomisés en 3 groupes : - vaccin typhoide Vi polysaccharides (n=37) - vaccin Vi conjugué (tétanos toxoid) (n=41) - vaccin méningo conjugué ACYW (n=34)

1 dose 25 microgrammes

• A M1: challenge oral par 1-5 10 4 CFU S typhi Quailes strain

• Hémoculture tous les jours pdt 2 semaines après challenge

• Antibiothérapie systématique à J14

• Critère ppal: proportion de participants

développant une typhoïde (fièvre > 38°C pdt plus de 12h ou bactériémie)

Résultats en terme d’efficacité:

54.6% (95%CI: 26.8-71.8) vaccin conjugué 52.0% ((95%CI: 23.2-70.0): non conjugué

En analyse post hoc: fièvre + bactériémie, supériorité du vaccin conjugué 87.1% vs 42.7%

Vaccin typhoïde

(47)

Vaccin typhoïde conjugué

47

Népal

Nov 2017 – Avril 2018

Financement : Gates Foundation

Typbar-TCV

Shakya M et al. N Engl J Med. 2019 Dec

5;381(23):2209-2218 .

(48)

Vaccin typhoide conjugué phase 3

• Essai de phase 3, randomisé, contrôlé réalisé au Népal, en double aveugle

• Enfants âgés de 9 mois et 16 ans, ratio 1:1 vaccin typho¨de conjugué vs Men A

conjugué

• Objectif ppal: fièvre typhoïde confirmée (hémoculture+)

• 20 019 enfants: 10,005 TCV; 10,014 MenA vaccine

• Fièvre typhoïde confirmée: 7 (79 cas/

100,000 personne-années) vs 38 (428 cas / 100,000 personne-années)

• Efficacité vaccinale :

81.6% (IC95%: 58.8; 91.8; P<0.001)

Shakya M et al. N Engl J Med. 2019 Dec

5;381(23):2209-2218 .

(49)

Vaccin typhoide conjugué phase 3

• Essai de phase 3, randomisé, contrôlé réalisé au Malawi, en double aveugle

• Enfants âgés de 9 mois et 12 ans, ratio 1:1 vaccin typhoïde conjugué vs Men A

conjugué

• Objectif ppal: fièvre typhoïde confirmée (hémoculture+)

• 28 130 enfants

• Fièvre typhoïde confirmée: 12 (46,9 cas/

100,000 personne-années) vs 62 (243 cas / 100,000 personne-années)

• Efficacité vaccinale ITT :

83.7% (IC95%: 68,1; 91.6)

(50)

Vaccins et antibioresistance

(51)

Maladies infectieuses émergentes et développement vaccinal

Bernasconi V et al, 2020 51

• CEPI: vaccins prioritaires : Ebola, Lassa, MERS

Cov, Nipah , fièvre de la Vallée du Rift,

Chikungunya

• Soutien pour le

développement de plateformes

technologiques pouvant

être utilisées rapidement

en cas d’émergence

(52)

Vaccins COVID-19 de ’première génération’:

données des essais de phase 3

• Efficacité précoce (souche originale, formes symptomatiques)

• > 90% pour les vaccins ARNm après 2 doses :

• 95% (vaccin Pfizer BioNtech)

• 94,1% (vaccin Moderna )

48% (vaccin Curevac)

Publications scientifiques des essais de Phase 3

(53)

Vaccins COVID-19 de ’première génération’:

données des essais de phase 3

• Efficacité précoce (souche originale, formes symptomatiques)

• > 90% pour les vaccins ARNm après 2 doses :

• 95% (vaccin Pfizer BioNtech)

• 94,1% (vaccin Moderna )

48% (vaccin Curevac)

• 70% pour les vaccins vectorisés adénovirus

• 74% (vaccin Astra Zeneca)

• 67% (vaccin Janssen, 1 dose)

• 91,6 (vaccin Gamaleya)

Publications scientifiques des essais de Phase 3

(54)

Etat de lieux au 4 septembre 2021

Virus (inactivé, atténué)

Vecteur viral (réplicatif, non réplicatif) Acide nucléique (ADN, ARN)

Protéines recombinantes

https://vac-lshtm.shinyapps.io/ncov_vaccine_landscape/ 54

(55)

Vaccination COVID hétérologue

55

Une vaccination hétérologue AZ – Pfizer BNT est plus

immunogène que

- la vaccination homologue AZ-AZ

Ou Pfizer BNT-Pfizer BNT

(56)

Vaccination COVID

Vaccin Novavax

Nanoparticule: Protéine

recombinante protéine Spike 5μg + adjuvant Matrix M

2 doses à 3 semaines d’intervalle EV: 89.7% (IC95% 80.2 to 94.6)

- 86.3% (IC95%, 71.3 - 93.5) variant

96.4% (IC, 73.8 -99.5)

(57)

• Essai de phase 2 randomisé

• Protéine recombinante PreS

produite dans baculovirus

• 3 doses : 5,10 et 15μg

• 2 injections a 3 semaines d’intervalle

• Adjuvanté avec AS03 (GSK)

Vaccination

COVID

(58)

Vaccination

COVID

(59)

Vaccination COVID 19 par voie nasale

Vaccination nasale:

Ig A et cellules T et B mémoires dans le nez et les voies

aériennes supérieures

Prevention de l’infection et reduction de l’excrétion virale

Vaccination IM:

igG seriques,

protection infection

pulmonaire par transsudation

au niveau pulmonaire mais

n’empeche pas l’infection

nasale et l’excretion virale

(60)

Vaccination ARNm

une nouvelle ère en vaccinologie

(61)

Merci pour votre attention

Références

Documents relatifs

bovis BCG as vaccine candidate Authors: Julia Heinzmann, Mirja Wilkens, Karen Dohmann, Gerald-F3. paratuberculosis-specific mpt operon expressed

Table 2: The level of identity between the nucleotide and amino acid sequence of the H gene and H protein of the strain present in the Vanguard vaccines and those of the viruses

The immunization of mice with the rBCG-LTK63 strain induced a very strong Th1-predominant immune response against the mycobacteria, with production of high levels of IFN-γ and

Conclusion Vaccination with the formulation DGNP/TE developed a specifically humoral and Th1/Th17 cellular immune response associated with a 100% survival of infected mice in

Our results demonstrated that the mutant strain ∆22915 was a highly attenuated strain and provided long-term, effec- tive protection against wild-type, virulent strain S2308

The pure iron scale is formed by three layers of superimposed oxides, corresponding to increasing levels of oxidation from the metal to the atmosphere, the layer of FeO

It was shown that the median levels of maternal IgG anti- bodies to measles, mumps and rubella were significantly higher among infants born to mothers with a history of

The Forum was cosponsored by 15 partner organizations that provided technical, logistical and/or financial support: The Canadian International Development Agency (CIDA), The Centers