• Aucun résultat trouvé

Studies on shrinking and swelling of Leda clay and of a Prairie clay

N/A
N/A
Protected

Academic year: 2021

Partager "Studies on shrinking and swelling of Leda clay and of a Prairie clay"

Copied!
31
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building Research), 1961-10-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=949b5113-faff-4524-9981-6976c7aa9379 https://publications-cnrc.canada.ca/fra/voir/objet/?id=949b5113-faff-4524-9981-6976c7aa9379

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20338062

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Studies on shrinking and swelling of Leda clay and of a Prairie clay

(2)

NATIONAL RESEARCH COUNCIL CANADA

D I V I S I O N OF B U I L D I N G RESEARCH

S T U D I E S ON SHRINKING AND SWELLING OF LEDA CLAY AND OF A P R A I R I E CLAY

by B. P. W a r k e n t i n I n t e r n a l R e p o r t N o . 226 of t h e D i v i s i o n of B u i l d i n g R e s e a r c h OTTAWA O c t o b e r 1 9 6 1

(3)

PREFACE

Shallow foundations on clay a o i l s a r e o f t e n subjected t o s e r i o u s d i f f e r e n t i a l movements. These movements, which a r e due t o volume changes i n the c l a y , may occur over long periods of time o r they may be seasonal. They a r e c l o s e l y associated with fundamental p r o p e r t i e s of the s o i l and with environmental changes of t h e s o i l

in

n a t u r e .

The Division of Building Research i s engaged i n f i e l d s t u d i e s of the environmental changes of two d i s t i n c t and important Canadian c l a y s

-

t h e Leda c l a y of Eastern Canada and the highly p l a s t i c c l a y of t h e .Prairies. The arrangement with MacDonald College, McGill University, f o r D r . Warkentin, A s s i s t a n t Professor, A g r i c u l t u r a l Physics Department, t o spend t h e summer of 1959 with t h e Division was t h e r e f o r e

e s p e c i a l l y welcomed since he had an i d e a l background t o extend the l a b o r a t o r y s t u d i e s of swelling and shrinking of t h e s e

c l a y s which had a l r e a d y been s t a r t e d . This work r e s u l t e d i n a j o i n t publication (Reference 1 9 ) . This r e p o r t records

a d d i t i o n a l t e s t r e s u l t s and describes t h e techniques developed by D r . Warkentin during h i s term with the Division. I t

i l l u s t r a t e s t h e value of co-operative research of t h i s nature.

Ottawa

(4)

TABLE OF CONTENTS

VOLUME CHANGE MECHANISMS 1. Shrinkage

2. S w e l l i n g

3.

S h r i n k i n g a n d S w e l l i n g Cycles

EXPERIMENTAL MAmIALS

AND

METHODS

SHRINKAGE CHARACTERISTICS 1. Leda Clay 2. P r a i r i e Clays SWELLING CIURACTERISTICS 1. Leda Clay 2. P r a i r i e Clays CONCLUSIONS

(5)

STIJDIES ON SHRLVKING AND SWELLING OF LEDA CLAY AJD OF A P R A I H I E

CLAY

B.

P.

Warlcentin

'1Zli.s work w a s u n d e r t a k e n t o s t u d y t h e volume changes a s s o c i a t e d w i t h m o i s t u r e c o n t e n t c h a n g e s , a n d t o d e t e r m i n e

t h e f a c t o r s t h a - t c o n t r o l t h e volume t o which s o i l s w i l l s w e l l on w e t t i n g a f t e r d r y i n g .

S h r i n k i n g and s w e l l i n g c h a r a c t e r i s t i c s depend upon t h e m i n e r a l s p r e s e n t i n t h e c l a y and upon t h e i r o r i e n t a t i o n o r r e s p e c t i v 2 arrangement. a l e exchangeable i o n a s s o c i a t e d

w i t h t h e c l a y , -the s a l t c o n c e n t r a t i o n , a n d a n y o r g a n i c o r i n o r g a n i c m a t e r i a l s which c a n bond between c l a y

p a r t i c l e s a l s o i n f l u e n c e volume changes, e s p e c i a l l y s w e l l i n g on w e t t i n g . With t h e s e p r o p e r t i e s a s v a r i a b l e s i n sample p r e p a r a t i o n , d i m e n s i o n a l shrinlcage a n d r e s w e l l i n g have been measured i n samples of two c l a y s o i l s .

VOLUME CHANGE MECIIANISMS

1. Shrinkage

S h r i n k a g e of c l a y s on d r y i n g has been measured i n numerous ways. E a r l y a t t e m p t s were made t o measure l i n e a r

s h r i n k a g e , from which volume shrinlrage w a s c a l c u l a t e d ( 1 0 ) .

I h p e r i m e n t a l p r e c i s i o n was improved by m e a s u r i n g t h e volume of a sample, a t v a r i o u s m o i s t u r e c o n t e n t s d u r i n g d r y i n g ,

by d i s p l a c e m e n t of mercury i n a s p e c i a l pycnometer b o t t l e

( 7 ) .

Methods i n v o l v i n g d i s p l a c e m e n t of mercury a r e c u r r e n t l y u s e d i n slnrinl~age measurements. Volume c a n a l s o b e - o b t a i n e d b y

d i s p l a c e m e n t i n w a t e r u s i n g p a r a f f i n ( 1 2 ) o r p l a s t i c

( 5 )

c o a t i n g s t o p r e v e n t e n t r y of w a t e r . Another method i n v o l v e s f i l l i n g s o i l p o r e s w i t h k e r o s e n e ( 1 6 ) . S h r i n k a g e has been d e t e r m i n e d r e c e n t l y by m e a s u r i n g l i n e a r dimensions of t h e m a g n i f i e d image of a s o i l cube p r o j e c t e d on a s c r e e n

( 4 ) .

Most of t h e c o n c e p t s of s h r i n k a g e a r e b a s e d on t h e work of H a i n e s

( 7

), who measured volumes of remoulded c l a y

specimens by d i s p l a c e m e n t of mercury i n a s p e c i a l pycnometer b o t t l e . For remoulded c l a y b l o c k s h e d e f i n e d t h r e e s t a g e s of s h r i n k a g e . During t h e f i r s t i n c r e m e n t s of w a t e r l o s s from a s a t u r a t e d c l a y , t h e d e c r e a s e i n volume e q u a l s t h e volume of w a t e r l o s t . %is has been termed "normal s h r i n k a g e " . m e sample becomes u n s a t u r a t e d below a c e r t a i n w a t e r c o n t e n t a n d t h e volume d e c r e a s e on f u r t h e r d r y i n g i s l e s s t h a n t h e

(6)

volume of w a t e r l o s t . T h i s h a s been termed " r e s i d u a l shrinkage". Below t h e range of r e s i d u a l s h r i n k a g e , t h e c l a y w i l l l o s e w a t e r w i t h no f u r t h e r d e c r e a s e i n volume. This i s t h e t h i r d s t a g e i n s h r i n k a g e .

The moisture c o n t e n t a t which t h e s o i l becomes

u n s a t u r a t e d h a s been i n t e r p r e t e d a s t h e p o i n t a t which t h e s o i l p a r t i c l e s i n t e r a c t t o s e t up a s t r u c t u r e t h a t can r e s i s t s h r i n k a g e . If t h e sample volume i s p l o t t e d a g a i n s t moisture c o n t e n t , b o t h normal and r e s i d u a l s h r i n k a g e , e x c e p t f o r some t r a n s i t i o n p o i n t s , can o f t e n be approximated by s t r a i g h t l i n e s , and t h e i n t e r s e c t i o n of t h e s e two l i n e s i s

c a l l e d t h e "shrinkage l i m i t f f . I n some r e f e r e n c e s t h e

shrinlrage l i m i t i s d e f i n e d a s t h e p o i n t where t h e e x t e n s i o n of t h e normal shrinkage l i n e i n t e r s e c t s t h e w a t e r c o n t e n t a x i s

( 9 ) .

The shrinkage l i m i t s o d.efined does n o t have

p h y s i c a l s i g n i f i c a n c e because t h e t r a n s i t i o n r e g i o n may o c c u r o v e r a

5

t o 1 0 p e r c e n t w a t e r c o n t e n t change. It i s a

p l o t t i n g convenience. A more s i g n i f i c a n t p o i n t would be t h e w a t e r c o n t e n t a t which s h r i n k a g e f i r s t d e v i a t e s from normal s h r i n k a g e , i . e . t h e p o i n t a t which u n s a t u r a t i o n occurs. T h i s p o i n t may o f t e n be d i f f i c u l t t o determine p r e c i s e l y .

Clods t a k e n from s u r f a c e s o i l s t h a t have s t r u c t u r e i n t h e ~ g r i c u l t u r a l s e n s e and have undergone s e v e r a l w e t t i n g and d r y i n g c y c l e s o f t e n show no range of normal s h r i n k a g e ;

t h e degree of u n s a t u r a t i o n i n c r e a s e s p r o g r e s s i v e l y a s t h e c l o d d r i e s o u t ( 1 2 ) . These c l o d s have 3 wide range of void s i z e s and d i f f e r from s u b s u r f a c e s o i l , ? i n t h a t t h e y have a g r e a t e r percentage of v o i d s which become u n s a t u r a t e d a t v e r y low moisture t e n s i o n s . Water i s h e l d i n t h e s e v o i d s

by s u r f a c e t e n s i o n f o r c e s r a t h e r t h a n by t h e f o r c e s a s s o c i a t e d w i t h s w e l l i n g of t h e s o i l . S t i r k ( 1 6 ) found t h a t t h e f i r s t

increments of water l o s s from c l o d s of s u r f a c e s o i l were accompanied by a volume change l e s s t h a n t h e volume of w a t e r l o s t . He terms t h i s ' ' s t r u c t u r a l shrinkage", A s more w a t e r

i s l o s t , normal shrinkage occurs.

The s h r i n k a g e c h a r a c t e r i s t i c s of a s o i l depend upon g r a i n s i z e d i s t r i b u t i o n , t y p e of c l a y , and s t r u c t u r e o r arrangement of p a r t i c l e s . I n g e n e r a l , c l a y s t h a t have a h i g h n a t u r a l w a t e r c o n t e n t e x h i b i t t h e g r e a t e s t t o t a l

s h r i n k a g e and t h e g r e a t e s t normal and r e s i d u a l s h r i n k a g e . Kaolin e x h i b i t s l i t t l e o r no r e s i d u a l s h r i n k a g e whereas montmori l l o n i t e h a s a h i g h r e s i d u a l s h r i n k a g e

.

S i l t

-

and s a n d - s i z e p a r t i c l e s i n a s o i l i n c r e a s e t h e r e s i d u a l s h r i n k a g e and a l s o t h e amount of w a t e r l o s t over t h e low w a t e r c o n t e n t range where no shrinkage occurs. The arrangement of p l a t e - shaped p a r t i c l e s i n c l a y s would a l s o be expected t o i n f l u e n c e

(7)

t h e amount of r e s i d u a l s h r i n k a g e .

Shrinkage o f a s o i l mass r e s u l t s from t e n s i o n i n t h e pore w a t e r . With l o s s o f t h e f i r s t i n c r e m e n t s of w a t e r a c u r v e d i n t e r f a c e i s formed i n t h e p o r e , w i t h l o w e r p r e s s u r e on t h e convex s i d e . Water moves from t h e i n s i d e o f t h e s o i l

mass t o t h e a r e a s of t h e c u r v e d i n t e r f a c e a n d t h e s o i l mass s h r i n k s . Shrinkage i s r e s i s t e d by p a r t i c l e i n t e r a c t i o n , e i t h e r o s m o t i c f o r c e s of r e p u l s i o n e x e r t e d when l i q u i d w a t e r s e p a r a t e s t h e p a r t i c l e s o r i n t e r p a r t i c l e c o n t a c t . Normal s h r i n k a g e ends when t e n s i o n i n t h e p o r e w a t e r becomes g r e a t enough t o empty t h e l a r g e s t p o r e s a n d a l l o n a i r t o e n t e r t h e sample. R e s i d u a l s h r i n k a g e e n d s when i n t e r p a r t i c l e c o n t a c t p r e v e n t s any f u r t h e r s h r i n k a g e of t h e s o i l mass.

The s o i l m o i s t u r e t e n s i o n o r s u c t i o n of t h e s o i l a t

which t h e v a r i o u s s t a g e s o f s h r i n k a g e o c c u r depends upon p a r t i c l e - s i z e d i s t r i b u t i o n a n d s o i l t y p e a s w e l l a s upon s t r u c t u r e o r a r r a n g e m e n t o f t h e p a r t i c l e s . Only a l i m i t e d number of e x p e r i m e n t s have been r e p o r t e d where s h r i n k a g e c h a r a c t e r i s t i c s have been r e l a t e d t o s o i l s u c t i o x . R e s u l t s show t h a t t h e s h r i n k a g e l i m i t f o r s u b s o i l s a n d remoulded c l a y s o i l s o c c u r s a t a s u c t i o n g r e a t e r t h a n t h a t c o r r e s p o n d i n g t o t h e permanent w i l t i n g p e r c e n t a g e , which i s g e n e r a l l y t a k e n

a s pF 4.2. pF i s d e f i n e d a s t h e l o g of s o i l s u c t i o n e x p r e s s e d i n cm of w a t e r ( 1 4 ) . For two A u s t r a l i a n c l a y s , Holmes ( 8 )

r e p o r t e d v a l u e s of pP 5.1 a n d

5.5

a t t h e s h r i n k a g e l i m i t , and pP

5.7

a n d >6.0 viliere s h r i n k a g e c e a s e d . For London c l a y Croney and Coleman

( 3 )

showed a p2 of 1 . 4 a t t h e s h r i n k a g e

l i m i t . S t i r k ( 1 6 ) found v a l u e s between pF 4.2 and 4.9

a t t h e commencement 01f r e s i d u a l s h r i n k a g e f o r s o i l s which c r a c k e d on d r y i n g . For s u r f a c e s o i l s i n which l a r g e r p o r e s predominate, t h e pF a t t h e s h r i n k a g e l i m i t s h o u l d d e c r e a s e . T h i s i s i n d i c a t e d i n t h e v a l u e s r e p o r t e d by S t i r k f o r non- c r a c k i n g s o i l s . The pP a t t h e commencement of r e s i d u a l s h r i n k a g e v a r i e s from (2.0 t o 4.2. S e v e r a l d i f f e r e n t mechanisms a r e i n v o l v e d i n w a t e r u p t a k e by a drry s o i l . The w a t e r a d s o r b e d al; low v a p o u r p r e s s u r e s e x i s t s a s w a t e r m o l e c u l e s i n s p e c i f i c a r r a n g e m e n t on t h e s u r f a c e of t h e c l a y p a r t i c l e s , and a s w a t e r o f h y d r a t i o n of t h e exchangeable i o n s (1). 'Khen t h e s e f i r s t l a y e r s of w a t e r a r e p r e s e n t a n d j o i n e d t o form c u r v e d i n t e r f a c e s i n a r e a s of c o n t a c t , t h e s p a c e s between s o i l p a r t i c l e s can be f i l l e d by c a p i l l a r i t y . I n s u r f a c e s o i l s w i t h l a r g e v o i d s , t h i s may a c c o u n t f o r most o f t h e w a t e r absorbed. I n s u b s o i l s where v o i d s a r e s m a l l a n d f i l l e d w i t h w a t e r even a t h i g h s u c t i o n s , most of t h e w a t e r u p t a k e w i l l be

(8)

accompanied by a volume change. The s w e l l i n g o r i n c r e a s e i n volume of c l a y r e q u i r e s a f o r c e s e p a r a t i n g t h e p a r t i c l e s ,

sometimes t o l a r g e d i s t a n c e s . Hydration f o r c e s a r e r e s p o n s i b l e f o r t h e i n i t i a l s e p a r a t i o n ; l a r g e r d i s t a . n c e s probably r e s u l t from an osmotic f o r c e . The i n c r e a s e d c o n c e n t r a t i o n of i o n s

between t h e c l a y p l a t e s a t t r a c t s w a t e r between t h e c l a y p a r t i c l e s and f o r c e s them a p a r t ( 1 7 ) . The amount of s w e l l i n g i n c r e a s e s w i t h i n c r e a s e d s u r f a c e a r e a of t h e c l a y , which r e s u l t s more from t h i n n e r plate-shaped p a r t i c l e s t h a n from s m a l l e r

p a r t i c l e s . Swelling i s g r e a t e s t w i t h monovalent exchangeable i o n s , and d e c r e a s e s a s t h e valence of t h e i o n i n c r e a s e s .

The l i m i t of s w e l l i n g depends upon t h e magnitudes of t h e osmotic f o r c e c a u s i n g i t , t h e f o r c e s a s s o c i a t e d w i t h t h e s t r u c t u r e which r e s i s t p a r t i c l e s e p a r a t i o n , and t h e o r i e n t a t i o n of p a r t i c l e s . Swelling and s w e l l i n g p r e s s u r e a r e h i g h e r i n low-svtelling c l a y s f o r random o r i e n t a t i o n of p a r t i c l e s t h a n f o r p a r a l l e l o r i e n t a t i o n ( 1 5 ) . The r e v e r s e i s t r u e , however, f o r h i g h - s w e l l i n g c l a y s a s shown by measurements w i t h sodium

m o n t m o r i l l o n i t e (18). T h i s h i g h e r s w e l l i n g volume f o r more n e a r l y p a r a l l e l p a r t i c l e o r i e n t a t i o n may be due t o one o r more

of t h e following r e a s o n s . F i r s t l y , t h e f o r c e s of a t t r a c t i o n a r e g e n e r a l l y a s s o c i a t e d w i t h t h e edges of t h e c l a y p l a t e s , because of t h e presence of p o s i t i v e l y charged s i t e s o r

exposed hydroxyl i o n s , Secondly, t h e d i f f u s e l a y e r of exchangeable i o n s , which i s t h e s e a t of t h e osmotic f o r c e

of r e p u l s i o n , i s i r r e g u l a r l y developed a t t h e edges because of t h e d i s t r i b u t i o n of n e g a t i v e charges i n t h e c r y s t a l l a t t i c e .

I n random edge-to-face o r i e n t a t i o n , t h e n , t h e f o r c e of a t t r a c t i o n

i s l a r g e r and t h e f o r c e of r e p u l s i o n s m a l l e r t h a n i n p a r a l l e l o r i e n t a t i o n . F i n a l l - y , t h e f o r c e of r e p u l s i o n depends upon t h e a r e a over which i n t e r a c t i o n i s t a k i n g p l a c e . For a n edge-to-face arrangement t h i s a r e a i s much lower than f o r t h e f a c e - t o - f a c e arrangement of p a r a l l e l o r i e n t a t i o n .

Swelling may a l s o be l i m i t e d by "cementing" m a t e r i a l s i n t h e s o i l such a s i r o n and aluminium o x i d e s and calcium o r magnesium c a r b o n a t e s ( 2 0 ) . The o x i d e s o f t e n e x i s t a s h y d r a t e d

s h o r t c h a i n polymers o r

a s

g e l s , On d r y i n g t h e y become i r r e v e r s i b l y dehydrated, and i f t h e y occur a t a p o i n t where t h e y a r e i n c o n t a c t w i t h two p a r t i c l e s a bond i s formed from p a r t i c l e , t o o x i d e , t o p a r t i c l e , The presence e s p e c i a l l y of i r o n s a l t s d e c r e a s e s s w e l l i n g . If a h i g h s w e l l i n g c l a y i s

d r i e d a f t e r t h e a d d i t i o n of i r o n s a l t s , i t s s w e l l i n g p r o p e r t i e s a r e g r e a t l y reduced. This may be due t o i r o n bonding between c l a y p a r t i c l e s , o r t o i r o n adsorbed on t h e c l a y s u r f a c e

changing t h e p r o p e r t i e s which c o n t r o l s w e l l i n g . On t h e basis

of v a l e n c e , t r i v a l e n t i r o n , a s exchangeable i o n , would a l s o be expected t o produce l i m i t e d s v ~ e l l i n g ,

3. Shrinlcing and Swelling Cycles

-

(9)

r e a c h e s a volume on s w e l l i n g t h a t d i f f e r s from t h e volume it had a t t h e same w a t e r c o n t e n t on s h r i n k i n g ( 2 ) . U s u a l l y t h e volume i s h i g h e r on s w e l l i n g , i n d i c a t i n g e n t r a p p e d a i r . I t i s a l s o p o s s i b l e t h a t t h e sample w i l l c o n t a i n l e s s a i r a f t e r s w e l l i n g . The f i n a l volume a t t a i n e d on s w e l l i n g i s u s u a l l y d i f f e r e n t from t h e o r i g i n a l volume of t h e sample. This w i l l depend

upon t h e f a c t o r s t h a t c o n t r o l s w e l l i n g . If t h e r e i s a n e t d e c r e a s e i n volume a f t e r one c y c l e of d r y i n g and w e t t i n g , t h e second c y c l e u s u a l l y shows a f u r t h e r volume d e c r e a s e . E v e n t u a l l y a n e q u i l i b r i u m i s r e a c h e d where t h e volume changes accompanying w e t t i n g and d r y i n g a r e r e v e r s i b l e ( 1 0 ) . Some change i n s t r u c t u r e o c c u r s d u r i n g s h r i n k i n g a n d s w e l l i n g , a s shown by t h e h y s t e r e s i s l o o p when s u c t i o n i s p l o t t e d a g a i n s t w a t e r c o n t e n t and by t h e f i n a l . w a t e r c o n t e n t which, a f t e r s w e l l i n g , i s o f t e n lower t h a n t h e i n i t i a l w a t e r c o n t e n t ( 3 , 8 ) . The h y s t e r e s i s of u n s a t u r a t e d s o i l s may be caused by c a p i l l a r y e f f e c t s b u t i n s a t u r a t e d c l a y s where w a t e r uptake r e s u l t s i n swell-ing, i t i s probably due t o

p l a s t i c r e a d j u s t m e n t of t h e c l a y p a r t i c l e s ( 1 4 ) . m e a r e a of t h e h y s t e r e s i s l o o p r e p r e s e n t s t h e energy l o s t p e r c y c l e of w e t t i n g and d r y i n g ( 8 ) , used i n p a r t i c l e rearrangement.

EXPERIMEIJTAL MATERIALS

-

LKD METHODS

Tho g e o l o g i c a l l y d i f f e r e n t c l a y s were chosen f o r t h i s s t u d y of t h e volume change c h a r a c t e r i s t i c s on w e t t i n g and drying. A sample of Leda c l a y from O t t a w a was chosen a s

r e p r e s e n t a t i v e of t h e marine-deposited sediments of t h e Champlain Sea, and two samples from Nanitoba were used a s r e p r e s e n t a t i v e of l a c u s t r i n e d e p o s i t s of g l a c i a l Lake Agassiz on t h e P r a i r i e s . Engineering s o i l t e s t r e s u l t s f o r t h e samples a r e g i v e n i n Table I. The Leda c l a y w a s a p p a r e n t l y d e p o s i t e d i n s a l t w a t e r w i t h s a l t c o n c e n t r a t i o n s u b s e q u e n t l y reduced by l e a c h i n g ( 6 ) . I t r e t a i n s a w a t e r c o n t e n t c h a r a c t e r i s t i c of c l a y s t h a t s e t t l e o u t i n a f l o c c u l a t e d s t r u c t u r e , w i t h a h i g h f l o c volume o r h i g h w a t e r c o n t e n t caused by t h e p a r t i c l e arrangement i n which edge-to-face c o n t a c t of p a r t i c l e s i s dominant ( 1 3 ) .

X - r a y - d i f f r a c t i o n a n a l y s i s of t h e Leda c l a y shows t h a t p a r t of t h e c l a y - s i z e f r a c t i o n c o n s i s t s of i l l i t e a n d c h l o r i t e . The remainder c o n s i s t s of non-clay m i n e r a l s such

as q u a r t z , f e l d s p a r and amphibole. m e ( 2 ~ f r a c t i o n h a s a

s u r f a c e a r e a by g l y c o l a d s o r p t i o n of 90 m2/gm, and a n

exchange c a p a c i t y of 20 me/100 gm w i t h calcium a s dominant exchangeable c a t i o n (18). The c l a y m i n e r a l a n a l y s i s , exchange c a p a c i t y , and n a t u r e of exchangeable i o n s i n d i c a t e a m a t e r i a l w i t h l i m i t e d osmotic s w e l l i n g .

(10)

The P r a i r i e c l a y s were d e p o s i t e d i n f r e s h w a t e r where a more p a r a l l e l arrangement of p a r t i c l e s on s e t t l i n g

o u t would be expected. The c l a y from Seven S i s t e r s c o n s i s t s l a r g e l y of m o n t m o r i l l o n i t e and i l l i t e

,

w i t h some i n t e r s t r a t i - f i e d m i n e r a l s mhich have a b a s a l r e f l e c t i o n between 1 0

and

1 4 8.

S u r f a c e a r e a by g l y c o l a d s o r p t i o n of t h e ( 2 ~

f r a c t i o n i s 380 m2/gm, and t h e exchange c a p a c i t y i s 40 me/100 gm ( 1 8 ) . A m i n e r a l a n a l y s i s of

45

p e r c e n t i l l i t e , 40 p e r c e n t mon-trnorillonite, 3 per c e n t c a l c i t e , and 2 p e r c e n t o r g a n i c m a t t e r h a s a l s o been r e p o r t e d f o r a sample from t h e Seven

S i s t e r s ' s i t e (11). The presence of m o n t m o r i l l o n i t e i n d i c a t e s ~ t h a t osmotic s w e l l i n g would be h i g h .

Measurement of volume change i n c l a y samples p r e s e n t s c e r t a i n d i f f i c u l t i e s . I n most l i q u i d s t h e volume cannot be measured by displacement because t h e y w i l l wet t h e s o i l .

Displacement i n mercury h a s been used, b u t t h i s r e q u i r e s e x t e n s i v e h a n d l i n g of t h e sample which r e s u l t s i n b r e a k i n g

when t h e sample i s dry and i n remoulding when i t i s s u f f i c i e n t l y wet t o be p l a s t i c . There i s a l s o t h e problem of mercury

becoming contaminated v e r y q u i c k l y w i t h s o i l , and t h e g e n e r a l u n d e s i r a b i l i t y of prolonged h a n d l i n g of mercury because of t h e h e a l t h h a z a r d . Volume c a l c u l a t e d from measured l i n e a r dimensions l a c k s s u f f i c i e n t p r e c i s i o n due t o t h e i r r e g u l a r shape of t h e sample. This method a l s o r e q u i r e s a l a r g e sample, where d r y i n g and w e t t i n g m u s t be c a r r i e d o u t slowly t o p r e v e n t l a r g e m o i s t u r e g r a d i e n t s . I f t h e s o i l i s c o a t e d t o a l l o w volume measuremerlt by displacement i n w a t e r , t h e

sample can be used only once.

Wafer-shaped c l a y samples a b o u t 1

1/4

by 1

1/4

by 3/16 i n . were c u t w i t h a w i r e saw and p l a c e d i n p r o t e c t i v e h o l d i n g frames so t h a t t h e r e q u i r e d h a n d l i n g would n o t damage

t h e sample. Use of t h i n samples d e c r e a s e d t h e time r e q u i r e d f o r w e t t i n g and d r y i n g , and a l s o decreased warping on drying.

The samples were s u p p o r t e d i n t h e h o l d e r s t o a l 1 . 0 ~ d r y i n g from b o t h f a c e s . Crosses were s c r a t c h e d on one f a c e of t h e c l a y wafer a t t h e mid-point n e a r each s i d e . The d i s t a n c e between t h e s e c r o s s e s was measured w i t h a t r a v e l l i n g

microscope t o t h e n e a r e s t 0.031 i n . F i g u r e 1 shows a p l a n of sample and h o l d e r .

Samples were allowed t o a i r - d r y a t a c o n s t a n t temperature of 20

+

1 ° C . Rate of d r y i n g was reduced by c o n f i n i n g t h e

samples i n a small space. Dimensions and weight were measured p e r i o d i c a l l y d u r i n g t h e d r y i n g p e r i o d of t h r e e days t o one week. These were n o t e q u i l i b r i u m v a l u e s , b u t w i t h t h e slow-

drying r a t e and t h i n samples, m o i s t u r e g r a d i e n t s through t h e sample would n o t be l a r g e .

No at-tempt was made t o g e t r e a d i n g s a t v a r i o u s i n t e r m e d i a t e w a t e r c o n t e n t s d u r i n g w e t t i n g . L i n e a r dimensions and w a t e r

(11)

c o n t e n t were measured a f t e r t h e sample h a d been i n c o n t a c t w i t h w a t e r from t h r e e t o f i v e days. Water u p t a k e c o n t i n u e d beyond t h i s t i m e b u t a t a v e r y slow r a t e . The samples h a d t o be m o i s t e n e d c a r e f u l l y t o p r e v e n t c r a c k i n g on w e t t i n g . They were u s u a l l y p l a c e d i n t h e humid room f o r two d a y s , t h e n moistened w i t h w e t f i l t e r p a p e r f o r s e v e r a l d a y s , and t h e n p l a c e d on a wet f i l t e r p a p e r i n c o n t a c t w i t h w a t e r j u s t below t h e l e v e l of t h e sample.

Many of t h e s a m p l e s , b o t h u n d i s t u r b e d a n d remoulded, were n o t c o m p l e t e l y s a t u r a t e d . . No e a s y e x p e r i m e n t a l method

of removing t h e a i r was found, a n d t h e s a m p l e s were u s e d a s t h e y o c c u r r e d . I t w a s r e c o g n i z e d t h a t t h e a i r p r e s e n t c o u l d i n f l u e n c e s h r i n k a g e and e s p e c i a l l y s w e l l i n g , b u t no a t t e m p t

w a s made t o measure t h e d e g r e e o f s a t u r a t i o n . The o n l y

sanlples from which a i r w a s a b s e n t were t h o s e c o n s o l i d a t e d a t

2 kg/cm2. m e c l a y

a-t

f l u i d c o n s i s t e n c y was f i r s t p u t u n d e r

vacuum a f t e r which t h e w a t e r c o n t e n t was d e c r e a s e d u n d e r low p r e s s u r e i n a n u l t r a - f i l t r a t i o n c e l l u n t i l t h e sample w a s f i m enough

t o be h a n d l e d . I t was t h e n p l a c e d i n t o tlie c o n s o l i d a t i o n r i n g .

Dry d e n s i t y o r volume w e i g h t on oven-dry samples was d e t e r m i n e d by irnmcrsion i n mercury. A s p e c i a l . pycnorneter b o t t l e of c l e a r p l a s - t i c w i t h a t o p which c o u l d be i n s e r t e d t o a c o n s t a n t d e p t h , a s shown i n P i g . 1, was u s e d f o r t h e s e measurements. IITnc? bot-L1.c was weighed when f i l l e d w i t h mercury, and t h e n w i t h t h e c l a y sa:nple p l u s mercury. From t l ~ e s e

w e i g h i n g s t h e volume of t h e sample was c a l c u l a t e d .

1. Leda Clay

The d i m e n s i ~ n a l s h r i n k a g e c u r v e s of two t y p i c a l samples of u n d i s t u r b e d Leda c l a y a r e shown i n P i g . 2. W i t h i n e x p e r i m e n t a l v a r i a t i o n , v e r t i c a l shrinlrage and h o r i z o n t a l s h r i n k a g e a r e e q u a l . The s h r i n k a g e l i m i t i s a t 27 p e r c e n t w a t e r c o n t e n t ; t o t a l l i n e a r s I ~ r i n l r a g e i s 1 5 t o 17 p e r c e n t n i t l i 1 p e r c e n t r e s i d u a l s h r i n k a g e . R e r ~ ~ o u l d i n g u n d i s t u r b e d c l a y r e s u l t s i n a d e c r e a s e of

-clie shrinlrage l i m i t from 27 t o 20 p e r c e n t w a t e r . !his i n d i c a t e s a breakdor~rn oi" t h e s-truc-t;ilre p r e s e n t i n t'ne

u n d i s t u r b e d c l a y , a l l o w i n g t h e p a r t i c l e s t o be a r r a n g e d i n t o a more dense s t r u c t u r e b e f o r e t h e y d e v e l o p s u f f i c i ' m t r e s i s t a n c e t o s h r i n k a g e t o c a u s e u n s a - t u r a t i o n of t h e sample. The

remoulded samples h a d a d r y d e n s i t y o r volume w e i g h t of 1 . 7 7 m / c c compared viith 1 . 6 4 f o r t h e u n d i s t u r b e d samples.

(12)

The v a r i a b i l i t y i n measured s h r i n k a g e f o r d i f f e r e n t samples was l a r g e . For remoulded samples t o t a l shrinlcage i n two d i r e c t i o n s d i f f e r e d a s much a s 1 1/2 p e r c e n t f o r a t o t a l s h r i n k a g e of 1 0 p e r c e n t . Die s a m p l e s showing t h e g r e a t e s t v a r i a b i l i t y were t h o s e o:E h i g h w a t e r c o n t e n t s which were s o s o f t t h a t t h e y were s l i g h t l y deformed by h a n d l i n g .

m e i n i t i a l p o i n t on t h e s l r i n l c a g e c u r v e f o r t h e

u n d i s t u r b e d samples w a s o f t e n above a l i n e on which s u b s e q u e n t r e a d i n g s f e l l . T h i s may have r e s u l t e d from sample d i s t u r b a n c e

d u r i n g c u t t i n g , o r p a r t i a l d e h y d r a t i o n a t tlie s u r f a c e b e f o r e measurements were made.

m e r e w a s no s i g n i f i c a n t d i f f e r e n c e between h o r i z o n t a l a n d v e r t i c a l s h r i n k a g e of t h e u n d i s t u r b e d s a m p l e s , i n d i c a t i n g t h a t any p r e c o n s o l i d a t i o n l o a d h a d n o t e x e r t e d a n o v e r - a l l o r i e n t i n g e f f e c t on t h e c l a y p a r t i c l e s . I n o t h e r s a m p l e s o f Leda c l a y , some from g r e a t e r d e p t h , measured v e r t i c a l s h r i n k a g e d i d e x c e e d h o r i z o n t a l s h r i n k a g e . !The r e s u l t s a r e summarized i n Table 11. m e r a t i o of h o r i z o n t a l t o v e r t i c a l shrin1:age s h o u l d be a measure o f t h e l o u d t o which t h e c l a y h a s been s u b j e c t e d , b u t t h e measurements a r e p r o b a b l y n o t s u f f i c i e n t l y p r e c i s e f o r u s e i n t h i s c o n n e c t i o n . R e s u l t s o b t a i n e d from sarnples c o n s o l i d a t e d i n t h e l a b o r a t o r y showed t h a t o r i e n t a t i o n of p a r t i c l e s o f Leda c l a y can be i n d u c e d t o produce p r e f e r e n t i a l s h r i n k i n g a n d s w e l l i n g i n one d i r e c t i o n . F i g .

3

shows t h e s h r i n k a g e c u r v e s f o r

remoulded specimens of sample

83-33

from which cementing

m a t e r i a l s h a d been removed p r i o r t o c o n s o l i d a t i o n a t 2 kg/cn2. 'Ihe l o a d w a s a p p l i e d s l o w l y a n d c o n s o l i d a t i o n p r o c e e d e d o v e r a p e r i o d of two weeks. V e r t i c a l shrinlcage w a s s l i g h t l y g r e a t e r t h a n h o r i z o n t a l shrinlcage. The w a t e r c o n t e n t a t t h e shrinlcage l i m i t w a s 2G t o 27 p e r c e n t , a n i n c r e a s e from 20 p e r c e n t f o r t h e remoulded sample t o a v a l u e comparable w i t h t h e u n d i s t u r b e d sample, T h i s i n d i c a t e s a r e a r r a n g e m e n t c a u s e d by t h e c o n s o l i d a t i o n l o a d o r a time-dependent r e a r r a n g e m e n t s ~ l c h a s ' o c c u r s i n

t h i x o t r o p i c s t r e n g t h r e g a i n .

For a sample of remoulded c l a y c o n s o l i d a t e d a t 46 kg/cm* t o a f i n a l w a t e r c o n t e n t o f 25 p e r c e n t , t h e h o r i z o n t a l s h r i n k a g e on f u r t h p r d r y i n g exceeded v e r t i c a l s h r i n k a g e , b u t on r e w e t t i n g s w e l l i n g w a s much g r e a t e r i n t h e v e r t i c a l d i r e c t i o n , I n t h e c o n s o l i d a t i o n a p p a r a t u s t h e l o a d i s a p p l i e d i n t h e v e r t i c a l d i r e c t i o n , a n d t h e p l a t e - s h a p e d p a r t i c l e s a r e o r i e n t e d p e r p e n d i c u l a r t o t h e l o a d . 'fie d i s t a n c e between c l a y p a r t i c l e s i n t h e v e r t i c a l d i r e c t i o n i s r e d u c e d , b u t l i t L l e c o n s o l i d a t i o n o c c u r s a l o n g t h e h o r i z o n t a l a x i s . F u r t h e r s h r t n k a g e c a n tlien t a k e p l a c e i n a h o r i z o n t a l d i r e c t i o n a s t h e p a r t i c l e e d g e s a p p r o a c h e a c h o t h e r .

(13)

2. P r a i r i e C l a y s V e r t i c a l s h r i n k a g e exceeded h o r i z o n t a l s h r i n k a g e by a f a c t o r of a l m o s t 2 f o r t h e Winnipeg c l a y a n d 3 f o r t h e Seven S i s t e r s c l a y ( P i g s . 4 and

5 ) .

S h r i n k a g e c u r v e s f o r t h e s e s o i l s d i f f e r from t h o s e f o r Leda c l a y n o t b e c a u s e of a much l a r g e r p r e c o n s o l i d a t i o n l o a d b u t because of t h e d i f f e r e n t c l a y m i n e r a l s a n d d e p o s i t i o n c o n d i t i o n s . To-tal volume s h r i n k a g e i s a b o u t t h e same f o r t h e Leda a s f o r t h e

P r a i r i e c l a y s because t h e i r i n i t i a l w a t e r c o n t e n t s a r e s i m i l a r . B b l e I11 summarizes t h e r e s u l t s of a l l shrinlcage d e t e r m i n a t i o n s .

Dimensional s h r i n k a g e w i t h d e c r e a s e i n w a t e r c o n t e n t i s n o t l i n e a r . !l&e s l o p e of t h e s h r i n k a g e c u r v e i n d i c a t e s t h a t v e r t i c a l s h r i n k a g e i s r e l a t i v e l y g r e a t e r a t h i g h wa-ter c o n t e n t , a n d h o r i z o n t a l s h r i n k a g e g r e a t e r a t t h e s h r i n k a g e l i m i t . T h i s r e s u l t s from p r e f e r r e d o r i e n t a t i o n o f p a r t i c l e s p a r a l l e l t o t h o h o r i z o n t a l a x i s . The f o r c e o f r e p u l s i o n between p a r t i c l e s i s g r e a t e s t normal t o t h e f l a t s u r f a c e s , and hence tlie v e r t i c a l i n t e r p a r t i c l e d i s - t a n c e i s l a r g e r t h a n t h e h o r i z o n t a l when t h e c l a y i s d e p o s i t e d . Removal o f t h e f i r s t i n c r e m e n t s of w a t e r i s %hen accompanied by a g r e a t e r v e r t i c a l s h r i n k a g e . O r i e n t a t i o n of p a r t i c l e s i n t h e n a t u r a l c l a y i s n o t cornglete, however, a n d much of t h e measured

h o r i z o n t a l s h r i n k a g e may be due t o f l a t s u r f a c e s of c l a y p a r t i c l e s a p p r o a c h i n g e a c h o t h e r .

The w a t e r c o n t e n t a t t h e s h r i n k a g e l i m i t c a n n o t be d e t e r m i n e d w i t h a c c u r a c y because d i m e n s i o n a l change i s n o t l i n e a r l y dependent upon w a t e r l o s s . If d i m e n s i o n a l s h r i n k a g e i s c o n v e r t e d t o volume sllrinlrage, t h e u s u a l normal a n d

r e s i d u a l s h r i n k a g e l i n e s can be drawn t o f i n d a s h r i n k a g e l i m i t o f 20 p e r c e n t f o r t h e Seven S i s t e r s c l a y a n d

17

p e r c e n t f o r t h e Winnipeg c l a y . A d e f i n i t e change i n s l o p e of t h e u r i d i m e n s i o n a l s h r i n k a g e c u r v e s a l s o o c c u r s n e a r t h e s h r i n k a g e l i m i t . For t h e Winnipeg c l a y t h i s i s

a t 1 7

p e r c e n t f o r b o t h h o r i z o n t a l a n d v e r t i c a l s h r i n k a g e , b u t f o r t h e Seven S i s t e r s c l a y it o c c u r s a t 23 p e r c e n t f o r v e r t i c a l s h r i n k a g e a n d 18 p e r c e n t f o r h o r i z o n t a l shrinlcage. There i s l i t t l e r e s i d u a l s h r i n k a g e i n t h e h o r i z o n t a l d i r e c t i o n . Comparison of t h e s e two c l a y s i n d i c a t e s t h a t a s t h e r a t i o of v e r t i c a l t o h o r i z o n t a l s h r i n k a g e i n c r e a s e s due t o g r e a t e r p a r t i c l e o r i e n t a t i o n t h e s h r i n k a g e l i m i t f o r h o r i z o n t a l s h r i n k a g e d e c r e a s e s .

! h e w a t e r c o n t e n t of a remoulded sample of Seven S i s t e r s c l a y a t t h e s h r i n k a g e l i m i t w a s

17

p e r c e n t ; t h e amount of r e s i d u a l s h r i n k a g e w a s r e l a t i v e l y h i g h . Because of t h e u n c e r t a i n t y i n d e t e r m i n i n g s h r i n k a g e l i m i t s f o r t h e undi.-:i;urbed m a t e r i a l s , i t i s n o t p o s s i b l e t o i n f e r d i f f e r e n c e s

i n al-i-angement of p a r t i c l e s between u n d i s t u r b e d a n d remoulded samples from s h r i n k a g e l i m i t a n d r e s i d u a l shrinlrage v a l u e s .

(14)

SWELLING CHARACTERISTICS

Leda c l a y d i d n o t r e g a i n t h e o r i g i n a l w a t e r c o n t e n t o r dimensions on r e w e t t i n g a f t e r d r y i n g . Both t h e w a t e r c o n t e n t t o which a sample w a s d r i e d a n d t h e sample t r e a t m e n t i n f l u e n c e d t h e amount of r e g a i n .

Water c o n t e n t r e g a i n f o r samples of Leda c l a y t r e a t e d i n d i f f e r e n t ways i s shown i n F i g . 6. There i s c o n s i d e r a b l e s c a t t e r i n t h e measured v a l u e s , b u t b ? o l i m i t i n g c o n d i t i o n s a r e e v i d e n t . !he u n d i s t u r b e d samples show a n a l m o s t l i n e a r d e c r e a s e i n w a t e r r e g a i n e d w i t h d e c r e a s i n g w a t e r c o n t e n t t o which t h e sample i s d r i e d . !he samples, w i t h cementing m a t e r i a l s removed show a c o n s t a n t w a t e r u p t a k e u n t i l d r i e d t o 1 0 p e r c e n t w a t e r . Then wa-ter u p t a k e d e c r e a s e s s h a r p l y t o t h a t of t h e oven-dry sample. The remoulded sample f a l l s between t h e s e two p a t t e r n s , b u t r e s e m b l e s t h e u n d i s t u r b e d

sample more c l o s e l y . The s t r u c t u r e h a s n o t been d e s t r o y e d a s c o m p l e t e l y i n remoulded samples a s i n t h o s e which were

s l u r r i e d and c h e m i c a l l y t r e a t e d t o remove cementing m a t e r i a l s . The w a t e r c o n t e n t r e g a i n e d by t h e s e samples r e p r e s e n t e d a n e q u i l i b r i u m a t t r i b u t a b l e t o t h e c l a y m i n e r a l s , whereas t h e h i g h e r w a t e r c o n t e n t of t h e u n d i s t u r b e d samples was c a u s e d by s t r u c t u r e .

Sample dimensions a f t e r s w e l l i n g a r e shown i n F i g .

7

where t h e i n f l u e n c e of remoulding on s w e l l i n g i s emphasized. Dimensional r e g a i n i s d e c r e a s e d moi-e by ovendrying t h a n w a t e r c o n t e n t r e g a i n . B l i s d i f f e r e n c e i s due t o c a p i l l a r y u p t a k e of w a t e r which d o e s n o t i n c r e a s e volume. I n c o n j u n c t i o n w i t h t h e s h r i n k a g e c u r v e s , t h e s e r e s u l t s i n d i c a t e t h a t t h e i m p o r t a n t f a c t o r i n d i m e n s i o n a l r e g a i n i s w a t e r c o n t e n t a t t h e time t h e sample i s r e w e t t e d . The i n f l u e n c e of d r y i n g a n d remoulding on p a r t i c l e o r i e n t a t i o n which e x p l a i n s t h e s e s w e l l i n g r e s u l t s h a s been d i s c u s s e d

( 1 9 ) .

Regain d e c r e a s e d s l i g h t l y a f t e r a s e c o n d c y c l e of d r y i n r e w e t t i n g b u t was of t h e o r d e r of t h e e x p e r i m e n t a l p r e c

f

s i o n . and A d i f f e r e n t method of measurement would be r e q u i r e d t o s t u d y t h i s a s p e c t of d i m e n s i o n a l r e g a i n .

The Leda c l a y samples w i t h cementing m a t e r i a l s removed and c a l c i u m s u b s t i t u t e d a s exchangeable i o n were t h e o n l y o n e s t h a t d i d n o t c r a c k on wet-ting. None of t h e s e samples brolce u p on w e t t i n g , whereas some samples from a l l o t h e r

methods of p r e p a r a t i o n were l o s t b e c a u s e of r a p i d c r a c k i n g on w e t t i n g .

(15)

e a s i l y on w e t t i n g t o be s t u d i e d by t h e s e methods. S w e l l i n g i n w a t e r c o n t i n u e d u n t i l t h e sample w a s s o f t a n d b egan t o d i s p e r s e . S w e l l i n g i n sodium ch1orid.e s o l u t i o n s w a s l o w e r ; a t

0.5

molar N a C l no s v i e l l i n g w a s measured.

On r e w e t t i n g a f t e r o v e n d r y i n g , remoulded s a m p l e s cracked. i n t o s m a l l crumbs l e s s t h a n 1

mm

i n d i a m e t e r which were v e r y d i f f i c u l t t o r e w e t .

Water c o n t e n t a n d dimension changes on d r y i n g a n d wel;ting c o n s o l i d a t e d Leda c l a y a r e g i v e n i n Table I V . 'When a c o n s o l i d a t e d sample w a s d r i e d , t h e g r e a t e s t s h r i n k a g e was i n t h e h o r i z o n t a l d i r e c t i o n p e r p e n d i c u l a r t o t h e c o n s o l i d a t i o n l o a d . Subsequent w e t t i n g produced g r e a t e r s w e l l i n g i n t h e v e r t i c a l d i r e c t i o n . If t h e c o n s o l i d a t e d sample w a s s a t u r a t e d w i t h w a t e r b e f o r e d r y i n g , t o t a l s w e l l i n g w a s g r e a t e r a s w a s t h e r a t i o of v e r + t i c a l t o h o r i z o n t a l s v ~ e l l i n g . During c o n s o l i d a t i o n some o r i e n t a t i o n of p a r t i c l e s o c c u r s , p e r p e n d i c u l a r t o t h e c o n s o l i d a t i o n l o a d . T h i s can be c o n s i d e r e d a s s h r i n k a g e i n t h e v e r t i c a l d i l - e c t i o n . On s u b s e q u e n t d r y i n g h o r i z o n t a l s h r i n k a g e c a n o c c u r more r e a d i l y . On w e t t i n g , however, t h e s w e l l i n g f o r c e i s e x e r t e d normal t o t h e p l a n e of o r i e n t a t i o n , a n d s w e l l i n g o c c u r s p r e f e r e n t i a l l y i n t h e v e r t i c a l d i r e c t i o n . 2. P r a i r i e Clays Measurements of volume a n d w a t e r c o n t e n t r e g a i n of u n d i s t u r b e d samples of P r a i r i e c l a y s were d i f f i c u l t t o o b t a i n because of e x t e n s i v e c r a c k i n g . 1Jndistu1:bed s a m p l e s developed h o r i z o n t a l c r a c k s u n l e s s d r i e d v e r y s l o w l y , a n d most c r a c k e d

on r e w e t t i n g .

Water c o n t e n t f o r t h e P r a i r i e c l a y s a f t e r w e t t i n g i s p l o t t e d i n P i g . 8. Water c o n t e n t r e g a i n d e c r e a s e s a l m o s t l i n e a r l y w i t h d e c r e a s i n g w a t e r c o n t e n t t o which 'the sample i s d r i e d . The s l o p e s of t h e s e l i n e s i n d i c a t e t h a t t h e d e c r e a s e i s g r e a t e r f o r t h e remoulded samples t h a n f o r t h e u n d i s t u r b e d ones.

On w e t t i n g t h e w a t e r c o n t e n t i n c r e a s e d above t h e v a l u e s f o r t h e n a t u r a l s t a t e of t h e sample e x c e p t when t h e w a t e r

c o n t e n t h a d been r e d u c e d t o air-Ciry o r oven-dry b e f o r e w e t t i n g . I n c o n t r a s t t o some of t h e Leda c l a y samples, o v e n d r y i n g t h e

P r a i r i e c l a y h a d no added i n f l u e n c e on r e n e t t i n g c h a r a c t e r i s t i c s . Removal of i r o n o x i d e s a n d cal-bonates i n c r e a s e d r e g a i n o n l y

s l i g h t l y above t h a t of t h e remoulded samples; t h i s d i f f e r e n c e shows u p f o r t h e o v e n - d r i e d sample.

Dimensional r e g a i n shovis t h e same c h a r a c t e r i s t i c s a s w a t e r c o n t e n t r e g a i n ( P i g .

9).

The u n d i s t u r b e d samples s w e l l

(16)

beyond t h e o r i g i n a l d i m e n s i o n s , w i t h s w e l l i n g g r e a t e r i n t h e v e r t i c a l d i r e c t i o n t h a n i n t h e h o r i z o n t a l . Remoulding l e s s e n s t h e amount of r e g a i n . The remoulded s a m p l e s wi%h a l o w e r

d e g r e e of p a r t i c l e o r i e n t a t i o n showed a s m a l l e r r e g a i n . S w e l l i n g a s a f u n c t i o n of p a r t i c l e o r i e n t a t i o n a n d c l a y m i n e r a l f o r t h e s e s a m p l e s h a s been d i s c u s s e d ( 1 9 ) . CONCLUSIONS 1. Both c l a y s e x h i b i t e d a l a r g e s h r i n k a g e on a i r d r y i n g . T o t a l volume d e c r e a s e e x p r e s s e d on t h e b a s i s o f t h e o r i g i n a l volume w a s 35 p e r c e n t . !be Leda c l a y showed e q u a l h o r i z o n t a l a n d v e r t i c a l s h r i n k a g e , w h i l e t h e v e r t i c a l s h r i n k a g e of t h e P r a i r i e c l a y s exceeded t h e h o r i z o n t a l by a f a c t o r o f 2 t o 3. 2. S h r i n k a g e c h a r a c t e r i s t i c s changed on r e m o u l d i n g b e c a u s e of t h e change i n p a r t i c l e o r i e n t a t i o n . 3 . !be p a r t i c l e s of Leda c l a y c o u l d b e o r i e n t e d by c o n s o l i d a t i o n o f a sample, a s shown by s u b s e q u e n t s h r i n k i n g a n d s w e l l i n g c h a r a c t e r i s t i c s .

4.

S w e l l i n g a n d w a t e r c o n t e n t r e g a i n o f . t h e c l a y s depended upon sample t r e a t m e n t a n d w a t e r c o n t e n t t o which t h e c l a y w a s d r i e d . Both o f t h e s e i n f l u e n c e s c o u l d be e x p l a i n e d a s r e s u l t i n g from d i f f e r e n c e s i n p a r t i c l e o r i e n t a t i o n . For t h e Leda c l a y , n o n - p a r a l l e l o r i e n t a t i o n r e s u l t e d i n h i g h e r r e g a i n . !he P r a i r i e c l a y showed t h e c h a r a c t e r i s t i c s of

a

h i g h - s w e l l i n g c l a y , a n d s w e l l i n g w a s g r e a t e s t f o r p a r a l l e l p a r t i c l e o r i e n t a t i o n . 5. Cementing m a t e r i a l s i n t h e c l a y h a d a n e g l i g i b l e i n f l u e n c e on s w e l l i n g of t h e s e c l a y s . It i s a p l e a s u r e t o e x p r e s s a p p r e c i a t i o n t o t h e N a t i o n a l R e s e a r c h C o u n c i l , a n d t o t h e members o f t h e s t a f f c o n c e r n e d w i t h this work. !be D i v i s i o n of B u i l d l n g R e s e a r c h a n d t h e D i r e c t o r , M r . R.F. L e g g e t , p r o v i d e d t h e o p p o r t u n i t y o f working i n t h e S o i l Mechanics S e c t i o n l a b o r a t o r i e s . !be work was

d i s c u s s e d a t a l l s t a g e s w i t h many members o f t h e s t a f f ,

e s p e c i a l l y M r . C.B. Crawford, Head o f t h e S o i l Mechanics S e c t i o n a n d M r . M. Bozozuk.

(17)

1. B a r s h a d , I s a a c . A d s o r p t i v e a n d s w e l l i n g p r o p e r t i e s of c l a y - w a t e r s y s t e m s . P r o c . 1st N a t . Conf. on C l a y s a n d Clay P t i n e r a l s , 1 9 5 2 , C a l i f . Dept. of N a t . R e s o u r c e s , M v . Mines, B u l l . 1 6 9 , 1955, p. 70-77-

2. Bozozuk, M.. Volume changes measured i n Leda c l a y .

-

I n Proc. Ibvelf-th Can. S o i l Mech. Conf., N a t . Res.

C o u n c i l , A s s o c i a t e Committee on S o i l a n d Snow Mechanics, Tech. Memo. No. 59, 1 9 5 9 , p. 53-54.

3

Croney, D., a n d Coleman, J. D. S o i l s t r u c t u r e i n r e l a t i o n t o s o i l s u c t i o n ( p F ) . J o u r . S o i l S c i . , Vol. 5 , 1 9 5 4 , p. 75-84.

4

.

Croney, D., Coleman, J . E . , a n d R u s s a m , K. The s u c t i o n a n d s w e l l i n g p r o p e r t i e s o f some B r i t i s h c l a y s . B r i t i s h Road Research S t a t i o n . Unpublished hlirneo. N a t e r i a l , 1953.

5. Davidson, S t e v e E. Volume-weight ( b u l k d e n s i t y ) d e t e r m i n a t i o n i n t h e l a b o r a t o r y o f c l o d s c o a t e d w i t h Dow Saran r e s i n . U.S. Dept. Agric. S o i l

Survey Lab. R e l t s v i l l e

,

unpublished-Mimeo. M a t e r i a l , 1957. 6. Eden, W.

J . ,

a n d Crawford, C.B. G e o t e c h n i c a l p r o p e r t i e s of Leda c l a y i n t h e O t t a w a a r e a . P r o c . F o u r t h I n t

.

C O I ? ~ ' . S o i l Mech. Foundation l h g i n e e r i n g , London, l a , 1 9 5 7 , p. 22-27. 7. H a i n e s , W.B. The volume-changes a s s o c i a t e d w i t h v a r i a t i o n s of w a t e r c o n t e n t i n s o i l . J o u r . A g r i c . S c i . , Vol. 13, 1923, p.296-510. 8. Holmes, J . W . Water s o r p t i o n a n d s w e l l i n g o f c l a y b l o c k s . J o u r . S o i l S c i . , Vol. 6 , 1 9 5 5 , p. 200-208. 9. Hough, B.K. B a s i c s o i l s e n g i n e e r i n g , Ronald P r e s s

Co.

,

Nevi York. 1 9 57.

10

.

Keen, B.A. 'Jlhe p h y s i c a l p r o p e r t i e s of s o i l s . Lon&mans Green a n d Co., London. 1931.

11. Lambe, T. W i l l i a m , a n d T!iart-in, R. T o r r e n c e

.

Composition a n d e n g i n e e r i n g p r o p e r t i e s o f s o i l s ( I V ) . P r o c . Highway Res. Bd. Vol. 35, 1 9 5 6 , P. 661-667.

(18)

L a u r i t z e n , C.W. Apparent s p e c i f i c volume a n d s h r i n k a g e c h a r a c t e r i s t i c s of s o i l m a t e r i a l . S o i l S c i . , Vol. 6 5 , 1 9 4 8 , p. 155-179.

R o s e n q v i s t , I.

Th.

Physico-chemical p r o p e r t i e s o f s o i l s : S o i l - w a t e r s y s t e m s . J o u r . S o i l Mech.

Foundation Div., Proc. Amer. Soc. C i v i l E n g i n e e r s , Vol. 8 5 , 1959, P. 31-53.

S c h o f i e l d , R.K. The pP of t h e w a t e r i n s o i l . W a n s . ! b i r d I n t . Cong. S o i l S c i . Vol. 2 , 1935, p. 37-48. Seed, H.B., a n d Chan. C.K. S t r u c t u r e a n d s t r e n g t h

c h a r a c t e r i s t i c s of compacted c l a y s . J o u r . S o i l Mech. Foundation Div., P r o c . Amer. Soc. C i v i l E n g i n e e r s , Vol. 8 5 , 1959, 7. 87-128.

S t i r k . G.B. Some a s p e c t s of s o i l s h r i n k a g e a n d t h e e f f e c t o f c r a c k i n g upon w a t e r e n t r y i n t o t h e s o i l . A u s t . J o u r . Agric. Res., Vol. 5 , 1 9 5 4 ? p. 279-290.

Warkentin, B.P. ! b e mechanism of volume c h a n g e s i n cl.ays.

9

Proc. Twelfth Can. S o i l 1Vlech. Conf., N a t . Res. C o u n c i l , A s s o c i a t e Committee on S o i l a n d Snow Mechanics, Tech. Memo., No. 59, 1 9 5 9 , p. 44-45. Warkentin, B .P. Unpublished r e s u l t s . S o i l P h y s i c s L a b o r a t o r y , Macdonald C o l l e g e . 1960. Warkentin, B.P., a n d Bozozuk, bl. S h r i n k i n g a n d s w e l l i n g p r o p e r t i e s of two Canadian c l a y s . P r o c . F i f t h I n t . Conf. S o i l NIech. F o u n d a t i o n Z n g i n e e r i n g , P a r i s , 1961. W i n t e r k o r n , H.F.

,

a n d T s c h e b o t a r i o f f

,

G ; T. S e n s i t i v i t y of c l a y s t o r e m o u l d i n g a n d i t s p o s s i b l e c a u s e s . Highway Res. Bd. P r o c . , Vol. 27, 1947, p. 435-442.

(19)

TABLE

I

PROPZRTIES OF CLAY SAIKPLES

Sam21 e No. 83-27 83-33 5 0 - 1 4 1 4 88 -3 88-11 M i n e 1-a 1 Density, gm/cc 2.65 2.78 2.79 2.8C 2.EO

-

P l a s t i c L i m i t , / 5t 0 26 2

5

2 8 4 1 35 Clay Le da Leda Le da P r a i r i e (Seven S i s t e r s ) P r a i r i e ('llinnipeg ) l\Tatural V a t s r C o n t e n t , $ 6 5 65 75 6 2 54 Grain S i z e s , -$ S i l t Clay 30 7 0 48 5 2 30 70 20 8 0

5

95 Depth, f t 1 6 1 9 18 1 4 1 3 L i q u i d L i m i t , $ 55 66 70 1 0 4 1 0 6 Naxirnum P r e c o n s o l i d a t i o n Load, T.S.F. 1 . 9 2. ( 2 ,- 2 . 5 0 . 5 1 . 0

(20)

VERTICAL

AND

HORIZONTAI; SHRIXKAGE

FOR LEDA CLAY

Shrinkage

-

Air-dry

dimension

as ;$

of o r i g i n a l dimension

V e r t i c a l

H o r i z o n t a l

84.5

84.7

86.9

86.5

86.3

86.8

87.4

87.3

8 6 . 3

88.1

87.9

88.4

84.2

86.3

81.1

82.5

89.5

90.6

88.4

90.1

88.6

93.7

I n i t i a l

Water

Content,

%

66

64

64

64

-

-

-

-

47

47

41

Sam p l e

83-27

II 11 t l

94-5

It

50-141-C

tt

C o n s o l i d a t e d

a t 2 kg/cm2 tr

C o n s o l i d a t e d

a t

46

kg/cm2

and w e t t e d t o

s a t u r a t i o n

Depth,

f t

1 6

1 6

1 6

1 6

42

42

17

-18j

17

-18$

(21)

s m w y OF SHRINLIAGZ CHARACTERISTICS OF THZ CLAYS Sample Clay Weatment P r a i r i e Undisturbed

-

Winnipeg

-

v e r t i c a l

-

h o r i z o n t a l P r a i r i e Undisturbed

-

Seven S i s t e r s

-

v e r t i c a l

-

h o r i z o n t a l P r a i r i e Remoulded

-

Seven S i s t e r s I n i t i a l Water Content,

%

Le da Undisturbed

1

65

1

27

1

1 6 0.6 Remou l d e d

1

l 2 0 . 5 Water Content a t s h r i n k a g e l i m i t ,

%

Cementing ma-

I,,,

t e r i a l s removed" ^ 47

I

I

a washed w i t h 1

M

CaC12, e x c e s s s a l t removed by p r e s s u r e f i l t r a t i o n .

L i n e a r s h r i n k a g e e x p r e s s e d a s $ of oven-dry dimension of sample Normal Residual shrinkage s h r i n k a g e -

-:--% t r e a t e d t o remove i r o n and alumi

urn

o x i d e s and c a r b o n a t e s , s a t u r a t e d w i t h calcium a s exchangeable ioll,

2

and c o n s o l i d a t e d a t 2 kg/cn

.

Volume s h r i n k - age

-

cc/100 cc o r i g i n a l volume

(22)

TABLE I V

WAmR CONTENT AND DIP~SIONAL REGAIN OF COPTSOLIDA!FED SAMPLES OF LEDA CLAY Sequence of t r e a t m e n t s Remoulded Leda c l a y c o n s o l i d a t e d a t 46 kg/cm2 A i r - d r i e d S a t u r a t e d Remoulded Leda c l a y c o n s o l i d a t e d a t 46 kg/cm2 S a t u r a t e d A i r - d r i e d S a t u r a t e d Leda c l a y w i t h cementing agen-tsmmoved and l e a c h e d w i t h C a C l c o n s o l i d a t e d a t 2 kgFcm2 Oven-dried S a t u r a t e d Leda c l a y w i t h cementing a g e n t s removed and l e a c h e d w i t h CaCl2 c o n s o l i d a t e d a t 2 kg/cm2 S a t u r a t e d A i r - d r i e d Water C o n t e n t ,

%

25 2

31

25 4 1 2 30 47 0 29 Dimensions o f samples a s

,%

i n c r e a s e o v e r d r y dimension V e r t i c a l H o r i z o n t a l 1.9 3.2 0 0 8.3 4.5 0.5 3.2 12.9 6.8 0 0 8.1 3.0 a

-

b

-

a

-

-

b 13.2 11.6 11.2 10.6 0 0 0 0 4 . 8 .

2.7

2.6 2.2

(23)

SAMPLE HOLDER SOIL SAMPLE CLEAR PLASTIC CYLINDER CROSS-SECTION OF PYCNOMETER BOTTLE FOR DETERMINING DRY DENSITY

FIGURE I

(24)

WATER CONTENT Oh

F I G U R E 2

(25)
(26)

-

UNDISTURBED SAMPLE, VERTICAL DIRECTION

-

-

-

SAMPLE NO. 8 8 - 9

-

-

-

-

-

-

REMOULDED

-

(VERTICAL &

-

-

UNDISTURBED SAMPLE,

-

+

noRIzoNTPiL ,plREcT,oN I

-

0 10 2 0 30 40 5 0 60 70

WATER CONTENT (PER CENT DRY WEIGHT OF SOIL)

iz!GURE

4

SHRIIN<AGE

CURVES

FOR PRAIRIE CLAY

FROM

(27)

FIGURE

5

(28)

I? -1

-

REMOULDED SAMPLE, MATERIALS REMOVED I N I T I A L W = 4 0 O/! SAMPLE NO. 83- 27

GrJATER CONTENT TO WHICH SAMPLE W A S DRIED

(PER CENT OF DRY VdElGHT OF SOIL)

FIGURE

6

VIAYER

CONTENT REGAIN FOR LEDA CLAY SAMPLES

(29)

WATER CONTENT TO WHICH SAMPLE WAS DRIED O/o

FIGURE

7

DIMENSIONAL REGAIN OF LEDA CLAY SAMPLES ON

WETTING AFTER DRYING

(30)

WATER CONTENT TO WHICH SAMPLE WAS DRIED O/o

F I G U R E

8

(31)

-

-I

a

2 VERTICAL DIMENSION, UNDISTURBED SAMPLE -ZE!wlENTING MATERIALS HORIZONTAL DI?:4ENSION UNDISTURBED SAMPLE REMOULDED SAMPLE SAMPLE NO. 88-9 Z

-

1 VlATER CONTENT TO WHICH SAMPLES WERE DRIED

(PER CENT OF DRY WEIGHT OF SGrL)

FIGURE

9

DIL4ENSIONAL REGAIN

OF PRAIRIE CLAY S A M P L E S

ON WETTING

A F T E R DRYING

Références

Documents relatifs

This study examines the international climate policy process and overlapping national policy processes in the United States, Japan, and the Netherlands through the lens

Los gestores directos eran en su mayoría actores locales, empresas y la sociedad civil, mientras que los gestores indirectos eran a menudo organizaciones de alcance nacional y

A ce titre et compte tenu de l’importance de l’investissement dans le monde moderne, les pays développés et ceux en voie de développement tendent à promouvoir le volume

We first consider the information gathering problem, and plot peak and average age for all the proposed trajectories of the mobile agent: the Metropolis-Hastings randomized trajectory

These include: better integration among housing market sub-models, such as predictors of residential mobility becoming determinants of choice set formation; explicit modeling of

Dans bien des cas d'après les enquêtés, les produits de terroir se distinguent par leur qualité organoleptique : ainsi le litchi Thieu de Thanh Ha est réputé &#34;plus sucré, et

ficus‐ indica seeds, in this study cakes resulting from the pressing were macerated in ethanol and then a Supercritical Antisolvent Fractionation (SAF) technique was used for

( دﺎﺼﻴ يذﻝا ئرﺎﻘﻝﺎﻓ نّﻜﻤﺘﻴ ﻻ لﺎﺜﻤﻝا لﻴﺒﺴ ﻰﻠﻋ ﺔﺘوﺤﻨﻤﻝا تﺎﻤﻠﻜﻝا ﻩذﻫ ف ﺎّﻤﻤ ،ﺎﻬظﻔﻝ نﻤ ﺎﻫﺎﻨﻌﻤ كاردإ ﻪﻴﻠﻋ رّذﻌﺘﻴ ﻲﻝﺎﺘﻝﺎﺒو ،ﺎﻬﻨﻤ تذﺨُأ ﻲﺘﻝا ﺎﻬﻝوﺼأ ﺔﻓرﻌﻤ نﻤ