• Aucun résultat trouvé

Evidences for liquid encapsulation in PMMA ultra-thin film grown by liquid injection Photo-CVD

N/A
N/A
Protected

Academic year: 2021

Partager "Evidences for liquid encapsulation in PMMA ultra-thin film grown by liquid injection Photo-CVD"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-01218622

https://hal.archives-ouvertes.fr/hal-01218622

Submitted on 21 Oct 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Evidences for liquid encapsulation in PMMA ultra-thin

film grown by liquid injection Photo-CVD

Claudiu Constantin Manole, Olivier Marsan, Cedric Charvillat, Ioana

Demetrescu, Francis Maury

To cite this version:

Claudiu Constantin Manole, Olivier Marsan, Cedric Charvillat, Ioana Demetrescu, Francis

Maury.

Evidences for liquid encapsulation in PMMA ultra-thin film grown by liquid injection

Photo-CVD. Progress in Organic Coatings, Elsevier, 2013, vol.

76 (n° 12), pp.

1846-1850.

(2)

To link to this article : DOI:10.1016/j.porgcoat.2013.05.027

URL :

http://dx.doi.org/10.1016/j.porgcoat.2013.05.027

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 14102

To cite this version:

Manole, Claudiu Constantin and Marsan, Olivier and Charvillat, Cedric and

Demetrescu, Ioana and Maury, Francis Evidences for liquid encapsulation in

PMMA ultra-thin film grown by liquid injection Photo-CVD. (2013) Progress in

Organic Coatings, vol. 76 (n° 12). pp. 1846-1850. ISSN 0300-9440

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers

and makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes.diff.inp-toulouse.fr

(3)

Evidences

for

liquid

encapsulation

in

PMMA

ultra-thin

film

grown

by

liquid

injection

Photo-CVD

Claudiu

Constantin

Manole

a,b,∗

,

Olivier

Marsan

a

,

Cedric

Charvillat

a

,

Ioana

Demetrescu

b

,

Francis

Maury

a

aCIRIMAT,CNRS/INPT/UPS,4alléeE.Monso,BP44362,31030Toulousecedex4,France bUPB,FacultyofAppliedChemistryandMaterialsScience,1-7Polizu011061,Bucharest,Romania

Keywords:

Poly(methylmethacrylate) Photo-CVD

DirectLiquidInjection RamanConfocalSpectroscopy AtomicForceSpectroscopy

a

b

s

t

r

a

c

t

Thispaperdealswiththecharacterizationofultra-thinfilmsofPMMAgrownbyanoriginal photo-assistedChemicalVaporDepositionprocessequippedwithapulsedliquidinjectionsystemtodeliver themonomer.Thenanometricthickfilmsshowedagoodabilitytoencapsulatealiquidphaseas micro-dropletsprotectedbyathinpolymerictightmembraneintheformofblisters.Techniquesthatarecapable toanalyzetheseheterogeneousstructuresatmicro-andnanoscopicscalesuchasRamanConfocal Spec-troscopyandAtomicForceMicroscopywereusedtocharacterizethesepolymerfilms.Theliquiddroplets werefoundtobemonomerencapsulatedbyaPMMAfilm.Thespecificpropertiesoftheseultra-thin filmsexhibitself-healingcapabilitiesatmicroscopicscalemakingthemattractiveforfunctionalization ofsurfacesandinterfaces.

1. Introduction

TheChemicalVaporDeposition(CVD)isavaluableand

versa-tiletechniquetogrowmicro-andnanostructuredmaterials.Itfinds

applicationsinmanynanofabricationareasforinstancetoproduce

carbonnanotubes[1],lowdielectrics[2],core–shell

nanostruc-tures[3]andnanocompositecoatings[4].TodevelopindustrialCVD

processesseveraltechnologiescompetetodeliverthehighflow

ratesofreactivegasrequiredforhighgrowthratesandlargescale

reactors.Startingfromliquidmolecularcompoundsasprecursors,

thisincludesforinstanceAerosolAssistedCVD[5]andpulsedDirect

LiquidInjectionCVDcoupledtoaflashvaporizationoftheliquid

monomertoformthevaporphase(DLI-CVD)[6].Forthislast

tech-niqueawideareaofapplicationsistargetedbyintensiveresearch

oninorganicmaterials,eitheroxides[7–9]orcarbides[6,10,11].

OrganicmaterialsarealsodepositedbyCVDprocessesusing

vari-ousactivationtechniquesofthereactivegasphasetocompensate

theverylowdepositiontemperatureimposedbythesethermally

fragilematerials.Thuspolymericthinfilmsweregrownbyinitiated

CVD(iCVD),e.g.hot-filamentactivation[12,13],PlasmaEnhanced

CVD(PECVD)[14]andtheGrahamprocess[15]usingrespectively

chemical,plasmaandthermalactivationmethods.

∗ Correspondingauthorat:FacultyofAppliedChemistryandMaterialsScience, UniversityPolitehnicaBucharest,Str.Polizu1-7,011061,sector6,Bucharest, Roma-nia.Tel.:+40214023930;fax:+40213111796.

E-mailaddress:claudiu.manole@ymail.com(C.C.Manole).

The ultra-thin polymericfilms discussedin this paper were

obtainedbyanoriginalCVDprocess.First,theoriginalitycomes

fromthephotonactivationofthegasphase(Photo-CVD)without

irradiatingthethinlayergrowingonthesubstrate.Uptonowthis

techniquewasreportedtodepositinorganicmaterials[16].

Sec-ondly,sincethepolymerizationinvolvesaliquidmonomerasCVD

precursoranovelapproachwastouseDLI-CVD.Thisdual

inno-vationresultedinthedepositionofultra-thin(nanometric)poly

(methylmethacrylate)(PMMA)filmsthat,underparticular

condi-tions,encapsulatedaliquidphaseofitsmonomer.PMMAthinfilms

werepreviouslydepositedbyiCVDandevidencesforafree-radical

mechanismwerefound[13].TheapproachoftheDLIPhoto-CVD

processisbasedonthephotonactivationofthegasphase.Ithas

theadvantageofdepositingatroomtemperature(orlower),

with-outdirectsubstrateirradiationanditallowstoobtainaconformal

coverageatlowpressures(oversolidandliquidsurfaces).

Becausethefilmsarenanometricthicktheircharacterization

requires specific tools and methodologies. This paper gives an

insightintothemeansofcharacterizingsuchpolymericultra-thin

films.Theexperimentalresultsdeducedfromthetechniquesused

givedirectand indirectevidencesofthemainfeaturesof these

PMMAthinfilms.

2. Materialsandmethods

ThecoreofthePhoto-CVDsystemstandsinavertical

align-mentperpendiculartothesubstratesurfaceofanInjectionSystem,

(4)

Table1

ExperimentalparametersusedforDLIPhoto-CVDofPMMAfilms.

Parameters Inj-1 Inj-2

Depositiontemperature(◦C) 18 18

Totalpressure(Torr) 9.5 9.5

Injectorconditions

fliq(Hz) 1 1

ton(ms) 1 1

N2carriergasininjector(sccm) N/A 150

N2carriergasinvaporizationchamber(sccm) 108 N/A

Setpoint(%) N/A 10

fgas(Hz) N/A 1

andaSampleReactor.Theinjectorsystemsflashvaporizesthe liq-uidmonomerusedasprecursor.Fortheexperimentsreportedin thispaper,twocommercialinjectionsystemsprovidedby Kem-stream(www.kemstream.com)wereused.

Inthecaseofinjectionsystem1(Inj-1)aliquidinjector

commu-nicatesdirectlytoavaporizationchamber.Theamountofliquid

injectedis computercontrolledbyanopeningtime (ton)and a

repeatingfrequency(fliq)oftheprocess.Inthevaporization

cham-berthesprayoftheliquidisvaporizedandmixedwithacontinuous

streamofN2usedascarriergasmonitoredbyamassflowmeter.

Theinjectorsystem2(Inj-2)isanewgenerationdesignedto

improvetheatomizationandthegasflowrateoftheprecursor.It

hastwo-stagecomponents.Itcontainsafirstliquidinjectorthat

pulsesthemonomertoamixingchamber.Theamountofliquid

injectedatthisfirststageiscontrolledbyanopeningtime(ton)and

arepeatingfrequency(fliq)oftheprocess.Thisfirstliquid

injec-torcommunicateswithasecondgasinjectoractingalsoasmixing

chamberwiththecarriergas.Thegasinjectormixesthespraywith

N2ascarriergasandthenpulsestheliquid/carriergasmixtureinto

theflashvaporizationchamber.Thegasinjectionismonitoredby

amassflowmeter.Theamountofgasinjectediscontrolledbythe

softwarethatconvertsagivensetpoint(percentofsccm)inopening

time.Therecurringpulsedopeningtimeofthegasinjectorisgiven

bya gasfrequency(fgas).Bothinjectionsystemsproducesprays

withdifferentcharacteristicsintermsofaveragesizeofdroplets

andsizedistribution.

For Inj-1 setup, the monomer waspushed by a pressure of

3.8barofN2towardstheinjectorwhichoperatedatfliq=1Hzand

ton=1ms.IntheInj-2setup,themonomerwaspushedwitha

pres-sureof3.5barandtheN2carriergaspressurewasof2bar,with

Setpoint=10%and fgas=1Hz.Theexperimentalparameterswith

respecttotheinjectingconditionsaresummarizedinTable1.

TheUVchamberconsistsoffourHglowpressurelamps

emit-tingat254nm(HeraeusmodelNNI60/35XL).Foreachlamp,the

radiativefluxat254nminairatroomtemperaturewas20Wand

theirradianceatthiswavelengthwas150␮W/cm2atadistanceof

1m.Theyare38cmlongandplacedaroundaquartztubeof5cmin

diameterand40cmlong.Thelampsandthetubearesurroundedby

ashellandapolishedaluminumreflector.Thetemperatureofthe

lampsandthequartztubearemaintainedaround80◦Cbyastream

ofcompressedair.Thevaporphaseisphoto-activatedwhenpassing

intothisquartztubeandiscarriedtowardsthesamplereactor.For

thedeposition,themonomermethylmethacrylate(MMA)

(con-taining∼0.004%hydroquinoneasstabilizer) wasmixedwith2%

1-hydroxycyclohexylphenylketoneasphoto-initiator(PI)inorder

toaidthepolymerization.TheywerebothpurchasedfromSigma

Aldrichandusedasreceived.

The substrates in the growth reactor were placed

perpen-dicularly tothemain gasstreamon asample holder equipped

witha temperaturecontrolsystem.Theywerekeptatambient

temperature(18◦C).Theyweredegreased andcleanedin

ultra-sonicbathwithacetoneand thenethanol. During deposition,a

substrateareawasmaskedinordertoallowadirectcomparison

between a deposited and an undeposited zone. The masking

was performedby placing the polished face of a Si(100) chip

(10mm×5mm×0.4mmdirectlyonthepolishedsurfaceofa

rect-angular Si(100) wafer (30mm×5mm×0.4mm). The intimate

contactbetweenthetwopolishedsurfacespreventsthediffusion

ofreactivegasbetweenthemandthereforethecontaminationof

themaskedsurfaceofthesubstrateduringtheCVDrun.Inorder

tohaveadifferenttypeofsurfaces,a25mm×25mm×1mmglass

substratewasalsousedneartheSi(100)substrate.

TheAtomicForceMicroscopy(AFM)datawasobtainedbyan

AgilentTechnology5500AFMoperatinginacousticmodewith

sil-iconTypeVIIMACLeverfromAgilent.TheAFMmeasurementswere

madeataspeedof5nm/satroomtemperatureinambientair.The

RamanspectraandinsituOpticalMicrographieswereobtainedat

roomtemperaturebyaHoribaLabRAMRamanConfocal

Spectrom-eterwitha5mWlaseremittingat532nm.Bothtechniquesoffer

directcharacterizationofthesamples.However,withrespectto

ultra-thinnanometriclayers,thesecharacterizationscanprovide

direct and indirect experimentalresults. TheAFM offers direct

resultsovertheultra-thinfilmduetotheatomicforceinteractions

thatitmeasures;itisreallyasurfaceanalysistechnique.

TheRamanConfocal Microscopy(RCM)analysisofultra-thin

polymericfilmsprovidesbothdirect andindirectresultsinthe

sensethatitisnotreallyasurfaceanalysistechniqueanditcan

beinvasiveforthematerialanalyzed.Thesamplescanbeanalyzed

as-depositedandaftersubsequenttreatmentseitherinsituduring

theRamananalysisasaresultoftheinteractionbetweenthelaser

beamandthematerial,orvariouspost-treatments.Inthiswork,we

focusonpost-thermaltreatmentintheambientairofaMemmert

Model550ovenat115◦C.

3. Resultsanddiscussion

ThetwoDLIsystemsallowedencapsulatingdifferentvolumes

ofliquidinsideapolymericthinmembraneonthesurfaceofa

sub-strate.Thetwoinjectionsystemswithcontinuous(Inj-1)orpulsed

(Inj-2)carriergasofferedthepossibilitytoinvestigateultra-thin

filmswithdifferentmorphologiesandproperties.

Inafirstseriesofdepositionexperiments,theInj-1 injection

systemwasusedtoobtainverythin polymericfilmbytheDLI

Photo-CVDprocess.Theformationofananometricthickmembrane

isdifficulttoidentifyandcharacterize,inparticulartodetermine

itsthicknessandstructuralfeaturesbecauseorganicpolymersare

generally nonconductive and thermally fragile materials.

Infor-mationwithrespecttothepresenceofanultra-thinfilmcanbe

obtaineddirectlybyAFMorindirectlybyextrapolatingRCMdata.

TheAFMtopographyofanuncoatedarea(Fig.1a)andacoated

area(Fig.1b)overthesamesubstrateisshown inFig.1.Itcan

beobservedthatthemaximumheightforacoatedareaincreased

byapproximately30nmwithrespecttotheuncoatedone,which

revealsthepresenceofanultra-thinfilmcoveringthesurfaceofthe

substrate.Bymappingthephaseofthecantileveroscillations,the

AFMoffersthepossibilitytoidentifyvariationsinthesample

com-position.InFig.1c,thephaseimagingofthecoatedareashowssuch

aphasechangeandrevealstwotypesofstructures.First,whatcan

beregardedasencapsulatedliquiddroplets(structure#1),looking

asblistersca.1␮mindiameterspreadoutoverthesurfaceofthe

sampleand,secondly,smallerheterostructureslookingasagood

conformalcoverageofsolidnanoparticlesthatcontaminatedthe

surfaceoftheSisubstratebyathinfilm.

Afterthedeposition,theblistersobservedonthesurface

pre-servetheirshape,sizeanddistributiononthesurfaceevenafter2

monthsinambientairandindark.Theydonotshowanychange

duetoeitherchemicalreactivityforinstancewithairorto

(5)

Fig.1.AFMtopographyforanuncoatedarea(a)andforacoatedarea(b)withtheInj-1system.Thephaseimageofthedepositedareaisalsopresented(c)withpossible liquidencapsulationasblisters(1)andinhomogeneitiesresultingfromconformalcoverageofparticlescontaminatingthesurfaceoftheSi(100)substrate(2).

monomer,itsvaporpressureissufficientlyhigh(29.5Torrat20◦C)

tobecompletelyevaporated.Thisindicatestheliquiddropletsare

protectedfromtheenvironmentbyaverythinpolymeric

mem-brane.Atthisstage,thebestassumptionistoconsiderthatthese

blisterslikestructurescontainaliquidthatshouldbethemonomer

andthephotoinitiatormoleculesincetheyarethesoleliquid

com-poundsinvolvedintheCVDprocess.

Raman analysis of an as-deposited droplet-like structure

approximately10␮mwide, revealsthe C C bonds ofboth the

monomer(notpresentinthepolymer)andthephotoinitiatorwith

bandsat1640cm−1 and1660cm−1,respectively.Thisresultsin

abroadcumulativeC Cpeakinthisspectralrange(Fig.2).Even

iftherewereonly2%ofPIintheinitialsolutioninjected,itcan

bepresent in anamount significantly greater in theseblisters.

Indeed,thevolatilityofMMA(29.5Torrat20◦C)comparedtoPI

(2.2×10−3Torr)suggeststhatapartofthemonomerislikely

evap-oratedduring thedepositionunderreduced pressure (9.5Torr),

whichenrichestheproportionofPIintheliquidcondensedonthe

substratesurface.

Theissueofseparatingthetwospeciestodeterminethe

compo-sitionoftheliquidinthedropletswillberesolvedbyasubsequent

post-treatmentofthesample.TheRamantechniquewasreported

asa tool for estimating theextentof polymerizationof PMMA

after a thermal treatment, highlightingthe 115◦C temperature

as optimum temperaturefor monomer polymerization[17].As

observedinFig.2,thebandassociatedtothemonomerdecreases

graduallywiththeincreaseofthetimeofathermalpost-treatment

at115◦Cin air.Thisindicatesthepresenceofliquid MMAinto

theobserveddrop-likestructurethatprogressivelypolymerizeby

Fig.2.Ramanspectraofa10␮mencapsulateddropletsobtainedwithInj-1system afteranthermal(115◦C)post-treatment.

thermal activation.Duringand afteralloftheRaman

measure-ments,thefilmandthedropletsdepositedusingtheInj-1system

werepreservedintact.

ThefurtheruseoftheInj-2injectionsystemwillprovide

poly-mericthinfilmswithsimilarfeatures,butwithdifferentproperties.

Largerdropletswereincorporatedintoathinfilmgrownusingthe

Inj-2injectionsystem.TheAFMforcemicroscopywasperformed

ontothreepointsindicatedintheAFMtopographicalimage(Fig.3).

TheAtomicForceSpectroscopyinvolvesthreestepsof theAFM

cantileverbehavior:(i)anapproachhalfcycle,whenthecantilever

tipapproachesthesurface,(ii)acontactwiththesampleand(iii)a

retractinghalfcyclewhenthecantileverretracts.Fig.3bshowsthat

thebareSisubstrate(thereference)hasashortapproach/retracting

cycle(∼0.5s).Duetotheultra-thinpolymericfilmcoveringthe

sub-strate,theapproach/retractcyclesarelonger(∼1.5s)thatindicates

amoreelasticbehaviorcomparedtothebareSisubstrate.Ifpure

liquidwerepresentontothesurfaceasfreedroplets,i.e.without

encapsulationinanultra-thinmembraneasblisters,theAFMtip

wouldhavepenetratedtheliquideasily,indicatingthusadifferent

retractingcyclefortheregion3comparedtoregions1and2.

ItiswellknownthatthefocusedRamanlasergeneratesheat

thatcandamagematerialsiftheyabsorbthephotons.Forinstance,

thelaser-inducedthermaleffectswerestudiedoncarbon

nano-tubesandonmagnetiteoxidation[18,19].Also,theoptimizedlaser

energycanbeusedtoachieveweldingofPMMAsheets[20].Here,

duringtheRamanMicroscopyanalysesoflayersobtainedby

Inj-2system,theultra-thinfilm ontheSisubstrate wasirradiated

insitubythelaserbeam.Duringthislaserirradiationfor

approx-imately15s,bothadestructiveanda constructiveeffectcanbe

extrapolated.

Firstly,theas-depositedblisterapproximately30␮min

diam-eter(Fig.4a)onwhichthelaserfocusshowsacatastrophicfailure

of the film bythe presence of a crater-like structure (Fig.4b).

Thefocal diameterof theRCMlaserwas430nm.Theresulting

crater-like geometry after the exposure to laser beam reaches

approximately5␮mindiameter.Thedegradationprocesscanbe

essentiallydescribedbythefollowingsteps:(i)laserenergy

absorp-tionatthethin filminterfacewiththeSisubstrateleadingtoa

suddentemperatureincreaseoriginatingessentiallyfrom

absorp-tionoftheSi,(ii)initialthermalstrainandpossiblymelting(suchas

depolymerizationofPMMA[21])and/orvaporizationoftheliquid

species(MMA),and(iii)thermallyinducedpolymerizationfrom

encapsulatedmonomerinthelowtemperatureareas(attheedges

ofthecrater)[22].InFig.4aandb,thelaserbeamwasfocusedon

aheterogeneityembeddedintheblister.Thisheterogeneitylikely

originatingfromthesurfacecontaminationoftheSisubstrateis

uncoveredafterlaserirradiationatthecenterofthecraterasshown

inFig.4b.Forblisterswithoutsuchcontaminationthebottomof

thecrateriscleanafterlaserexposureandnoparticleisobserved

(6)

Fig.3.TheAFMtopography(a)witharrowsindicatingtheareaswheretheforcespectroscopydata(b)wereobtainedforthePMMAfilmpolymerizedwiththeInj-2system andforthebareSisubstrate.

Fig.4. InsituopticalmicroscopyimageoffilmsdepositedwiththeInj-2systemacquired(a)(c)beforeand(b)(d)afterirradiationbyfocusinga5mWlaserbeamemitting atawavelengthof532nmoftwoblister-likestructuredepositedover(a)(b)glassand(c)(d)Si(100)substratesduringRamananalysis.

Thepresenceofsuchcrater-likestructuresafterseveralRaman

analysessupportsthisdegradationprocess.Ramanlaserprovides

a heatgradient acrossthe surfaceof thesample, witha

maxi-mumtemperatureatthecenterofthespotandasharpdecrease

towardsambienttemperature attheperiphery. Shebanova and

LazorobservedthatRamanlaserirradiation(at512nm)induced

theoxidationofmagnetite[18].Thisoxidationcouldoccurat

tem-peraturescloseto240◦C[18].Theirstudywasorientedtowardsthe

determinationofthelocaltemperatureforthelaser-heatedspot.It

involvedthevariationofthepowertothesample(7–60mW)over

aspotsizeofaround5–10␮m,forinstance50mW/5␮m.Forthe

opticalobjectiveusedinourexperimentsthecalculatedspotsizeof

our5mWlaserisaround0.5␮m.Thereforetheapproximatepower

persurfaceareaoftheRCMusedinourexperimentsisofthesame

orderofmagnitude(5mW/0.5␮m).At50mWthetemperaturewas

correlatedbyShebanovaandLazorataround410◦Cformagnetite

[18].Sisubstratestronglyabsorbsirradiationat532nmanditcan

readilytransmititslocalheattothepolymericfilm.Therefore,itcan

besuspectedthatattheobservedradiusof2.5␮mfromthecenter

ofthecrater(i.e.edgeofthecrater)thetemperaturecouldreachan

optimumvaluenear100◦Cthatleadstoaself-healingmechanism

oftheblisterbythermalpolymerization.Thesealingattheedgeof

theexposedareacanbeconsideredasaconstructiveeffectoflaser

irradiation(Fig.4c).

ThedifferentbehaviorofthesamplespreparedusingtheInj-1

andInj-2 systemsobservedduringRamananalysesmaybedue

to a different composition of the liquid (for instancethe ratio

MMA/PI)encapsulatedinthepolymerfilm.Thenanometer-thick

PMMAfilmsthatencapsulatepolymerizablemonomericspecies

showself-healingproperties,withtheabilitytore-sealthearea

thatsufferedacatastrophicfailure.Thisisachievedunderparticular

conditionsdictatedbytheactivationparametersofthe

polymer-izationsuchasthetemperatureinducedbylaserheating.

4. Conclusions

AnoriginalPhoto-CVDprocess wasusedtoobtainultra-thin

nanometric PMMA films. After the photo-excitation of thegas

(7)

surfaces.Twocommercialinjectorsystemsallowedliquid

encap-sulationasblisterswithdifferentmorphologiesandproperties.A

partoftheliquidmonomerwasencapsulatedasmicrodropletsin

theultra-thinpolymericfilm.AFMandRCMtechniqueswereused

tocharacterizesuchfilmsandevidencesforliquidencapsulation

weregiven.Thefilmpresentsself-healingbehavioratmicrometric

scale,apropertythathasthepotentialtobealsoexploitedatlarger

scales.

Acknowledgements

The work has been funded by the Sectoral Operational

Programme Human Resources Development 2007–2013 of the

RomanianMinistryofLabour,FamilyandSocialProtectionthrough

theFinancialAgreementPOSDRU/88/1.5/S/61178.

References

[1]R.K.Sahoo,V.Daramalla,C.Jacob,Mater.Sci.Eng.B177(2012)79–85.

[2]S.-J.Cho,I.-S.Bae,J.-H.Boo,ThinSolidFilms518(2010)6417–6421.

[3]L.Cao,H.Jiang,H.Song,Z.Li,G.Miao,J.AlloysCompd.489(2010)562–565.

[4]D.Barreca,D.Bekermann,E.Comini,A.Devi,R.A.Fischer,A.Gasparotto,M. Gavagnin,C.Maccato,C.Sada,G.Sberveglieri,E.Tondello,Sens.ActuatorsB: Chem.160(2011)79–86.

[5]F.-D.Duminica,F.Maury,S.Abisset,ThinSolidFilms515(2007)7732–7739.

[6]A.Douard,C.Bernard,F.Maury,Surf.Coat.Technol.203(2008)516–520.

[7]M.E.A.Warwick,C.W.Dunnill,J.Goodall,J.a.Darr,R.Binions,ThinSolidFilms 519(2011)5942–5948.

[8]M.G.Nolan,J.A.Hamilton,S.O’Brien,G.Bruno,L.Pereira,E.Fortunato,R. Mar-tins,I.M.Povey,M.E.Pemble,J.Photochem.Photobiol.A:Chem.219(2011) 10–15.

[9]A.Douard,F.Maury,Surf.Coat.Technol.200(2006)6267–6271.

[10]A.Shanaghi,A.R.S.Rouhaghdam,S.Ahangarani,P.K.Chu,T.S.Farahani,J. Non-Cryst.Solids258(2012)3051–3057.

[11]N.Yoshida,S.Terazawa,K.Hayashi,T.Hamaguchi,H.Natsuhara,S.Nonomura,J. Non-Cryst.Solids(2012),http://dx.doi.org/10.1016/j.jnoncrysol.2012.03.028. [12]K.Chan,K.K.Gleason,Langmuir21(2005)11773–11779.

[13]K.Chan,K.K.Gleason,Chem.Vap.Deposit.11(2005)437–443.

[14]T.B.Casserly,K.K.Gleason,Chem.Vap.Deposit.12(2006)59–66.

[15]V.Santucci,F.Maury,F.Senocq,ThinSolidFilms518(2010)1675–1681.

[16]A.M.Boies,J.T.Roberts,S.L.Girshick,B.Zhang,T.Nakamura,A.Mochizuki, Nanotechnology20(2009)295604.

[17]F.Pallikari,G.Chondrokoukis,M.Rebelakis,Y.Kotsalas,Mater.Res.Innov.4 (2001)89–92.

[18]O.N.Shebanova,P.Lazor,J.RamanSpectrosc.34(2003)845–852.

[19]Y. Zhang,H.Son, J. Zhang,J. Kong, Z.Liu, J. Phys.Chem. C111 (2007) 1988–1992.

[20]I.Jones,J.Rudlin,Proceedingsofthe2ndInternationalConferenceonJoining Plastics,NationalPhysicalLaboratory,2006,pp.25–26.

[21]B.B.Troitskii,G.A.Domrachev,L.V.Khokhlova,L.I.Anikina,DokladyPhys.Chem. 375(2000)268–270.

[22]J.Bovatsek,A.Tamhankar,R.Patel,N.M.Bulgakova,J.Bonse,Proc.SPIE7201 (2009)720116.

Figure

Fig. 2. Raman spectra of a 10 ␮m encapsulated droplets obtained with Inj-1 system after an thermal (115 ◦ C) post-treatment.
Fig. 4. In situ optical microscopy image of films deposited with the Inj-2 system acquired (a) (c) before and (b) (d) after irradiation by focusing a 5 mW laser beam emitting at a wavelength of 532 nm of two blister-like structure deposited over (a) (b) gla

Références

Documents relatifs

Aussi, la place de la dynamique de don et ses impacts sur la création et le maintien de ce type de liens en travail de proximité joue un rôle prépondérant dans la

Some glitches detected by Omega or MBTA can result from a spectral line in the DF which becomes non-stationary in amplitude or in frequency because of fluctuations in the coupling

Dans le sens où ils permettent aux développeurs de développer des solutions en facilitant l’utilisation de plans (API de cartographie), ou en leur évitant de

On-farm demonstration activities have been organised to validate the prototypes of automatic feeders, to refine their characteristics under field conditions, and to promote

neuf cent soixante-dix million cent vingt-deux mille sept cent soixante- dix-sept. 970

Au c ur du renouvellement des études politiques et parlementaires (Achin 200 , Gardey 201 ), débuté à la fin des années 1 0 (Rémond 1 ), le genre s’impose ces dernières

Improved survival after allogeneic hematopoietic stem cell transplantation for metastatic renal cancer associated with homozygosity for the HLA-G 14 base-pair deletion polymorphism:

cents; observant Jews with Polish moustaches; Polish marrano aristocrats; Polish Nazi informants who identified Jews incorrectly; Jews in Poland who would have been