• Aucun résultat trouvé

Queues with infinitely many servers

N/A
N/A
Protected

Academic year: 2022

Partager "Queues with infinitely many servers"

Copied!
6
0
0

Texte intégral

(1)

RAIRO. R ECHERCHE OPÉRATIONNELLE

L AJOS T AKÁCS

Queues with infinitely many servers

RAIRO. Recherche opérationnelle, tome 14, no2 (1980), p. 109-113

<http://www.numdam.org/item?id=RO_1980__14_2_109_0>

© AFCET, 1980, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Recherche opérationnelle » implique l’accord avec les conditions générales d’utilisation (http://www.

numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

R.A.I.R.O. Recherche opérationnelle /Opérations Research (vol. 14, n° 2, mai 1980, p. 109 à 113)

QUEUES WITH INFINITELY MAWY SERVERS

by Lajos TAKÂCS

Abstract. — In the time interval (0, oo) calls arrive in a téléphone exchange in accordance with a récurrent process. There are an unlimited number ofavailable Unes. The holding times are mutually independent and identically distributed positive rondom variables and are independent of the arrivai times. In this paper we détermine the limit distribution of the number of the busy Unes at the arrivai of the n-th call as n -* oo.

Resumé. — Dans Vintervalle (0, oo) des appels téléphoniques sont arrivés à la centrale selon un processus récurrent. Il y a des guichets disponibles en nombre infini. Les durées de service sont des variables aléatoires indépendantes positives avec la même fonction de distribution et indépendantes aussi des instants d'arrivée. Dans cet article nous déterminons la distribution-limite du nombre des guichets occupés à l'arrivée du n4ème appel quand n -> oo.

1. INTRODUCTION

In a téléphone exchange there are an unlimited number ofavailable lines and a connection is made immediately after the arrivai of each call. Dénote by xn the arrivai time and by %n the holding time of the n-th call arriving in the time interval (0, oo). We assume that x „ - xn_x ( w = l , 2, . . . , xo = 0).and %„ ( n = 1, 2, . . .) are independent séquences of mutually independent and identically distributed positive random variables.

Dénote by ^n the number of the busy lines at the arrivai of the n-th call. In this paper we shall détermine the limit distribution of ^n as n - • oo. The analogous problem of finding the limit distribution of Ç(t), the number of the busy lines at time t, as t -> co has already been solved by the author [1].

We shall use the notations

and

P{ln^x}=H(x) for n=l,2

(*) Received August 1979.

ll) Case Western Reserve University, Department of Mathematics and Statistics, Cleveland, Ohio, U.S.A.

R.A.I.R.O. Recherche opérationnelle/Opérations Research, 0399-0842/1980/109/$ 5.00

© AFCET-Bordas-Dunod

(3)

110 L. TAKÂCS Furthermore,

f l if T , £X j.

Ej

\0 if xj>xj.

f o r j = l , 2, . . .

The expected number of calls arriving in the time interval (0, x] is

m(x)= £ F

n

(x) (2)

for x ^ 0.

2. THE DISTRIBUTION OF £,„

We observe that if n > 1, then the random variable ^„ has the same distribution as ex + s2 -f . . . + £ „ _ i . Obviously, £,„ is equal to the number of subscripts i = l , 2, . . ., n—1 for which xt + Xi è TH- If w e replace Xi> X2» • • •»

X « - i b y x „ - i , x « - 2 » - • •. X i res p e c t i v e l y , a n d T1- T o , T2- T i) . . . , xB- xn- i b y xw — ! „ _ ! , xn_ ! —T„_2, - . ., T1-T0 respectively, then we can conclude that C„

has the same distribution as the number of subscripts i = l , 2, . . . , n—1 for which X; ^ X;. Accordingly,

(3) for fc = 0, 1, . . . , n - 1 .

The r-th binomial moment of £,,, is

E

{ ( V ) }

=

£ EKe

l2

...

ej

,} (4)

L r J

for r= 1,2, . . ., n — 1, and 1 for r = 0. I f r = l , 2, . . ., n— 1, then by (1) we obtain that

Ç 00 Ç 00 p 00

E {

£ i i

e

f a

. . . e J = . . . [l-.fftx^tl-HCxi+Xa)]...

J o j o J o

x [1 - H (X l + . . . + xr) ] dFix (x,) dFti (x2) . . . dFir (xr). (5)

The distribution of ^„ is uniquely determined by its binomial moments. See référence [2]. We have

f o r fc = 0 , 1 , . . . , n - l .

R.A.I.R.O. Recherche opérationnelle/Opérations Research

(4)

QUEUES WITH INFINITELY MANY SERVERS 1 1 1 3. THE LIMIT DISTRIBUTION OF ^„

Now we shall prove the following theorem.

THEOREM 1: If

a= xdH(x)< oo, (7)

J o

then the limit distribution

limP{^n = k}=Pk (8)

n-+ oo

exists, and

for fc = O, 1, 2, . . . , where B0 = l and Br=

o j o

x [l~H(x1+ . . . +xr)]dm(x1) dm(x2) . . . dm{xr) (10) for r = l , 2 , . . .

Proof: By (3) we have

. . + 8 „ -1^ ^ } (11) for /c ^ O and n ^ 1 where st+ . . . + e „ _ i is O for n = 1. F o r n = 1, 2, . . . the events { e ! + . . . + e „ _1^ f c } form a decreasing séquence. Thus by the continuity theorem for probabilities we obtain that

j £ ^ j (12)

for k ^ 0. Hence the limit (8) exists and

forfc = 0, 1 , 2 , . . .

The random variables e1+ . . . + 6B^1( n = l , 2 , . . . ) form a nondecreasing séquence and if a < oo, then

J J>;<ooUl. (14)

vol. 14, n° 2, mai 1980

(5)

112 L. TAKACS

Consequently, B0 = l and

{ ( < 1 + + t 1 ) }

for r = 1, 2, . . . By (4), (5) and (15) we get (10).

If a < oo, then there exists a positive constant C such that

Br£Cr/r\ (16)

for r ^ 0. If r = 0, then (16) is trivial. Let r ^ 1.

Since

m(t + h)-m(t)^ l+m(h) (17) for t ^ 0 and h ^ 0, by (10) we get the inequality

x[l-H(x1+x2-h)]...[l-H(x1+ ... +*,-*)]

xdxx dx2... dxr ^ f w I — ^ (18) for r = l , 2, . . . and any h > 0. This proves (16).

By (16) and by the results of référence [2] we can conclude that (9) is valid for any fc = 0, 1, 2, . . .

4. EXAMPLES

(i) Let for x ^ 0 and

Then for x ^ 0, for r ^ 0 and for k > 0.

a = F(x)

fee

xdH(x) < oo

J o

^ - ^ ( M V / c !

(19)

(20)

(21) (22) (23)

R.A.LR.O. Recherche opérationnelle/Opérations Research

(6)

QUEUES WITH INFINITELY MANY SERVERS 1 1 3

(ii) Let

H(x)=l-e~iiX (24)

for x ^ O and

<p(s)= f°V«dF(x) (25) J o

for s Z 0.

Then a= l / | i is finite,

for r ^ 1, Bo = 1 and Pk is given by (9) for k ^ 0.

REFERENCES

1. L. TAKÂCS, On a Coïncidence Problem Concerning Téléphone Traffic, Acta Mathematica Acad. Sc. Hungaricae, Vol. 9, 1958, pp. 45-81.

2. L. TAKÂCS, A Moment Problem, Journal of the Australian Mathematical Society, Vol. 5, 1965, pp. 487-490.

vol. 14, n° 2, mai 1980

Références

Documents relatifs

Using this partition of the subsystems and particularly exploiting the time margins corresponding to idle times of machines, the approach allows an optimization of the non-critical

Some additional tools for stability analysis of time-delay systems using homogeneity are also presented: in particular, it is shown that if a time-delay system is homogeneous

But in the case when individual components are highly reliable (in the sense that failure rates are much smaller than the repair rates), this often requires a very long computation

Abstract— This paper discusses an extension of our ear- lier results about state feedback stabilization toward static output feedback stabilization for discrete-time linear systems

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The first step of the acquisition procedure is to instrument the MPI application to be simulated, so that an execution of the instrumented application generates application event

In this paper, we present the used time-independent trace format, investigate several acquisition strategies, detail the developed trace replay tool, and assess the quality of

Note that Independent Set and Dominating Set are moderately exponential approximable within any ratio 1 − ε, for any ε &gt; 0 [6, 7], while Coloring is approximable within ratio (1