• Aucun résultat trouvé

Semantics for Web-Based Mathematical Education Systems

N/A
N/A
Protected

Academic year: 2022

Partager "Semantics for Web-Based Mathematical Education Systems"

Copied!
5
0
0

Texte intégral

(1)

Semantics for Web-Based Mathematical Education Systems

The

ActiveMath

group:

Erica Melis, Jochen B ¨udenbender, Georgi Goguadze, Paul Libbrecht, Carsten Ullrich melis, jochen, george, paul, cullrich @activemath.org

Universit ¨at des Saarlandes, D-66123 Saarbr ¨ucken, Germany

ABSTRACT

Web-based user-adaptive learning environments suggest a

semanticknowledgerepresentationthatcanbereusedindif-

ferentcontexts. Moreover,iftheseeducationalsystemsem-

ployexternalservicesystemsforsupportorforexploratory

activities,thesemanticrepresentationisabasisfortheinter-

operability of the service systems and for machine-under-

standabledata. ActiveMath is such a learning environ-

mentformathematics. Weshowwhatitsannotatedseman-

tic knowledge representation, extended OMDoc, is like and

how it is used. We also discuss the current bottleneck of

authoring. Since mathematicians are mostlyfamiliar with

authoringL A

T

E

XratherthansemanticXML,ActiveMathof-

fersaL A

T

E

X2OMDoctool. AscomparedwiththedirectOMDoc

authoringwhichisnotyetvisuallysupportedthishaspros

andcons.

1. INTRODUCTION

Many educational systems and on-line documents have

been produced in recent years. Since the encoding of the

domainknowledgeforalearningenvironmentis averyex-

pensiveandtime-consumingtask,reusabilityoftheencoded

knowledge in dierent contexts and for dierent function-

alities is desirable. Therefore, the representation needs to

incorporate an ontology of the domain or, even better, a

uniqueandextensiblesemanticsofthedomainconceptsand

their variousrelationships. Similarly, inter-operability is a

prerequisiteformultipleservicesusedineducationsystems

thatcanaccessandworkwithcommonknowledgesources.

For Semantic Web applications, mathematics is a good

eld to experiment with because it is largely formalized

andhasaclearfundamentalsemanticsindependentofpre-

sentationalissues and because mathematics is a relatively

well-structured eld. For mathematics, anontology needs

to be enhanced by real semantics because mathematical

knowledgeisinherentlydierentfromitspresentation(e.g.,

itsprintedversion). Dierent presentations canmean the

same thing, e.g., 1

2

or 1/2. Conversely, the same presen-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Semantic Web Workshop 2002 Hawai, USA Copyright by the authors.

tation canmeandierent thingsindierent contexts, e.g.,

( ab

p )=(

a

p )(

b

p

)isfalseinelementaryalgebrabuttrueinthe

theoryofquadraticresidues.

Now,ourlearning environmentActiveMath[8] isaSe-

manticWebapplicationformathematicslearning. Itsknowl-

edgerepresentationisseparatedfromitsfunctionalities. Its

knowledgerepresentationmeetstheaboverequirementsfor

mathematical contentrepresentations andthosefor educa-

tionalapplicationsthatincludetheabovementionedreusabil-

ityandinter-operabilityaswellastherepresentationofped-

agogicalinformation.

ActiveMath' knowledge representation is based on

OpenMath[3],ageneral,standardized,semanticXML-represen-

tation for mathematics. ActiveMath' functionalities re-

quire additionalinformationto beencodedintotheknowl-

edgerepresentation,e.g.,structuralinformationsuchasis-a-

denitionandpedagogicalinformationsuchasthediÆculty

ofanexercise.

ThisarticleshowshowSemanticWebissuessuchasmachine-

understandablerepresentation,reusability,extensibility,and

migration of otherrepresentations are tackled in Active-

Math. Itfocusesonthe knowledgerepresentation andits

currentauthoring. Itsummarizeswhichinformationisrep-

resented in the OMDoc-language which is an extension of

OpenMath. It describesandsubstantiatestheextensionswe

have added for theeducational andother purposesofAc-

tiveMath. It discusseshow content isauthoredpresently

inasituation,wheretoolsfor semanticrepresentationsare

emergingonlyand wherethehabitsofauthorsstill oppose

suchanencoding.

2. SEMANTIC REPRESENTATION

Althoughtoday'smostcommonrepresentationforknowl-

edgeofweb-basedsystemsisthesyntacticmarkuplanguage

HTML,forameaningfulreuseindierentcontextsandknowl-

edgesharingtheXMLrepresentationisessentialandtheRDF 1

frameworkwithdatarepresentingrelationsbetweenelements

canserveasabasisforbuildinganontology.

2.1 Semantics in Mathematical Knowledge

OMDoc has evolvedhistorically as a standard for mathe-

matical knowledgerepresentation,whichwedecidedto use

for oureducationalsystem. Becauseof thishistoryseveral

features havestilltobeadaptedtosemanticWebdevelop-

ments,e.g. RDF.However, abig advantageofusingOMDoc

isitstrulysemanticavour.

1

http://www.w3.org/RDF/

(2)

ematics? To ensurethe inter-operability of mathematical

systems,akeyword-annotationthatmightsuÆceforsimple

searchfunctionalitiesisnotsuÆcientanymore. Amachine-

readableinputformathematicalsystemssuchasComputer

Algebra Systems (CASs) and theorem provers requires a

mathematical semantics. That is, to provide a basis for

multiplesystems,theactualmathematicalobjects/formulas

have to berepresented. Candidates for the representation

ofmathematicalobjectsandconceptsaretheXML-languages

OpenMath 2

andcontent-MathML.

3

OpenMath isa(European)

standard for the semantic representation of mathematical

formula expressions. It semantically denesasetofmath-

ematicalsymbolsintheOpenMath content dictionariesand

canimportcontentdictionariesintoothers.

However,anextensionofOpenMathisneededbecause(1)

anontologybasedonOpenMathlacksmostrelationsexceptof

theory-inclusion, (2)theOpenMath contentdictionaries are

incomplete and a simple extension mechanism is needed,

(3) OpenMath has no means to structure the content of a

mathematicaldocumentbydividingitintoitslogicalunits

suchas\denition",\theorem",and\proof".

Forthesereasons,OpenMath hasbeenextendedtoOMDoc

[6]whichincludes structuremarkupfor mathematicalcon-

ceptssuchasdefinitionsandtheoremsandforotheritems

suchasexamples, exercises, and elaborative texts. It

alsoallowstodenenewsymbols. OMDocitemsmaycontain

metadata,formalelements,textualelements,andreferences.

Referencescanbeconceptidentiers,URLs,andadditional

codeelements. MetadatainOMDoc represent legalinforma-

tioncomplianttoDublinCoremetadata[11]andextradata

elementformetadataextensions. OMDocallowstorepresent

somemathematicaldependencies: morphismsbetweenthe-

ories,equivalenceofdenitions,proof-for. Implicitlyitcon-

tainsadependencyofsymbolsbytheoccurrenceofsymbols

inanothersymboldenition.

ForourapplicationtheOMDocmetadataandrelationsbe-

tweenelementsareinsuÆcient,because, ononehand,Ac-

tiveMath needs a pedagogical ontology. For its use in

learning environments, we have extended OMDoc. On the

otherhand,relations betweenelementssuchasmathemat-

icaldependency, corollary of a theorem, similar examples,

counterexamplefor aconcept, whichwe introducearealso

generalfortheeldratherthanduetotheeducationalappli-

cation,butarenotpresentinOMDoc. Someofourextensions

are not specic for tutorial applications, such as technical

requirements 4

andbibliographicalreferences.

2.2 Pedagogical Knowledge

Theextensionsdescribedinthefollowingaremotivatedby

the tutorialapplication and generallyapplicable for learn-

ingsystemsratherthanspecicforamathematicssystem.

5

Theyinclude,amongothers

pedagogicalpropertiessuchasdiÆculty. Theyarerel-

evantforActiveMath'user-adaptivitybecausethese

2

http://www.openmath.org/

3

http://www.w3.org/Math/

4

Forclient-serverapplications, theannotationshave toin-

cludethe technical requirementsto display or to invokea

material. Theyneedto beknown, inparticular,to ensure

thatmultimediamaterialisonlyoered,ifthecomputeron

thelearnersclientcanhandleit.

5

rentlearningsituation;

pedagogicallymotivatedrelationsamongthedierent

piecesofknowledgesuchasis-prerequisite. Thisinfor-

mationcanbeused,e.g.,topresentthelearnerprereq-

uisitesfor understandingaconcept,togeneratelinks,

and togenerate anadaptively chosenand structured

learningcontent.

Ontheonehand,metadatastandardsforlearningresources

6

containtoomanymetadatawhicharenotrelevantforour

purpose. Ontheotherhand,adaptivelypresentingcontent

requiressomemetadatawhicharenotyetspeciedinLOM.

Thisisnotsurprising,sinceIMS 7

willbesoonextendedby

EducationalModellingLanguage(EML) 8

metadata. There-

fore, the ActiveMath metadata extensions of the OMDoc

DTD include some metadata from LOM as well as some

others. Forexample,weextendthelistofpossiblevaluesof

thetypeofattributeofLOMmetadataelementrelationas

describedbelow. Moredetailed, the pedagogicalmetadata

denedintheActiveMath-DTDarefield,abstractness,

difficulty, learning-context whichbelongtothe OMDoc

inFigure1.

<definition id="def_order">

<metadata>

<Title xml:language="en">

Definition of the order of a group element

</Title>

<extradata>

<field use="mathematics"/>

<abstractness level="neutral"/>

<difficulty level="easy"/>

<learning-context use="univ_first_cycle"/>

<relation type="for">

<ref theory="Th1" name="order"/>

</relation>

<relation type="depends_on">

<ref theory="Th1" name="group"/>

</relation>

</extradata></metadata>

<CMP xml:language="en" verbosity="3">

... </CMP>

</definition>

Figure1: ExcerptfromanOMDocfor adenition

fielddescribestheeldtowhichthecontentoftheitem

belongs. ItenablesActiveMathtopresentitemsfrompar-

ticularelds(suchasstatistics,physics,oreconomy),ifthis

is requiredby apedagogical strategy. For instance,if stu-

dentsfromdierentgroupslearnstatistics,e.g.,technicians,

mathematicians,psychologystudents,theyobtaindierent

(motivating) examples and exercises from the appropriate

eld. The meaning of abstractness and difficulty is

self-explaining. They serve to adapt the document to the

learner'scognitivecapabilities andlearning progress. Cur-

rently,these metadatacanhaveoneof threedierent val-

ues. learning-contextspeciesforwhichlearningcontext

thematerialwasintendedoriginally. Thepossiblevaluesof

6

suchastheLearningObjectMetadata(LOM)standardized

byIEEE-LTSC(http://ltsc.ieee.org/)

7

http://www.imsglobal.org/

8

(3)

learning-context are those dened in the IMS-metadata

standards. This information is important incase material

fromdierentsourcesismergedforanewcourse. Further-

more,theOMDocinFigure1hasaverbosity-attribute. The

information aboutthe verbosityof the textualpartsallow

thegenerationofdierentkindsofdocumentsuchasslides

andmoreverbosescripts.

ThefollowingmetadatadenedintheActiveMath-DTD

characterizeexercisesmoreprecisely

the targeted mastery-level of the exercise. Its val-

uescanbeknowledge,comprehension,application,or

transfer

the taskofthelearner whichcanbecalculate,check,

explore,giveexample,model,orprove

levelofinteractivityandaveragelearningtime

thetechnicaltypeoftheexercise. TheActiveMath-

DTDallowsforthevaluesprovidegap,mupad,maple,

omega,multiple choice, andllincurrently.

ActiveMathemploysthesemetadatatouser-adaptivelyse-

lectexercisesfor adocumentandinthesuggestion mecha-

nismaccordingtoaparticularteachingstrategythattargets

aparticularmastery-levelandadaptivelysupportsskillac-

quisition.

Themetadatarelationisusedtorepresentseveralrela-

tionshipsbetweenOMDocitems. Thetypeofthisrelationis

speciedinthetype-attributewhichcanhavethefollowing

meanings:

the previous knowledge required to understand the

item. Forinstance,theelementinFigure1depends-on

establishesdependenciesonpreviousconcepts.

thesimilaritybetweentheitemandanotherone,e.g.,

for two examples, denitions, exercises etc. that are

similaras,e.g.,showninFigure2.

afor-relationshipswhichcanbeusedinordertochar-

acterizeanitemwithanadditionalfunctionality. For

instance,anitemthatis aproofforatheoremcould

aswellbeanexampleforamethodapplicationoran

examplecouldbeacounterexampleforaconcept.

acitation-relationshipreferringtoanadditionalbib-extra

elementwhichisdenedinActiveMath-DTDtoen-

able afullfeatured citationmechanism.

OnecanarguethatourXMLspecicationsare\heavyonat-

tributes". There are some pros and cons for this. Pros:

when using attributes one can x the default values for

them,whereastheforbodyofanelementwecanonlyspec-

ify the type of data that canbe placed inside (e.g. child

elements,PCDATAetc.). Cons: nodirectstandardscom-

pliance (translation needed). Also note that, when using

attributes,theneedtointerpretethelabelsisnotintroduc-

inganyadditionaleortforXMLdatamanipulationengines.

ThedevelopementofActiveMathmetadatawillbecon-

tinuedby: separatingthemetadataandthecontentdatabases;

IMS content packaging (as soon as EML is integrated in

<metadata>

<Title xml:language="en">

Definition of left cosets

</Title>

<extradata>

<relation type="for">

<ref theory="Th1" name="leftcosets"/>

</relation>

...

<relation type="similar">

<ref xref="def_rightcosets"/>

</relation>

</extradata></metadata>

<CMP xml:language="en">...</CMP>

</definition>

Figure2: Therelation toasimilar denition

3. SUPPORT FOR AUTHORING

AuthoringontologicalXMLisinvestigatedinseveralprojects,

e.g., the SemanticWeb project 9

and the Ontology Editor

Protege[9].

10

Authoringtoolsfor the describedtrulysemantic(math-

ematical) XML are still insuÆcientlydeveloped. Suchtools

willnotonlyhavetosupporttheauthorinemployingorex-

tendinga(mathematical)ontologybutalsoinauthoringor

choosingpedagogicalmetadata,inauthoringexerciseswith

external service systems, and support her in writing (ab-

stracted)mathematicalformulasthatlatercanbepresented

viastylesheets. Thisisaseriousbottleneckcurrently.

So,whataretherealisticalternativescurrently?First,use

astillpreliminarytool,QMath,brieydescribedinx3.1that

supports the authoring of mathematical formulas. QMath

provides atleastsome supportbutisnot suÆcientlycom-

fortable for the average author. Second, translate from a

syntactically oriented macro-based encoding and heuristi-

cally addsemanticsas describedinx3.2. Third, wait until

the open-source community including our group has pro-

ducedanicevisualtool(someofitexists already,e.g., our

visualeditorfortablesofcontent).

3.1 QMath

QMath is a tool and a migration format for producing

OMDoc documents. It was developed by Alberto Gonzales

Palomo and is currentlyused by ActiveMath authors to

writeOMDocs. AQMath documentis easytoproduce. This

ispartiallyduetothefactthatQMathsupportsunicodeand

theauthorisfreetowriteherformulasdirectlybyusinguni-

codesymbols. Look,for instanceatthefollowing example,

correspondingtotheL A

T

E

XsourcefromtheFigure4:

Definition:[<-df1]

:"The definition of cartesian product"

:for:[cartesian_product]

:depends_on:[def_pair]

...

$MN Df suchthat(pair(x,y),x 2M&y2N)$.

Figure3: Excerpt fromaQMathdocument

Theauthorcandeneacontextforadocument. A con-

text containsuser-denedshortcuts forOMDoc elements. It

alsocontainsthereferencesofsymbolsusedinthedocument

9

http://www.semanticweb.org/

10

(4)

theauthorusesasymbol,QMathsuggeststhesymboldecla-

rationprocedurewhichassignsameaningtothesymbolby

anexplicitreferenceto asymbolinacontentdictionaryor

viaapre-recordedcontext.

QMath supports metadata elements of OMDoc as well as

someadditional metadataofActiveMath. Thismetadata

supportcanbe extended. Assoonasanewelementis de-

claredinadocumentorinacontextQMathperformsatrans-

formationtoXMLmarkup.

11

3.2 L

A

TEX2

OMDoc

Forhandlingmacro-basedencodings,wefacetwodemands:

(1)the migration of existing mathematical learning docu-

mentsourcesencodedinpresentationallanguages,sayL A

T

E X,

and(2)thenewencodingbyauthors/mathsprofessorswho

areusedtowritingL A

T

E

Xandopposeauthoringatrulyse-

mantic representation. In the following, we describe our

eortsinbothdirections.

The migration ofan existing large L A

T

E

X documentwas

thegoal ofacase studywe conductedin2001. TheL A

T

E X

sources of the document [4] were not intended to be mi-

gratedtoasemanticrepresentationoriginally. Itunrestrict-

edlyusesauthor-specicmacros.AlthoughtheL A

T

E

Xsource

was alreadysplitinto 'slices'andprovidedsomedependen-

cies,thedocumentwasdesignedprettylinearlyratherthan

appropriateforahypertextpresentationanditwasdiÆcult

toprepareforareuse. Forinstance,itincludedtextsuchas

"Aswehaveseeninthepreviousexample...".

The logical structureof the in the existing L A

T

E X docu-

ment hadto be carefully redesignedin orderto obtain in-

dependentlyreusable items related via dependencies. For

instance, many basic pieces in the text still included an-

otherone. E.g., introductionsor elaborations containeda

denition.

Another problem was the use of not-represented abbre-

viations. Thetext contained elements like ... the correct

notation for this should be

@f

@x

(a) but we shall write only

@f

@x

sinceitis clearthat weare talkingaboutthederivative

inthepointa.Asemanticrepresentationwouldneedtore-

fertothesamemathematicalobjectthatmayhavedierent

annotations,e.g.,abbrevandadefault.

Thepurely syntacticuseofnotationis oneofthe major

problems. InasentencelikeBecarefullwithournotations!

In some cases (a;b) will mean an open interval and oth-

erwise just an ordered pair. (a;b) purely syntactical and

itssemantics iscontext-dependent. Anautomatictransla-

tionis almost impossibleor at least has ahighly context-

dependent heuristics. The presentation-oriented represen-

tation and mis-use of L A

T

E

X is another problem. This is

obviouswhentheL A

T

E

X encoding$\{x: x\in A$ und $x$

ist rational $\}$) of the formula fx: x 2 A und x ist

rationalg is analyzed and shows that a mathematical for-

mulaisscatteredintopiecesandcombinedagainbynatural

languagetext.

Apart the context-dependent and presentation-oriented

representation, presentationaland semantic information is

mixedespecially in the mathematical formulas and there-

foreheuristics for correctlyparsing all formulas cannotbe

11

FormoreinformationonQMathseehttp://www.matracas.

callyimpossible.

Ourexperiencesuggeststhatitisimpossibletotranslate

a L A

T

E

X source automatically that has been writtenwith-

outthegoalofasemanticrepresentationinmind. Thisnot

onlyrequirestoimplementmanydocument-specicheuris-

tics, it boilsdowntoabout50% manual translation. Even

worse,often theoriginal encoding doesnotallowa unique

translationtosemanticallyrepresentedformulasandmaybe

author'sworkagain.

A solutioncanonlyrely onaquasi-semanticmarkupin

L A

T

E

X that usesmacrosand environmentsto encodeinfor-

mationneededforsemanticknowledgerepresentationandis

extensible. Thishasbeenattemptedinanothercase study,

where weinstructed'conservative'authorsto writestrictly

denedL A

T

E

Xsourcesandprovidedatoolforanautomatic

conversiontoOMDocviaQMath.

WedenedL A

T

E

Xmacrosandenvironmentsfortherepre-

sentationofsemanticinformationandmeta-datatosupport

the automaticconversiontoOMDoc. Ifanelementhasnon-

emptychildren,itisencodedbyanenvironment,otherwise

a macro is used 12

. We speciedrestrictions { inparticu-

larforwritingformulasinthatL A

T

E

X. Themostimportant

restrictionsare

use thesymbolsalready denedinOpenMath content

dictionariesinordertoensurereusability,

specifytheinterpretationofsourceformulaswrittenin

L A

T

E

X,e.g. inxorprexnotation

use the pre-dened L A

T

E

X environments and macros

for dening OMDoc elements, i.e., structure elements

andmetadata.

ThefollowingisanexampleofusingspecialOMDoc-oriented

L A

T

E

Xenvironments:

\begin{definition}{df1}{carte sian _pro duct}

{The definition of cartesian product}

\depends-on{def_pair} ...

$M \times N \Df \suchthat{\pair{x}{y}}

{x \in M \and y \in N }$.

\end{definition}

Figure 4: Example ofwriting restricted L A

T

E X

create aseparate leto dene newsymbols and add

XSLpresentationalinformationtothedenedsymbols,

also dene own DTD extensionif necessary and XSL

presentationforit.

Iftheserequirementaremet,ourtoolautomatically con-

vertstherestrictedL A

T

E

XsourcesviaQMathtoOMDoc.

To summarize: as comparedwith a directauthoring of

OMDoc in QMath, authoring in a restricted and augmented

L A

T

E

Xismorefamiliartomathematiciansevenifnotstrictly

simpler. Althoughthedirectcontrol ofthelayoutofadoc-

ument by editing the generated PDF-document is very at-

tractivetoauthors,itkeepsthepresentationandloosesthe

representationandthusdestroysthesemanticandmetadata

informationneededfortheSemanticWebapplication.

12

For more details see http://www.activemath.org/~ilo/

(5)

4. USAGE IN

ActiveMath

Insteadofaconclusion,wewanttosummarizewhatAc-

tiveMathisable todowiththeknowledgerepresentation

andwhatthefutureactivitieswillbeinthisdirection.

FortheActiveMathsystem,thereuseofcontentindif-

ferent contexts is particularly important because its user-

adaptivity implies thatthe samecontentcanbe presented

indierentwaysdependingontheuserandinthelearning

situation.

ActiveMath' user-adaptive functionalities such as the

presentationofthecontentandthedynamicsuggestiongen-

eration use the structureinformation and metadata anno-

tatingtheunitsofthecontent.

ActiveMath has the following components: a session

manager,coursegenerator,themathematicalknowledgebase,

a presentation planner, a user model, a pedagogical mod-

uleandexternalmathematicalsystems(ActiveMathinte-

gratesseveralservicesystemsforcalculation,proof,andex-

plorationsuchastheproofplannermega[7]andtheCom-

puterAlgebraSystemsMuPAD[10]andMaple). Here,the

usermodelis acomponentto store, readandupdate data

aboutthelearner'sprole. Itcontainshistoryoftheactions,

alistofpreferencesoftheuserandalistofcompetenceas-

sessments. The user's actions are analyzed by evaluators

thatcalculateupdatesoftheusermodel.

ThecoursegenerationinActiveMathisrealizedasfol-

lows: requests of the user are sent from the browser via

a web-server to the session manager. When the user has

chosenhergoalconceptsandscenario,thesessionmanager

sendsthisrequesttothecoursegenerator. Thecoursegen-

eratorcontactsthemathematicalknowledgebaseinorderto

calculatewhichmathematicalconceptsarerequiredforun-

derstandingthegoalconcepts. Thentheinformationabout

theuser'sknowledgeis requestedfrom theusermodeland

thecollected IDsofOMDoc itemsannotatedwiththeuser's

knowledgemastery-levelsareenteredasfactsintotheknowl-

edgebase of theexpertsystem. Thenthe rules are evalu-

ated and generate aninstructional list of XML items to be

presented. Here, the metadata such as diÆculty are not

onlyusedtoselectappropriateexercisesandexamplesfora

learnerbutalsofortheevaluationoftheuser'sactivities.

The XML content is transformedto aformat suitable for

presentationviaXSL.AnXSLstylesheetspeciesthepresen-

tationofourXMLdocuments,bydescribinghowaninstance

istransformedintoHTMLortoL A

T

E

XorFlash.

Thesemanticrepresentationisabasisformergingcontent

from dierent sources and presenting the merged content

consistently.

TheActiveMathknowledgerepresentation isproviding

twoontologies: themathematicalandthe educationalone.

Mathematicalontologyis alsousefulfor other mathappli-

cations. Themathematicalconcepts(elementsofontology)

aretheskeleton(macrolevel)ofadocument,andtheedu-

cationalonesprovidetheinformationforbuildingthemicro

levelstructure.

Alternative Usages

ActiveMath'supportforexploratoryandinteractivelearn-

ing will be improved. This includes the investigation of

elaborate search functions based on the the semantic and

partiallyformalrepresentation.

Anextstepisthemachine-understandabledescriptionof

many situations, includingthe automatedadviseto auser

forchoosinganappropriatesystemtoperformataskorfor

agent-basedcomputations(see[5]).

Semantically represented repositories will be useful not

justfor learningenvironmentsbutalsofor working mathe-

maticians. For instance, OMDoc-structured repositories can

improve the organization and searchability of mathemati-

cal knowledge. Today the digitallibraries,haveto face the

manuallycontrolledentryofauthorandclassicationinfor-

mationandoftenmakeuseofkeywordsauthoredbyreview-

ers. Todaythesearchcapabilitiesarelimitedtotextualand

keywordsearch.

13

WeunderstandourresearchaspartofthelargerEuropean

initiativefor web-based mathematical knowledgerepresen-

tationandmanagement. Itsrstworkshop[1] coveredtop-

icsrangingfrompublishingoflargecollectionsofelectronic

preprints to tools for managing mathematical documents.

Thereishopeforacriticalmassofcontentencodedinase-

manticXMLsincetheinitiativewillworkonthisaswellason

toolstomaintainandusethecontentdataandmetadata.

5. REFERENCES

[1] ElectronicProceedingsoftheFirst International

WorkshoponMathematicalKnowledgeManagement,

September2001.

[2] J.Budenbender,G.Goguadze, P.Libbrecht,E.Melis,

andC.Ullrich.MetadataforActiveMath.Seki

ReportSR-02-01,Fachbereich14Informatik,

UniversitatdesSaarlandes,2002.

[3] O.CaprottiandA.M. Cohen.Draftoftheopenmath

standard.OpenMathConsortium,1998,

http://www.nag.co.uk/projects /Open Math /omst d/.

[4] B.I.DahnandH.Wolters.AnalysisIndividuell.

Springer-Verlag,2000.

[5] M.DewarandD.Carlisle.Mathematicalsoftware: the

nextgeneration? In[1]

[6] M.Kohlhase.OMDoc: Towards aninternetstandardfor

theadministration,distributionandteachingof

mathematicalknowledge.InAISC'2000,2000.

[7] E.MelisandJ.H.Siekmann.Knowledge-basedproof

planning.ArticialIntelligence,115(1):65{105,1999.

[8] E.Melis, E.Andres,G.Goguadze,P.Libbrecht,M.

Pollet,andC.Ullrich.ActiveMath: System

description.InJohannaD.Moore,CarolRedeld,and

W.LewisJohnson,eds,ArticialIntelligencein

Education,pages580{582.IOSPress,2001.

[9] N.F.Noy,R.W.Fergerson,andM.A.Musen.The

knowledgemodelofProtege-2000: Combining

interoperabilityandexibility.In2thInternational

Conference onKnowledgeEngineeringandKnowledge

Management(EKAW'2000),2000.

[10] A.SorgatzandR.Hillebrand.MuPAD-Ein

ComputeralgebraSystemI.Linux Magazin,(12),1995.

[11] TheDublinCoreMetadataInitiative,1998,

http://purl.org/DC/.

13

TheAmericanMathematicalSociety'sE-Printservice,e.g.,

allowsthesearchthroughthereviewsonlywhicharetradi-

tionally encodedin the T

E

X language. Searching through

formulasinthis languageis oneof themost unpredictable

Références

Documents relatifs

Ratio between second moment of the pairwise velocity of matter (for various sums of neutrino mass) from hydrodynamical simulations and the matter from the collisionless simulation

For instance, the Euler angles specify the position of the quasi-specular reflection maximum on the q-scale; the width and the sharpness of that maximum basically depend on the

Fluid dynamical approaches showed that chaotic pathlines are necessary for an efficient mantle mixing [Olson et al., 1984; Christensen, 1989] and are favored mostly by time-

By accepting a 10% Index Number, we would be inferring an avalanche event on the basis of a single tree in most cases, and in spite of our belief in the inherent utility

Our study demonstrates: (i) distinctly higher sediment accumulation for the centre of the lake basin by focussing of the settling particle flux; (ii) decline of carbonate from

laboratory ice and natural snow samples was investigated at a surface coverage between 0.1 and 6% and temperatures between 198 and 223 K using a chromatographic column coupled to

The third part is mainly concerned by the applications to Resurgence theory of the previous results (Sections 8–11 show the consequences for the problem of the saddle-node and have

Geochemical Constraints on Carboniferous volcanic rocks of the Yili Block (Xinjiang, NW China): implication for the tectonic evolution of Western Tianshan..