• Aucun résultat trouvé

Influence of human cancer cell lines on mechanical properties of mice tibia

N/A
N/A
Protected

Academic year: 2021

Partager "Influence of human cancer cell lines on mechanical properties of mice tibia"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: hal-03011448

https://hal.archives-ouvertes.fr/hal-03011448

Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Influence of human cancer cell lines on mechanical

properties of mice tibia

Marc Gardegaront, Guillaume Plet, Benjamin Delpuech, Lamia Bouazza, M

Brevet, Jean-Baptiste Pialat, Philippe Clezardin, Cyrille Confavreux, David

Mitton, Hélène Follet

To cite this version:

Marc Gardegaront, Guillaume Plet, Benjamin Delpuech, Lamia Bouazza, M Brevet, et al.. Influence of human cancer cell lines on mechanical properties of mice tibia. 45e Congrès de la Société de Biomé-canique, Oct 2020, Metz, France. pp S115-S116, �10.1080/10255842.2020.1812859�. �hal-03011448�

(2)

Full Terms & Conditions of access and use can be found at

https://www.tandfonline.com/action/journalInformation?journalCode=gcmb20

Computer Methods in Biomechanics and Biomedical

Engineering

ISSN: 1025-5842 (Print) 1476-8259 (Online) Journal homepage: https://www.tandfonline.com/loi/gcmb20

Influence of human cancer cell lines on

mechanical properties of mice tibia

M. Gardegaront, G. Plet, B. Delpuech, L. Bouazza, M. Brevet, J.-B. Pialat, P.

Clézardin, C. B. Confavreux, D. Mitton & H. Follet

To cite this article: M. Gardegaront, G. Plet, B. Delpuech, L. Bouazza, M. Brevet, J.-B. Pialat, P. Clézardin, C. B. Confavreux, D. Mitton & H. Follet (2020) Influence of human cancer cell lines on mechanical properties of mice tibia, Computer Methods in Biomechanics and Biomedical Engineering, 23:sup1, S115-S116, DOI: 10.1080/10255842.2020.1812859

To link to this article: https://doi.org/10.1080/10255842.2020.1812859

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 02 Nov 2020.

Submit your article to this journal

View related articles

(3)

Influence of human cancer cell

lines on mechanical properties

of mice tibia

M. Gardegaronta, G. Pleta, B. Delpuecha,b,

L. Bouazzaa, M. Brevetc, J.-B. Pialatd, P. Clezardina, C. B. Confavreuxa,e, D. Mittonband H. Folleta a

Univ Lyon, Universite Claude Bernard Lyon 1, INSERM, LYOS UMR 1033, Lyon, France;bUniv Lyon, Universite Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406, Lyon, France;cService d’Anatomo-Pathologie, Hospices Civils de Lyon, Lyon, France;dService de Radiologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France;eCentre Expert des Metastases et d’Oncologie Osseuses (CEMOS), Service de Rhumatologie Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France

1. Introduction

Bones are the third most affected organs by metastasis (Du et al. 2010). The qualitative effect of cancer types on metastatic bone has been largely described. Bone metastases weaken bones (Coleman 1997) by creating lytic, blastic or mixt (i.e. lytic and blastic) lesions. The prediction of fracture risk is clinically assessed by evaluating several parameters such as the size and location of the lesion or the Mirels’ score. However, it seems these predictions overestimate the risk of frac-ture and are not specific enough to produce a reliable prediction (Van Der Linden et al.2004).

A quantification of the effect of the different can-cer types on mechanical properties of the bone should improve clinical evaluation of the fracture risk. As a first step, the goal of our study was to develop a bet-ter assessment of the bone fracture risk by evaluating the mechanical properties of mice tibia affected by three different human cancer cell lines.

2. Methods

Six-weeks-old BALB/c nude mice (n¼ 39) were intra-tibially injected with three different tumor cells lines in their right limb and PBS (Phosphate Buffered Saline) in the left limb (sham limb). Sixteen mice received 100,000 human B02 tumor cells (breast can-cer, lytic), 12 mice had 800,000 CMET cells (lung cancer, mixt) and 11 mice had 100,000 KRAS cells

(lung cancer, lytic). Previously, the number of cells was chosen to approximately obtain the same metas-tasis development (i.e. same size) in 30 days. Control mice (n¼ 8) were injected with PBS in both limbs to evaluate the bone resistance without metastasis.

After 30 days, mice were sacrificed, and both tibias were subjected to a compressive test (Bose Access 5500). The distal part was embedded in resin and a mold was made on the proximal part to homoge-neously distribute the load. Each tibia went through a pre-cycling (30 cycles between 0.5 N and 2 N at 0.5 Hz) immediately followed by a quasi-static test (speed 0.03 mm/s) until failure (Delpuech et al.2019). Axial load (0.03 N accuracy) and displacement (3mm accuracy) were sampled during the test at 60 Hz. The stiffness and ultimate load of each limb were extracted from these tests (Figure 1). A Kruskal-Wallis and Mann-Whitney U tests were then com-puted in order to evaluate the differences.

3. Results and discussion

After Kruskal-Wallis test, Mann-Whitney U tests showed significant differences between the resulting ultimate load of the control group with each of the three other groups (p < 0.001) while there were no differences between the B02, CMET and KRAS cell lines (p  0.05) (Figure 2A,Table 1). The same result was found for the stiffness (Figure 2B,Table 1).

Figure 1. Experimental protocol.

ß 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 2020, VOL. 23, NO. S1, S115–S116

(4)

The three tested cell lines reduced the bone strength and stiffness in the same order of magnitude. The cancer type (osteolytic or mixt) did not influence the bone mechanical properties with the current protocol (same metastasis development but different cells number). These results are to be taken cautiously as several uncertainties could not be perfectly controlled such as the tibia orientation which could variate around a roughly estimated ± 10 along the sagittal and frontal axis, due to the opacity of the soft tissues that could not be removed as it would probably imply a degrad-ation of the metastasis area. Another source of uncer-tainty appears in the evaluation of the stiffness and ultimate load which were quantified over the machine displacement and load data. Machine displacement is not strictly equivalent to the bone displacement as soft tissues and the embedding material could impact the behavior of the embedding material/bone system (Maquer et al.2014).

4. Conclusion

The three types of cancer cells considered in the cur-rent study reduced the stiffness and ultimate load of

the mice tibia. There was no significant difference among the three types of cancer cell for both parame-ters with an identical lesion size.

Based on these experimental data, the next step will use Finite Elements Analysis on the already scanned tibias to assess bone failure strength.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was partly funded by LabEx Primes (ANR-11-LABX-0063) and MSDAVENIR Research Grant.

References

Coleman, R. E. (1997). Skeletal complications of malig-nancy.Cancer 80:1588–1594.

Delpuech B, Nicolle S, Confavreux C, Bouazza l, Clezardin P, Mitton D, Follet H. 2019. Failure prediction of meta-static bone with osteolytic lesion in mice. In: Proceedings of the 23rd congress of the European Society of Biomechanics. Presented at the 25th congress of the European Society of Biomechanics, Vienne, Autriche, p. 2 (oral presentation).

Du Z-Y, Zang J, Tang X-D, Guo W, Chinese Orthopaedic Association Bone Oncology Group. 2010. Experts’ agree-ment on therapy for bone metastases. Orthop Surg. 2(4): 241–253.

Maquer G, Schwiedrzik J, Zysset PK. 2014. Embedding of human vertebral bodies leads to higher ultimate load and altered damage localisation under axial compression.

Comput Methods Biomech Biomed Eng. 17(12):

1311–1322.

Van der Linden YM, Dijkstra PDS, Kroon HM, Lok JJ, Noordijk EM, Leer JWH, Marijnen CAM. 2004. Comparative analysis of risk factors for pathological fracture with femoral metasta-ses. J Bone Joint Surg Br. 86(4):566–573.

KEYWORDSCancer cell lines; mechanical properties; bone; metastasis; mouse

helene.follet@inserm.fr Figure 2. A: Ultimate load of mice tibias for each group. B:

Stiffness of mice tibias for each group. p-value < 0.001 for Mann-Whitney U test with control group (n: number of samples).

Table 1. Mean (SD) of each group for ultimate load and stiff-ness (n: number of samples).

Ultimate load (N) Stiffness (N.mm1) Control (n¼ 8) 22.0 (3.1) 79.4 (15.1) B02 (n¼ 16) 12.3 (5.2) 43.2 (21.6) CMET (n¼ 12) 11.2 (4.6) 37.1 (19.6) KRAS (n¼ 11) 12.6 (6.5) 33.6 (10.6) S116 ABSTRACT

Figure

Figure 1. Experimental protocol.
Table 1. Mean (SD) of each group for ultimate load and stiff- stiff-ness (n: number of samples).

Références

Documents relatifs

Question 6 – Trouver les points critiques de f et, s’il y en a, dire s’ils sont des points de minimum ou maximum local, ou des

Trouver la nature des points critiques (points de minimum ou maximum local, ou points col).. Calculer les d´ eriv´ ees partielles de f en

Les t´ el´ ephones portables doivent ˆ etre ´ eteints.. Calculer la valeur de cette diff´ erentielle sur le vecteur

Les calculatrices sont interdites, les deux fiches dis- tribu´ ees en cours sont admises.. Les t´ el´ ephones portables doivent ˆ etre

Il est admis de consulter les fiches distribu´ ees en cours et des notes personnelles qui tiennent sur une

Remarque : il s’agit d’une suite géométrique, donc le résultat est connu mais comme l’énoncé demande de le montrer, il faut refaire la démonstration... Dans les autres cas

Enfin, si vous pensez avoir repéré une erreur d’énoncé, signalez-le sur la copie et poursuivez votre composition en expliquant les raisons des initiatives que vous avez été

Enfin, si vous pensez avoir repéré une erreur d’énoncé, signalez-le sur la copie et poursuivez votre composition en expliquant les raisons des initiatives que vous avez été