• Aucun résultat trouvé

imal cd

N/A
N/A
Protected

Academic year: 2022

Partager "imal cd"

Copied!
170
0
0

Texte intégral

(1)
(2)
(3)
(4)
(5)

by

©Kentollp, e

(6)

Thisthesisbcginswilhanoullookoflheoffshoreewfoundlandoilandgasinduslry Whilehydrocarbonresourcesare plentiful. adverse opcrating conditions andriskof impacifromencroachingicebergs leads tochallengesin design. projeclexecutionand opcration.Acceptablerisklevelsregardinghydrocarbonrcleaselolhecnvironmenlhave tobemCI by providingsufficienlproleclion forvulnerJble asselS.A discussiononthe parametcrsinvo!ved in detemliningconlact riskbclwecnIhckcclof anicebcrganda

Forsubsea struclures.many protectionconceplshave bccn considercdforapplicalionin

sclectedconceptformajorfield devclopmenlandproduclionschemesonlhcGrand

Ihatonlyrequirclimitedsubseainfrastruclurc.Otherprotcclionconceptswhichhave

The Pl'otcctionof subseainstallationsrequired forsubscatic-b:ICkdcvclopmentsvia tubularframc prolcctionstructuresisproposedinthcprcsentstudy.Thrccdiffcrcnt gcomctric configurations:J.rcanalyzed.Thelirstconfigurationconsisls ofarectangular

struClurchas alarge circularbascand a smallercircular topponion.withIhctop andbasc conncclcdusingslraightinclinedmcmbcrs.togivclhcappcaranccofalruncatcdconical

(7)

structuralresponseofthe framessubjcctcdto iccloading.Primaryfailuremechanisms during ice·subseastructureimeraction areassessed using anenergyapproach.Dcsign loads aree:~timalcdusing asimpleice load modelaccountingforcrushingfailureofthc

Progressinthis research areashould involvcsimulutionofa wider rangeof icc contact cvcnts.ltissuggestcdthatthcfiniteelementmodelbcimprovedtowardcontinuum

substructurcmodelcdusing kinematicconstraintsrepresenting icebergsi eandstability

(8)

guidanceandlimeduringthecomplclionoflhisprojectinitsentirCly.lwouldalsolikc 10 exprcssgratitudetoPaulSluckey.Freeman Ralph. and TonyKing fC CRfor

programming knowledge.Ithankthemboth.AlsoIwouldliketothankC C R for providing me with aspaceto work. accessto softwareandvariousreports. andrcscarch

questions,MITACS(www,mitacs.ca)grantedmeanintcrnshipscholarship, for thatI

(9)

4 SUBSEAPROTECTIO"~-AIKtV>tW L>

5.2 5

. 2

.,C ,ol .lo ligI,:ebergRisk 59

5.2.2Iceoc'l: e cy,e 0<)

5.2.4lccoc'I:KcCIIJCOmcl.ry

(10)

6.4Prescnlllnestigation-Crmingl lodel 110 6.4.1

~~~::~::::~:~~~~:::af::~:;;:i~~::~;~;~~~~;:r~ . . .. ~

6.42~:;

7.2Soil-PileInteraction 118

7.6 FiniteElel11Cllt Mod"I 129

9 CONCLUSIONS&RECOMMENDATIOINS 14

9.1Ice LoadsonSubseaSlructures 9.2Singlc-s~lIcllileWeIlProlectionFrameDcsign

(11)
(12)
(13)
(14)

:::

'"

11,

(15)
(16)

Equipmentrepair/replacementcost Environmentaland equipmenl cleanup cost

Heighlofsubseafacilityabovescabcd lcebcrgdraft Waterlinelcnglhoficeberg

Annualcontact frequencybelweenscouringicebergsandsubseafacilitics Proportionoficebergswilh draftcapableofcontaclingsubseafacility

~l eanwidthoffrcc-noatingkeels Df Effeclivediameterof subseafacility

(17)

Normalforce alicebergkeel Horizontalforeealicebergkecl Vertical forceat icebergkeel Slope inglc orstructureface

tv!,,~o\t,~~ Righting momentoficeberg

(18)

KG

Distancefrorn keelto center of gravity

l~p Waterplanemomenlofincrtia

q,P Ultimate verticalbearing resistance of soil

(19)
(20)

expccled10 plateauwilhinthenexl fewyearsmeaning newasselsnecdtobcexploiledlo mainlainfullproduclioncapacity.Marginal fieldde\lelopmenl hasacledas a calalysl

The presentsludy begins byreviewing IhecUrrcll1slate oflhe offshore ewfoundland

prodUClionisdcclining.Theissueatlhecoreoflhisworkislhepolentialforicebergkeel

ObjCCIimpactsorinterferencefromtrawlgear.Inicc environOlentsthegoalisiccbcrg avoidance oricebergresistance. Forsubscafacililicsextcndingabovctheoceannooror

contaCI.Thcparamelersinvolvedinthecalculationorriskwithfrec-noJlingand

(21)

Thegoalofthisstudy isto assess thcpotentialofprotectingsing1c salcllitc oil producing wcllsusingaslrucluralframe.Toestimategloballoadsimposedduringtheicekeel-

encrgytoworkdonethroughcrushingandpitchandheavemolions.Basedonthe analysis. a simplificalionofthe energy modcl is used.Itisassumed conservativelythat energyisdissipaledincrushingfailurcoficeoverthccontactarca only

ThcloadsdctcmlincdfromthisapproacharclhenapplicdtolheprotCCIionframe using

dcvelopcdtosimulatepile-soilinteraction.soil-struclurcbearing intcractionand global siruclurcrcsponseuponapplicationofmcanglobalicccrushingprcssurcs.Thrce differcnlstrucluralconfigurationsare analyzcd andthcresultsarcdiscusscdindctail Finally.conclusionsofthepresenlsludyaredrawnandrccommcndationsput forthfor

(22)

sarcguardrorsinglesubseasatellilewcllinstallalionsagainstice keelconiaci.Theintenl is not to propose this ideaasthebestsolulion,ralhcrtoverirywhelherornolproteclion

Thedcsircd resuhorthc analysis is anearlyoptimalproicciionstruciure.Thefirslstepis

space ror ROYaccess andworkovcr. Thereshouldalsobcsurticientclearanee10 allow

configuralionwillbcmade more nearlyoplimal Ihrough successiveiIcrations.The analysis willbeginwith asimple rectangularrramc. similar toconvcntionalprotcction

Iruncatedconcwilhstraightinclinedmcmbcrs.Thclfuncalcdconewillthcntakcmore oradomedshapcaslhecrrectivcnessorprolcctionfrarncgeomelry(i.c. curved vcrsus

Figure I depicts Europe'slargest fixed-platromlsubscatic·backdcvclopmcllt.the

(23)
(24)

prodUClionlrcc. lypically calledChristmas(Xmas)Irce.andwellhead.TheXmastrcc comprises valves.spoolsand fillingswilh a primary functionlodircclandcontrolnuid

hasarclalivelylowprofileheightversuslheverticaltrccleading10 areductionincontact

catastrophicfailuremodes.In theeventof a dirccliccbcrgimpaclwithatrcc.prevention

production tubing.Stresscsinducedin theproductiontubing.criticaltorcliablcsafcty valvcopcratioll.willlikc]ybehigherforahorizontaltrccappiic:nionandrccomplcting

polcntiallybcrcalizcdwilhthcimplcmcntationofsufricicnlimpactprolcclion

Figure2providesapproximalcdimcnsionsforatypicalhorizontnItrce used offshore

(25)

protectionstructures. ThreeslruclUralconfigurationshavebcenconceived based initially

analyticalcxpressionslhalaccountforthesyslcmenergycomponcntsandicecrushing

(26)

Theglobalstructuralresponscofarectangulartubular·framestructure (Figure 3)willbe compared10 thatofa truncated cone slructurc(Figure 4) andthen Ihepotential benefit of introducing curvedmemberswillbcexaminedaSlheprotcctionstrucluretakesa dome- like shapc (Figure5).Thereclangularframeslructure.including piIefoundalion. has an

(27)

~

l

~

E

Figurc4-Truncatcd ConeProlectionStructure

~ ~

PROFILE

(28)

potcntialoflheWeslcxtension hasreceived continucdinterest(IiuskyEnergy.2008) ExpansionplansforbOlh thcTerra Nova andHibcrnia ficlds alsoindicatethetrend in harncssinglhe fullpolentialofTewfoundlandandLabrador'soiland gasresourccs.The following figure showsIhe approximatelocatioll ofthcaforcmclllionedfields with

Figure Offshore Newfoundlandand LabradorOilfields(Rigzonc,2008)

(29)

Ascosts escalatedue tostrong globaldemandforscrviccs.resourcesandmalerials.itis bccomingincreasinglydifficull 10makeprojectcconomics work.TheWhiteRose Southcrncxpansion.forexamplc,addsonlyaIO%incrcmcnttothestatedoilreserves butwillcost25%ofthcoriginalWhiteRoscdevclopmentbudget(111cCanadianPress.

provinceiscxpcctcd toreachthe 00,0Cl0BarrclspcrDay(BPD)rnarkwithproduction

expansionoftheindustry.largcrstand-alonefielddevclopmcntsorsmallerficld developmclltwithtie-backstoexistinginfrastrueturcisrequired.Park(2007)discussed productiontrcndsfor thethreecurrcnt producingfieldson theGrandBanks:in2007.a30 pcrccntdecrcascinproductionwasprcdictcdby201I.WithoutadditionaldevclopmcnI

(30)

Thcmajorilyofoiland gas aClivityhasbccnfocused in IheJcannc O'ArcBasinwhichis onlyoneoffourbasinsonlheGrandBankswilhthcgcophysicalcharaclcrislicsofoil- bearingrock.AlldiscoveriesonlheGrandBankslodalc have bceninlhisbasinwhilc

Therearc approximatcly4million hcclaresundcrliccnscin thcoffshorcarcasof

cxplorationliccnscsgranlcdforlesslhanaquartcrofthclotalavailablctcrrilory.Asa rcsultofthrccscparatcbidscallcdbytheCNLOPBin2006,sixncwcxplofationlicenses havebccngrantcdforsixparcelscomprisingatOlalof 604,647heclarcs.Threcofthese parccls,whichmakc up approximalcly13%ofthetOlal area, arclocalcdin theJeanne O'ArcBasinwhilethercmaining area is in theWeslcrnNewfoundland and Labrador offshoreregion(OepanmenlofNaturalResources.Gov. NL.2008). Thenumberof

(31)

e328wells hadbeen spudded (spuddingis Ihevery start ofdrillingon anewwell).

eIOlalinduslryexpendilurcswasapproximalc!yS2Ibillion(>l.8billionon

barrelsofnaturalgasliquidshadbeen discovered(Departmentof Natural

(32)
(33)

thaI Ihere isalargeenoughriskof accidentalloading.Ihensomemeansofprotection mustbcprovidcdtoprotectagainsllheseloads.Protcctionframesapplywhenthere isa risk ofdroppedobjectimpact loads orsnagloads (fishing gcar. anchors).Workis currcntlyongoingfortheassessmentofprolcctionstrocturcstowithslandstrongerand

requircmcntsforovcr-trawlableand droppedobjecl protectionstruClures.Maximum loadscxpeclCd fromdroppcdobjcct impaclsand fishinggcararestj pulatcd.Foralllulti-

is givenas 50 kJ. Amaximum load of1 MNfrOIlltraw[ground rope snagis given in the progressive collapselirnitSlate(PLS) for anon-overtrawlablcInon-snag-frccstructure

(34)

Figure8-GravitySubseaProtection(GSP)Framc(ArupEnergy.2(08)

Fail-safe wellfeaturesplay averyimportantrole whenevalumingrcquircmentsfor wellhcadprotection.Currcntly.failsafesystemsareadoptedasapart ofthedesignon everywell drilled andpcrformanimportantsafetyfunction.espcciaIlyforoffshorc installatiolls.Thcscsafctysystclllsarerequircdloprcvcntinjurytopcrsons.damagcto

Subscacomplctions,whichincludeintcgralwcllheadcomponellts.shouldbedcsignedto

type of fail-safe systcmsadoptcdforwell installations is thesubsurface safety valve

(35)

emergencysuchas awellheadfailure.Thcsafely-valvcsyslcmisdesigned 10befail-

(36)

Perhaps Ihe mosl regulatedcomponemofanoil andgaswell. theSCSSYIllustsatisfy stringenttechnical. qualityandoperational requirements.1l1Cinduslry has madc huge

rcliability.Thcfigurcbclowil1ustratcsthedcvelopmcntinDappcrtypc downholesafcty

(37)

Historic"TR-SCSSV(fbppef)ReIl~

I.. ... . .. ,~ i [j]

~~

bylheFoundationrorScienlificandlnduslrialResearchallheorwegianlnslituteor Technology(SINTEF)andiscurrcnllymanagcdbyWclhnaslcr.Thissludyrcmainslhc largestyelundcrtakcnintosubsurtaccsarely-valveopcrationalcxpcricncc

SarClY valvcsshouldbeinstalled atsurficicntdepthin thcproductionstring10maintain inlcgrilyaslhcyorrcramajor riskorenvironmcntal dalllagcircompromiscd.Orrshorc

inlhctubing stringatlcast30 mbelowthcseanoor.as slipulatcdbylheCNOPBunder

Ananalysispcrrormcd byDoha(2007)providesinsight inlothcsarcrangcordcpthsat whichccrtaindownholecomponenlsmaybescl.Significantstresseswereround IObc noncxiSlcntat typicalSCSSY inSlallalion Icvels.ReliancconSCSSY's andotherrail sarcsystemsorrersanobvioussolutionrorrcductioninovcmllriskandup-rronl

(38)

ponionoflhe XmasIree.canbeplacedundera safcly class 2dcsignationascenain componcntsdonolcontribulcgrcatlytowellintcgrily.Thiswouldeffcclivelyreducclhc

unprolcctedwcllinslallalionwouldbereduccdtoapproximatcly9.7xlO-jwilhoulice managcmcnl.Thcsccstimatesprovidemolivationforfunhcrstudyofthcstrucluml

Foran unprolccted well. Fowlow(2007)cslimatesan icebcrgcontacIprobabilityof9.6x 100Byrefining safelyclass designalionsoflheChriSlrnasIree.approximatclyl7%of the lrcc areacanbcneglected. achieving aCOlllaclprobabilityreductionof17%.C-

giveniecbcrgconlaclhasoccurred.isapproxirnatclyO.097.lntegrating lhis suggeslion as well as an SCSSV probabilily offailurcofO.027anoverallblowout probabilityof9.7

51.1 years.Fowlow(2007)uses a moreconservative valucof36.7. whichresulted from

for Olhcr polcnlialleaksources.In addition.thedalasct may notaccounlforlheinlcnded

(39)

resultingfrom icebcrgcontaciand thecorrcsPOndingeffectonSCSSVreliabilityand

Tokeep rescrvoir Ouidsseparatefrom Iheenvironmentlhercareasericsofbarriersina wcllcomplction.Primarybarricrsareinfull-timedircclconlactwithhydrocarbons sccondarybarriersexist as abackup incaseofa primarybarrierfailurc andlcniary

Doha(2007)pcrformed afault tree analysis10roughlyprcdiciIheovcrallprobabilityof failurcofallwc]lintcgritycomponcnls.Failurcofproduclionlubingand annulus

11lbinghungcrandlwoSCSSV·sbe]ow.Thcscvalveshavehighrcliabililiesand Iheir combinedcffonsgivea probability offailureofapproximalcly 8 xI0.7.TIlcunnulus barricrs-packers.ca.<;ingjoinls.tubing hangerseals.andannularisolulionvalvcs-givea mlichgrcalcrovcrallprobabilityoffailurcofO.987.Thcresullingprobabilityof hydrocarbonrclcaselolheenvironmcntisapproximalclyO.OI27.Thisfaulttrccanalysis waspcrformedgivingthercliabilityofallpolenliallcaksourccsequalweight.when in

(40)
(41)

TYPICALWFltHfAQPROTECTIVf ENCIQ$I!RfCO T

FigureI I Proteclive ShellerConccpt(PctroleumDirCClorate.Gov.NL.1981) DORISEngineering perfonneda dctailcdstudy in1999 on altemativcstogloryholes

protectonctothrcesubscatcmplatcswhichrcquirca muchlargerstnlcturcthanwouldbe requiredbyasingle satellilc well.Noncthcless.thecstimalcdiccbcrgloadingand ncccssaryslrtlcturcsidcslopewouldapply.1l1cminimumheightwaschosenaslOm

scabed,Ahorizonlaltrce.usuallyaround5mhighwouldrcqllircastructureabOlll8m high,Figurel2iliustratesthetypicaiproIcctionsiructurcarrangcmcnLAnicecrushing strengthof2MPawasutilizedindeterminingiceloadswhichrangcdfrom arcsultanlof

(42)

Figure12-TypicaIProtcclionStruclureArrangement(DorisEnginccring,I999) Thefollowingpoinls briefly outlineIhevarious slructures considered

~Iopingfacedesign andexternalshellof concreteorstcel.Tobefloaledand

wcightversionwasconsideredtoreduceinstallationweighLThisversionwould

separatelyconstructedandtransported elcmel1ts.Similartothemonolithicrigid

• Piled segmental rigidstructure; this solutionwasshown lorequircalargenumber ofpilesloresistthelatcralloadsandthereforewas nOIinvestigatcdfurther

(43)

,Ilpecledleading10 the requircmcnlforaconsidernbleamounlofaddilional

AnOlhcrapproachthalhasbccnc,Ilamincdisthcconslruclionofaprotcclivcbcrmaround

practicalityofthisconccplisrcstrictcdbythecxtcnsivc:lmountofslrUcluralmatcrial

(44)

BOllomscouringicebcrgshavelraversedregionsofg]oryholcinstallalionsal depthsof uploI.5minlhepast(C1ark.Hclheringlon.Zavitz.&O'NeiI.1997).Thclevelof unccnainlyand prudenceforeslablishingaconservalivcdcsign basiswilhrespccl10 safelylargclshasled reccm developmenlson IhcGrand Banks,namclyWhitcRoseand

Opcngloryholcsoriginatcdwhendrillingaclivitybcganinshallowwaterrcgionsin Ihe

incorporatedopcngloryholcsprovidingabout411lofscour proICClion(Carrick. Delong.

(45)

NATURAL SEABED

DifficultgroundcondilionscrealcdtcchnicalchallcngcsforbolhlheTcrr30vaand WhilcRosegloryholeexcav3tions.Cost implicationsoflargeopcn gloryholes provide reasolllocrC3lccheaperahemalives.WilhancstimalcdcoslofS9.55MMCDN(2007).

gloryholcsarenotarcasonableicebergconlacldcfcnscsolutionforsinglcs31cllitc

typically6tolOmctcrsindiamcteranduplo20mdcpth.lnstallationwouldnorrnallybe carricdoUlfromadrillingrig.Thesiloisinstallcdpriortocomrncncclllclllofdrilling opcrations,Thcsilohasawcakpointatapre-dctermincdclcvationbelowsealevel.In the caseoficeberg impacl. thesiloisshearedattheweak poillt andlhcuppcrpartofthe silois sacrificed.leavingthe lowerpartofthcsilo,thc wcllhcadandthcChrislmaslreein

(46)

Afieldlrialin199010assessthefeasibililyofusingTornado Drill@technologyshowed

NATURAL SEABED

(47)

scgmcntbyslopcdexcavatedsidewalls.Soilreinforcemcntfabricmay bc appliedto the sloped excavationsif necessary toavoid soil slippage.Aninnerprotectiveshieldcould alsobc incorporalcdto protcct theproduclion equipment fromdebrisand makecleanup

multi-wellclustertie~backdevelopmentsfrom a riskandcost perspective.The modified casedholeconceptwasfoundtobcthemostattractiveoptionfromacombincd cost and

(48)

asscmblyconsisisofallcomponenisessentialformainiainingwcllintcgrily.Thc

damageduring shear linkaClivalionabreakawayflangcmaybcincorporalcdabovclhe

special runninglools andconsumablccaisson malcrialsarcrequired(Fowlow.2007)

ThiseonccplhasbccnimplementcdonfiveexplorationwellsollthcGrand Banksby

asproductioll weltsif thefields arcfound 10beeornmcrciallyviablcatalalcrdalc.As discusscdbyFowlow.CFER(1988)invcsligalcdthecollapscbchaviorofthcsel.067m caissoncomplclions10 assessthceffectiveness ofthcintended proteclionsystem.While lhcrelativclyunsophisticaled analysis yiclded favorablcrcsults.unccrtainliesincaisson strength andsoil parameterswere sufficienttosuggcslthai inSOlllCSituationscaisson

(49)

CAlSSOO

l S l(S

TOPOFWElLHOO

FigurcI7-CaissonComplelionMcthod(Fowlow.2007)

pipcbcncaththcoccanfloor(Oceanlnduslry,1978).Thcabovc-mudlincheightwas signilicantlyrcduccdlo4'6'"(approximatelyl.5m).MaSlcr valvesandothercritical portions ofthesyslcmaresunk toarequired dcplhandarcdesigned 10 au(omatically shut

notincludcanycriticalpressure-containingcomponenlsandinthisparliclilardcsignis coveredbya protectivedome.New design(caturcs(orthis conccptwereprototypcd.

(50)

Figurc18-CamcronlronworksCaissonComplclionSyslcm("OccanIndustry.1978)

TheconccplproposcdbyDoha(2007)uscsoffthcshelfcomponcnlsandcanbeinstallcd using standardprocedurcs;aconvenicnccfeaturc whichwould increaseatlractivcllCSSof anyncwconccpl.Thcdiffcrcncebetwecnthisconccptandthccaissoncomplclion syslcmisthcnon-rcquircmenlforalowerlrecasscmbly.lnSlcad.asinglcisolalionball valveisinstallcd abovclhc tubing hanger. BClwccnthelubinghangcrand wcaklinkin Ihecaissoncomplclionsyslcm.thercconsislsa]owcranduppcrtrccasscmbly compared

(51)
(52)

tubing.Theintention ofthe pipe-in-pipecross scctionistodecreascstiffnessattheshear

Figure 20-Arrangcmcntof ShearLink WellheadSystem(Doha,2(07)

ofthisconccptis that nospecial tools.cxtraexcavation or vcsscIrequirement beyonda drillingrigarcrequiredforinstallation ofsub-mudlinc casingandtubinghangers.All

major factorin the relative economic attractiveness ofthis coneepl.Adownfallofthis conceptis thaiwhile shearlinks arcinlcnded10rclievehorizontalloading.theywould

(53)

not prevent damage fromsignificantvertical forces.Thcvcrticalforccscrcatcdduring IhcinleraclionprocessmaycomprcSSlheshcar-linkdisconncctmcchanisminhibiling

opcrationofwellintegritycomponcnts.lnasamplccalculmion,Doha(2007)assumes

in estimatingan ovcrallrisk levelof1.27x 10-6, which isless than lhclargctsafcly1cvcl

oflxl0·S.lfwcassumeicemanagementisunsucccssfullhecstimaIcis increased10

Alhree year program by GERTH(GroupcmenlEurop cndeRccherchesTechnologiqucs surlcsHydrocarbures)started in 1976 withthe objcctive ofdclining andstudying a

designofasix-momh.per-yearproduclion schemeasillustrated by Figurc21(secDuval

(54)

To place critical componcnlSoUI of range of scouring icc kccls il wasdccidedloplacelhe cquipmcnl on Ihc boltom ofa gloryhole. ThcXmas tree slood at a height of4 mwilha5

pUIinplace10avoidfillingby soil cave-ins.Tubinghangcrswerclocatcdinalm caissonapproximalclyl7mbclowlhccxcavationbonom.Thccaissoncornplclion syslcmconsislcdofalowerlreeassembly (slim conncctor and lowcrmaslcrvalvcblock) anduppcrtrcc asscmbly(uppcrfailsafcmUSlcr block. wcak point,cxtcnsion,wye divcrtcr,wcllvcrticalacccsssyslem,nowlincconncctionsystcm).Thccrilicalprcssure- COlilainingcomponentsarclocaledbclowlhewcakpoinl. TIlcwcakpoint isincorporatcd inlhisparticulardesignasasafetymeasureinthe improbablccventofaniccbcrgkccl scouringdeepenough toimpacithcsubsea structure.Thetwohydraulicallyconlrollcd

Thisconccplincludcs three sepur.lleproteclionschemcs in onc: opcn gloryholc.cascd glory hole. and caisson complelion.ForapplicaliononthcGrandBanksorinanyothcr

(55)

design rorsarety hashadyears to developsincethis study.Thenovellyoroperalingin

Figurc21-Multi-ProtectionCol1cept(Duvaletal.,1980)

developmentinorrshore iceenvironments.Anindepthriskanalysisis conductedror eachconceptaswellasadetailednelcostanalysis.Orseveralnovclconceptsprcscntcd.

onlythe XmasIrCCwithdownholeweakshcar planeandthemodificdcascd gloryhole

(56)

optionswere deemedworthy offunherslUdy duetothcir favorability fromcommcrcial.

caissoncomplctionsystcm.Astrucluralbascdfinitcclcmcntanalysis wasconductcd to prcdictstructuralrcsponseofawellheadtoiccbcrgcontacl.Optimallevclsforkey componcnts ofthecomplctionaresuggested.Rcsultsofariskanalysisbasedoncontact frequency and availablereliability data showthe potcntialeffecl.S ofincluding downhole

AsdiscusscdbyDoha(2007),itwouldnOlbceconomicallyfcasibleforrcscrvoirs1css

protection.A recommendation for newsubscaprotcction ideaswasputfonh

Fowlow(2007)pcrfonned an in-deplh risk andcost studyforlhcvariousprolcction concepts.Single welldevc[oprnentscenarios as wcllasmulti-wellclusterarrangcmenls were analyzed.Theannualcontactprobabilily wascalculalcd foreachconccplulilizing

effccts oficebcrg managementwithan assumed 85%cffectivencss.Fromapurely risk based pcrspective. assuminglhal icc keelcontact resultsin a wellblowout.it was suggestcd Ihalopcnglory holesandmodifiedcasedgloryholesarcIhemostfavorablc

(57)

rcduccd byshortcningthespacingbctwcen Xmastrcesin thcclustcr.Fowlow(2007) suggcstedchangingtheminimumwellspacingfrom25mtoiOmtorcducccontact

Thecostofdevelopinganoilfieldisgenerallyhighcroffshorccwfoundlandthanin

costanalysiswasundertaken for the aforcmcntioncd wellhead protectionconcepts.The net cost ofa particularsystemis evaluatedusingthe followingexpression

whcreC,\,yisthenetincrcmcntalsystcmcostequaltotheincrcmentalCAPEX cost

(Cc"nJt)plusIhe costofriskfromicebergs (CIfI~K).Costofriskcanbecxpressed as

where,flistheannualprobabilityoficebcrgcol1tact.Risequipmcntrepair/rcplacclllcllt cost, Eiscnvironrncntal andequipmcntc1canupcost.pis costof lossproduclion.and

singlcsatellitewelldevelopmentbasedon nctcost. WhilcanunprOlcclcdwellwithand

(58)

thrcsholdsafclylimitoflO·5,basedonlheassumptionthalicebcrgcontact causesawell

comparisonof the associalcdcosls foreachconcepl.CAPEX hasthcgreatcslinfluence

~ O 0A--.- - ---a-I

I ··IA--.-~ ~

Figurc22-UnitNormalizcdCAPEX&CostofRisk(Fowlow.2007)

(59)

Thc majorilyoficebergsthat find lheir way 10 thc Grand BankscalveoffoflheWcst

JccbcrgslravclorthinlheWcslGreenlandCurrcnl.lhenSouthinthcBaffinand

2003).Figure230utlineslhcgcncraltrajcetoryoficebcrgslhatmaydriftinloregionsof

(60)

Icebcrgsrnaybcfreely-floatingortheymayalsocolllcintocontactwiththeseabcd causingscours (gouges)or pirs.Itis worthnoting thatthcCanadianterm'scour is synonymouswiththeU,S,term·gougc'.Thenumbcroficebcrgswhichenterthe Grand

iccbcrgseasonextends fromarchthroughJune.Whileiccbcrgs arc greatsJ --ctaclesfor

Acceptablesafetyorreliability targetsas~ociatedwithsubseainstallations inice

orrshorccodcsprovidcthebcsidesignguidancerelatingtoGrandBanksiccissucs

(61)

inslallalion isIhercfore Ix10..Up 10aboul tcncntiticsc bctrcalcdindividuallyatthisan

safctylcvclbcmaintainedatlxlO-l.therebyincreasingthesafctyrcquircmentforeach

orinjection wells.the environmental impact willbclcss scvereandthercforcthcsafcty

(62)

watcrlincstructurcsbeseparatc from Ihcgcneralseaiccloadproblem.lcebergloadsfor

Theyshowed thccffectoflowering Ihevertical profilehcighlofasubscainstallationon

bctwcen10and10·Jwhich is 100 highfor a safely classIinstallation evenIhoughafull well blowoul isnolnecessarilyaresultofimpaci. A main rccommcndalion from this papcrwastoasscss Iherisk loslruclurcsthatprolrudc above thescaOoorbysimulationof

To assessiccbcrgrisk10subseainstallations whichprotrudcabovcIhc mudline we need

10iairiskoficeberglsubscasifUciureimpacl.Figurc24showstheimportanceof

(63)

3 XIO-3

00510152025303540455055 StructureDiamcter(m)

(64)
(65)

Table Areal Densityfor Degree~~~~~~~~~knstainingMajorDevelopments onthe

(66)

~~77/~1.26

~

1.61

1.53~ 1~

~.f

'

1.06 1.03

InareportbyCan:ncc ConsultantsLtd.(1999).studiesbyBrooks(1985).EI-Tahanand Davis(1985)and Miller andHOlzel(1985)werediscussed. Brooks (1985) showed that aniceberg'swatcrlinc 1cngthis greaterthan itsdraft inabOlll92%ofthccascsanalyzcd

rclationshipwussatislicdforl97outof214iccbcrgs(approxirnately92%).Miltcrand HOllCI(1985)foundiccbergwidlh(maximumdimcnsionmcasurcdperpcndicularlo Icnglhaxis)was85%oftheicebcrglength. Fromthisrcsult.c1osccorrelationbctwccn

(67)
(68)

D=l.03exp(O.70+0.78In(L)+E,,) whcrccllisanormallydistribulcdrandoOlvariablewithamcanofOandstandard

Arecent reportonicemanagement(AMEC Earth&Environmcnlal.R.F.McKenna&

Figure PcrcenlugeofFrcc-FloatingKeelsCapable of1mpacI(C-CORE.2007)

(69)

Anexpressionrelating normalized iccbergwidlh(w*)to normalizedhcighlabovcthc

w*=-9.31:::*'+5.30z*+O.26

(70)

no nprofiles andrecommendationismadc loincorpor::ucdata frommanyicebergs:

~0.9

~o.a :

~O.S

~O••

00 .2 M:':~Z~,~''''''''':'(I'o\<I~ftl '' .

(71)

~

angCMCanValUC 100m> Draft>90m a.22m/s I05m>Draft>85m 0.24m/s IIDm>Draft>80m a.30mts

Full Region a.34m/s

On-shelf a.32m/s

Off-shelf O.35m/s

(72)

·r~ r=

·l l ·~ .~'.

l ~ ~--

~l '''~ ~ I

4~,

Longitude

Figurc28-DriftSpccdStudyRcgion(Stuckcy.2008)

Fieldspecific cstirnatcsofmeandriftspccdshouldconsiderthewutcrdcplhrangcofthc faciliticscornprisingthesubseaficldlayoul.ltisconscrvalivclouseancstirnatcforthc clllircstudyregioninlhc above figure. Thefollowingparagraphisareview of other prcviouscSlimatcs ofmeandriftspced. however.IhercccntworkdonebyStuckey(2008)

(73)
(74)

IOO.OOOkm2)includcSlheortheastGrandBanks.F1emishPassandthewestemportion

scourdcnsitywasO.56scourslkm2andindcpthsgrcalcrthanll0mamcandclisilyor O.86scourslkm2.ThevariabilityinlocallcvcISorscourdcnsityisnotcd:thcrcare

rcgionandameandensityofl.2-1.3scourslkm!bctweenIOO-I50mwaterdepth(K.R

incorporated inlotheGBSC. Ameanscour dcnsilyor2.64scourslkm2was de(ermined forlhel50km2rcgion

(75)

Geological Inference-UpperBound Geologicallnference-LowerBound 8.3xIO-

(76)

Scourdepths aredirticulttomeasureconsistentlyduc (oinformationfrom various

(Mycrs&Campbcll,1996)areincloseagreemcnt;forwaterdepthsrangingfrom80-120

(77)
(78)

through anexamplepcninenttothisstudy.Thethcoryforthisapproachwasfirst prescntcd by Sandcrson(1988),whodevelopcdthc method todelcrmincthcfrcquencyof

mclhodsrequiringcstimatcsoficebcrgnux.Thcfollowingformulacarcrecentlyused

(79)

wherc'7is thcannual averagearealdensityofice ergs,ristheproportionoficcbcrgs withdraftscapableofcontaclingthefacilily,Wflisthc meanwidthoffree-noating icebergkeelsatthetopofthcfacility,Uisthemcanicebergdriftspeed,andO/is

'iJ

=0.032X((cOS(4~;:~.~; ~X IO'(IO-· J ",-'

(46.67+21)XO.34",/,x3.16xIO'slY'

=2.26xlO-Jy,.-'

whcrep,isthcscourrate,LJisthemeanscourlcngth'W:kisthemeanscouring 1ccbergkcelwidthatlhelopoftheslruclurc,andOjisthccffectivc slructurcdiameter

'l.=7xl0-4km-lyr-lxlO-6kmljm2(72m+21m)x650m

=4.23xIO~5

(80)

q=qf+q,

=2.26xIO-J+4.23xIO'

=2.3IxlO-J

RClum pcriods forcontactwilheachtypcofapproaching icebcrgcanbcdetemlinedby laking the inverseofthe contact frequencies. Thcrclurnpcriodforcontaci wilh a freely- floatingiccberg isapproximately 442 yearscomparcdwith23633 yearsforascouring iccbcrg.llisclcarthatfreely-floaling;ccbergsdominalccontactrisklosubsea

Theaddilionalcomacl risk frompining iccbcrgs (iccbcrgslhalcrcaICroundor oval fcalUfcsonthcscabcd)willbenegligiblcwhencomparcdtolhcriskfmlllfree-floating

(81)

Tablc5-lnpul ParamelersforTotalContaclProbabilityofaSubscaFacility ProtrudingAbovcIhcMudlinc

Df

O.79~~;:~ee

SCClion5.2.4/Croasdaleelal (2000)

(82)

insccondplacewilh 5 percentof operalionsfollowed by watercannons.nclS.andlwo--

insomc carlyreports.ha ibeendismisscd duc 10 theassocialcddangers(Barronela!..

ThefollowinglablcgivesIhcresultsof the analysisbascdonthesetwodcfinitions oflow

Tablc6-lccManagemenIOperationaISucccss(BarronctaI..2005)

(83)
(84)
(85)

provides a goodfitto empirical dataforareasranging0.6 m2106rn2.Todelcnninelocal icc pressures(I,.)correspondingtoanexceedanccprobability (p~)thefollowing

I

whcrcpcanbedctenninedwithknowledgeofmcanevcntduration/andcontact

Thctcnnpfcprcscntslhenumberofeventspcrunillimc.Contaclfn.--quency-which

(ramming ofKigoriakvessel. mean dural ioncquals 0.7 s).ItisaSSUllledhcrclhalcach cOlltaclqualificsasanevcntforfurtherdctailsandcxplanationscc(JordaancluI..1993)

prcssufc-:ucurclationshipsforca1culationofglobal iccforces.Globalicccrushing pressure canbccstim:lIcdbythe pressure-area relationship

P=CI'A"'

whcrcC,,=JandD1.=-0.4maybetakenasmcanglobalvalues,dcpcndingonthe applicillion.Jordaandiscusscshowlheseresultswcrcdcrivedrromabeslfitanalysislo ship ram data(Jordaan. 2(01).BothCl'andD"canbclakenmndomlylocxlcndthe

(86)

rangeofrcalislicphysicalsituations.ThemeaniSlakcn in thisstudy as ameans of

ltisrecognizcdthathighlocalpressuresmayexislonsmallcrarcas.LocaIpressure

curve in Figure 30.Focusing on the10.000 yearlocalpressure curveilis evident that local prcssures at areasgrcatcrthanaround13m2acluallydipbclowpressuresexpectcd globally.At the pointwhcrcthesc curvesinlcrsectutransition fromlocal to global

mcanglobal prcssurccalculatedforlheincrcmcntal area incontaCl.lfforcxamplcwe assumcfullcnvc!opmentofasingletubu!armcmber(withanormalprojcclcdareaof approxim<ltcly7m2)uponinitialcontactthcarcaisalrcadyclosctothclocal to global

(87)

thispreliminary analysis.Iheeffectsofhigh local pressuresoversmallcontactareaswill

procoourcs may bcstcapture Ihisresponsc mechanismand isarecommendedcourscof

value.

I

' 5.45s

~ . .

l00yrlocaJ-Mean~

, . ~

I, i

Figure LocalPressure-Are~~~:~:_~~e~~~~:~Return Period&MeanGlobal

(88)

Iceberg eels scour IhescabcdwhenIheydrift inlowalcrdcpthsshallowerlhantheir

playcdakcyrolcinthcmodeJ.whichbalancedscabedrcaclionforccs.cnvironmcnlal

iccbcrghydrostalicsisascnsitivcparamctcrinrnodclingthcscourprocess.Limilcd

hydroslalicsand conscqucntlyleads tosignificant differencesin rnodclcdscQurlcngths

(89)

and scouring icebergs were considered.Bascdonlhecontaclarea,aforccwascalculalcd fromthe sampled pressure. ContaCI areasrcsulting fromfree-noaling andscouring iccbcrgswcrcconsidercdin the analysis.Pressure wasassurned todevelop uniformly over the entirerigid-bodycontacl area and allimpaclSwereassumedlobedirccthils

with drarts capable of impactingasmcllilcwell5.5rnin heightwillpitchsllflicicntlyto allowthekeel topass overthelOPOflhestruclurc.Forlhercmaindcrof theiccbcrg population,Ihcdistancerequired lodissipatcthckincticencrgyoflheiceberg was calculalcd based oninilialicebcrgdriftvelocily, icebergmass andimpactforceappliedal

(90)

cebeT Force(MN) Momenl(MN·m)

rg ype Mean Std. Mean Sid.

Free-noalin 3.3 4.3 9.2 6.6

Scourin 11.9 8.2 18.710.3

excccding2.8m210eSlimaieice keelforces onahernalivcproteclionSlntcturcs for the

loads ranged from a rcsultanl40MN-200MNonstruclureswhichvaricd grcallyin

iccbcrgs withsubseasilos would bein theorderofIO-30MNwithsignificantdownward

iccbcrgs.Thcsignificanldownwardsforcesmayhavebccnaresultofconservatismin

(91)

estimatingicecrushingpressures.ThecoerficientC,.istakenas7andlhecxponcnlD,.

sacrificial wcll cquipment belocaledabovclhcscabedand crilical cquipmcntbeinslalled

Figure31-Gcometry ofTruncated Cone(NorthAtlantic Offshore EnginecringAlliance.

(92)

Aspart oflhestudy,lhcdelerminationoficebergloadsbycncrgyconscrvationand mOlllcntumconservationapproaches was invcsligated,Aswell.anumericalmodclof iceberg mOlionwas accomplishedusingthediscreteelcmenlcompuler packagcknownas

A recentstudyby Gudmcstad andLiferov(2007)assesscd iccloadsof an ice-ridgekccl onarigidsubseaslructure.Twosimplified2DnumcricalmodclsweredcvclopcdlO

cohesion,kcclangle ofinternalfriction). Thcanalysiswaspcrformcdforshallow.

intcnncdialCwatcrdCplhsinicc covered walcrs. Asamplcoutputgraphshowed annual cxcccdanccprobabilityversus comaclforcepcrmClcr(width)for alOmwidcslruclure cxtcnding5rnabovcthcmudlinein30mwaterdcpth.ltwasdelcrmincdthatkccldeplh orcontaclhcight.hasgreatestsensitivity.Possiblcintcractionsccnarioswcredcveloped

Confinedkccls,with lhehighdriving forcesOflhcsurroundingicc

noe

werepresumed10 eithershcaratlhckeel. orfaillocally and/or globally,Rcsultsoflhcanalysisshowed thai inall but two cascs,local propagating failure wasthe mechanism that limilcdthe kccl

(93)

Theenergyapproach describedherein followsthe samcprocedureoutIinedinthcl996

rclalionshipshad tobcmodifiedaccordingly: cxplanmionis given throughout this

Iccloadsimpartedon asubseastructurecanbcestilllatcdusingan applicalionofthc work.energyprinciple.Uponimpact.thcinitialkineticcnergyoftheiccbergwillbc dissipatedthroughcrushingof the icc keel(indentation energy),rotation andheaveofthe iccbcrg,andstrainenergydissipated by the majorload carrying componentsofthe

(94)

Energy.2<XXJ).TheapplicalionoflheenergyapproachinlhissludydoesnOIaccount for

wherc E istheinitial incticenergyofthciccbcrg.E i )lheencrgyabsorbedin sliding(orcrushing).E.lhcenergyinliflinglheieebcrg.andEI'inrol31inglheicebcrg

whcrcmisrn3ss.c..isanaddedmasscoefficicnlandl'islhcasSUlllcddriftspcedoflhc

walcrsurroundingtheiceberg.Theadded rnasscoefficienl< nvarybctweenQ.OSfora

(95)

cxtrclllclyhighnorlllalforcesarcgcncratcdoncontacLNorlllalandfrictionalforcescan

(96)

The momentgeneralcddue to Ihe forcesatIhckeelcanbccalcu]aled bymulliplyingeach forcecomlXmentbyilSpcrpcndiculardislancctolheccnlcrofgravilyoftheiccbcrg

Fromlhccenterofgravityoflheicebcrg.e,ande arelhehorizonlal andvertical

bcequalcd10 therightingmoment todetenninelhcamountofinduccdrolalion.Righling

stability.Itisthereforc importantto integratestabilitycalculalions whenconsideringthe

M"~Iu'"tGMsin a whereGMislhedistaneefromthecenlcrofgravitytothemctacentric height and is

where is thesubmergedordisplacedvolume.ThedislanceGM isgivenby

(97)

whcrcKB is thcdislancefrom Ihekeel10 cenler ofbuoyancy.8MisIhcdislanccfrom theccntcrofbuoyancytothemetacenlricheighlandGKisthedislancefromthekeel10

whereI..,.isthemomentofinenia ofthe waterplane arca. and isthesubmerged or displaced volume.Equation 6-15can thenbercarranged as follows

~M"••••

~M,,,.,,".=(/.,'p'g-BGll)sinO

Ifwcassurnclhatforsmallangles.sinB:=B.thccxprcssioncanbefurlhersimplificd

aniccbcrgsome anglewilhoutperfonningdctailcdslabilityca1culations.Foraninitial

(98)
(99)

shapcdiccbcrgwillbccxamined,Thekeyparametcrsfromahydrostaticanalysiswillbe

rOlatcuponinitialconlact.lesseningtheamountofenergytobcdissipalcdlhrough crushingoflhekecl.Encrgystoredinheavedisplacemcntwillinturnaddenergytothe systemintheformofpolentiaIenergy:thenet balancewilllikely benegligibletowards lhedissipationofcnergy.Thefollowingpamgmphsprovidctheprocedurcfor

Assumingbasckccl widlh.sidc+slopcangle(a)and height(II) allowsforcalculationof theradius ofthetopareaofthelruncatedcone(refertoFigurc33),Withthegcometry cstablishcd.hydrostaticscanbeused lorcso]vckcyparamctersrcquircdtodetcrmincthc stabilityofthcassumcdiccbergshape.Toobtainthcdcsircddraft.theheightcanbe adjustcdandIhe hydrostatics performed iteratively:thcfoliowingdcscribeslhisprocess

Aftcrsclcclingabascradius.side-slopcanglcandhcight.lhctopradiuscanbccalculated bysirnpletrigonornetry.Thevolumeoflltruncatcdcone(inthisCllsc,thcvolullleofice)

whereII,rb'andt;areilluslratedin Figure33.Theweightofthe icc(\V..-~)whichis equaltOlhe buoyantforce (FB).canthenbecaleulalcd bymultiplyingthevolumeofice by the unilwcight.assumingthe densily of icc isapproximatcly92kglm

(100)

densilyofseawaterisl025kglm3

V'""'_'''''''N=~

(Eq.6-25)

required;a solutioncanbeachievediterativelyorusingasolverloolsuchasgoalseckin excel. Furthermore.changeslolhegeometry(i.e.overallheighl)canbemade to achieve thedesireddra t

(101)

importantindcxofslubilityatsmallanglesofrolation.Sincewcaredealingwilh symmctricgcometry in thisexample. there isno need todislinguishbclwccnlongitudinal

can bccalculatcdbyequalion 6-14.The locationof the cCnlcrof gravityforatruncated

G="-["~(,,;~:.,;.:~)')]

calculatcdusingcquation6-16,where/Mpforacircularwalcrplanccrosssectionalareais

AflCrcalculatingthese key parameters.itisrelatively simple10 ca!cu]alctheslability v evOffthegivenshape.takingadvantageofthesmallangle approximation. WithsurticienlaccuracyforallpracticalpurposcsthedistanceGZcan

(102)

foragivenangleofrolation.Knowingtheseparamctersrclaledloiccbergslabilily

goometryduclorolationoftheicebergarenol accounledfor. The normaIcontaclareais

pres~urccan be approximatedby the nominalpressure-area relalionship givingnormal

willbea sharpincrease.andIhe accumulation of area will continue onIinearlylhcreafler

angleofthe strUClureand thecoefficientoffriclionbelweenIhekeclandslruclurcface Figurc 34illustratesthe growth ofthe contactarea wilhhorizonlalpenctrationaswcllas lhcnorrnalandcomponent forccs.Theappticdmorncntatthekeelisthencalculated cnablingrcsolutionoflherotalionangle.Wecan alsosolvc forlhe verticalupliftasthe

displacemelllS.the workdone bysurge.heaveand pitchmotionscan bedelcrminedby intcgralion.Thecumulativesumofenergicsaftcreachincrclllcntiscomparcdtolhe

(103)
(104)
(105)

ofenergiesfromeachoontributingmechanismwithincrementalpenctrationuntilallof theenergyhasbecndissipatcd.asindicatcdbythc·%TotaIWorkDonc·linc. Fromlhis figure we can scethatcrushingencrgy increascs rapidlyatfirst due to the fact that thc

1 ~1 --- )f1 =~;-~ I

1 1LjJ ~

00.5 .5 .5 5.5

Figure5·Work DonevcrsusPenetration-Trunc:.lledConelcebergGeometry

(106)

Figurc -WorkDoncversusPenelralion-TruncatcdConcIccbcrgGeometry Tocslablishan uppcrooundeslimateofinitialstability. andconverselyaloweroound cSlimalCoflhe energydissipaledthrough rotation. wecansimulalc arectangularprism shapc.ThisprcsumptionisbasedonlhcidcathatlhcbalanccofmOlllcnlsaboutthc CClltcrofgravitywill bc zero asthe horizontalandverticalforccsapplied al the keeland the moment armswill bcpracticallythesame.Thccalculationprocedureisthesame as forthcpreviousexarnple, asidefrom thedifferenccingeolllctry.Thcfollowingtublc

(107)
(108)

Figure37.ContactArea&ForccversusPcnctr.i1ion-TabularlccbergGeomelry Ascanbcsccnin Figure39.nearlyallofthc workisdone bycrushing ofthekecl.The

stabililyincornparison tothe previousshape.Thcothcrfactorwhichcontribulcsgrearly

ccntcrlincofthciccberg.Theappliedmorncntatthckcclabollllhc ccntcrofrotalionis equal lOthehorizontal forceatthekeel multiplied bythedistancefrom thcpointof

horizontaldistunce isonlyasmallamountlesslhan the verticaldiSlance.thererorethe applied momentatthekeelis muchlowerthanforthepreviouscase.Frollltheresults prescntedinthcfollowingtwo figures.itisclearthatthemajorilyofenergyisdissipatcd throughcrushing bcforetheiceberg comeslOrest aftcr surging almost5111

(109)

l~

~15

~

3 3

Figurc3S-WorkDoneversusPcnclralionforTabularlccbergGcomclry

~ ....

~

0.00.51.01.52.02.53.03.5.04.55.05.511.0

Figure %Work Done versusPenetration-Tabular JccbcrgGcomctry

(110)

TheparallelaxislheoremforcompositesectionsisusedlofindGandB.Anelliptical

Thesubmerged volumcandwatcrplanemomentofincrtiaarecalculalcdtodclermincIhe

than the proportion from pitching. Thisislikclyduclolhcdiffercnccin theslopeof the

Ihcorclicnllycamc toreSI it had pilchcdabouijusl greatcrthan 0.23°which closely agrees wilhnmcan pilchof0.24°presenlcd ina similarmodcl used to prcdicIiceberg dynamic

(111)

'.,

n/s

(112)

Figure41-Conlacl Area&Force versusPenetr.tlion-Mcan Iceberg Geol1lclry

:~L21J . . __

I

n =~~-I

~

00.5 1 1.5 2 2.5 3 3.5 4 4 5 5

Figure42-WorkDoneversusPenClration-MeanlcebcrgGeomclry

(113)

r ! : ' =0 ,'" "" =:~:nW:Dono I

i ~ ~

00.511.5 2 2.5 3 3.5 .55

Figure43-%Work Done versusPenelration-MeanIccbcrgGeometry

dissip31edcntirclythroughcrushingoflhckcclmaybcconscrvativcincases whcrcthc initial pointofcont3ct isfar fromthe ccntcrof rotalionofthcicebcrg.Thcrccolllmended courseof actionistoscalecxisting iccbcrgprofilcs of icebergs suchlhatlheywillhavc sufficicnldrafttoirnpactasubscaslructureofagivcn height inugivcnwulcrdcplh.For cachiccbcrg.lhcstabilityuboutthcvaryingdircctionsshouldbcdclcrmincd Rcprcscntativc contactgeomctrycan beassumcdtoproduccacontactarca-pcnctration

TheiccbcrginFigure 44forexample willbehavcdifferclltly based on the poinlof contacl.ThcmctacentricheightwillchangeaboutdiffercntuxesasweIIasthe distance

(114)

produce verydifferent results withchangein theoricntationofimpacl.Applicationof thcMonte Carlo approachisrecommcnded10 cover awiderange oficcberg profiles Wilh

arcmadclosimplifytheloadtransferproccss.Sccnariosarcclcvclopcdtoasscsslhc structural responscofaprolcctionframeto loadsrepresentative Oflhosclhalwoutdbe imposcdduringcontactwilhanicekeel.Althoughawidcf:lIlgeoficcbcrgloadevclllS

Iheicc-structurcinleractionproccssforconlaclwilhscabcdinstallations.Basedonthis assumption.horizontal forces generated byice crushing pressuresandsurgepenetralion willbeuscdconservativelytocalculalelotalworkdone.Sincehcaveandpitchmolions

(115)
(116)
(117)
(118)

0.01.02.03.04.05.06.01.08.09.010.011.0

'''crt

, '"

~ :

I: ··· ·· .• =:'~_I

~ :

0 1 2 3 4 5 8 1 8 9 1 0 1 1

(119)
(120)

0m I

'00 ---

f

I / .. 0;._.-,....

1

/

0 3 5 1011

Figurc53-WorkDone inCrushing versusenc r runcion cDomeStruclure)

(121)
(122)

1.

t

~: : ~. .m

~911 KtUm"3

~:: ~ 6.8m

Figure 54-SoilStfcngthProfileNW AnchorPile White RoseFicld(Doha.2007)

Each pileconncclcdto thestructureis modclcd as aseparate entitybasedonthe assumplion thatsingle-pileload and dcncctioncharactcrislicswillnotbcaffcclcdby adjaccOIpilcs.Generally,forpilcspacinggrcalcfthancightdiamclcrs.pilegroupeffecis maynot have10 beevaluutcd(A.P.1..2000).Empirical methods. basedonmodeland

(123)
(124)

r~;~ .. ,~m~"""1

1 2EJ

(125)

where Nyand Nrarcbcaringcapacityfaclorsforverticalslripfootings.loadcd verticallyinthedownwarddircclion.YistheeffectivesoilunitweighLristhctola]soil

q,.p=cN,.D

(126)

arclati edislacementofa roimate orgranularf soilsand

N, = [cot(¢+o.OOI)~eXP[Jrtan(¢ +o.OOI)]tan'(45+¢+~·OO I)- I}

N'=CXP(Jrtan¢ltan'(45+~)

Figure57-PlottedValues ofVcrti~allli~~~:~n;~~faCiIYFactors(AmericanLifelines

(127)

dislance6qJandremainsconSlanilhercafler.lnthcpresentsludyilis assumedIhalthe

(128)
(129)

Load.displacemenlrclalionshipsforlubularmembersofoffshorcstrucluresimpacted by

toolforasubsealubular-frameproleclionstruclurethcsamcfonnulaecanbeapplied.By applyingforces resulting frompressuresrcpresenlaliveoficccrushing slrcnglh. we can approximalclydclenninerequiredmembersizestoprcvenlcxcessiveplaslicindenlalion

whcrc islheforccandfreprescntsthcclaSlicdisplaccmclll,EisYoung'sModulus,'/

lengthof theconlactarea along the directionoflhetubc.Thecharaclcristiclength isa

discussed by Bai(2003).anempiricalcquationwasobtuincdlhrough Ihcanalysis of linearfinilcshcllclementanalysisresultsandindentationtcsIS.Ameanvalue isfound10

(130)

F.=2CT,T'L,;/D

indcnlation .can be calculatedusingascmi~cmpiricalequation.Throughenergy

unloadingpoinl.ThclocaldisplacemenlallhcloadpoilllforaloadlargcrlhanPois

As as3mplccalculalion.scicCIu tubularmemberwith adiameterofO.9m. andthickness

(131)

clasticandplasticdisplacernentsareot",,18.36mmando/,=24.62mm.ASSllminga

(132)

prediclSlhe hardening behavior in theplaslic regionoflheSlrcss-slraincurve (Wikipedia

gradcs(Walkcr&\Villiams.I995).Figure 59showsasample slrcss·SIfain curvefor x-

2.55 12.03 2.23 13.67

(·52 17.99

(·56 1.66

(·60 1.48 18.99

(·65 25.58

-70 1.13 27.13

0.86 37.00

(133)

rade lee . t a Pa

. l. 1.0'lt. 1. . . 3. 3. .

modeledusingthcsameelementsasforpilcs(B31).Pipescclionsarcdefined for the

(134)

pileandslruclural member response isbasedonTimoshcnkobeam Ihcoryassuming

dcftncd by nonlinearspringelcmenls in twolransversedircctionsandthelongilUdinal

oninpulparamclcrs(struclUrcdimensions.lubularmcmbcrsizc.pilcdcplhandsizc.and

prolcclionstructureislhcncrcatedandtiedtolhepilcfoundation,The loadapplication is

approachpreviouslydescribcd.Thcloadslcpsareenlcrcdinloanaulomalcdinputfile gencrator whichcreatestheinpulfilc10bccvaluatcdbyABAQUS/SIandardwith

andvcrificationlhroughsimplestruclumlmodcls.hisrccognizcdlhatstrcssintcnsity

analysisandcalibralionofthcftnitcelementmodclisrecolllmendcd

(135)

The following OowchanoUllinesIheoverallanalysisprocedure.Themuinidea is that

(136)

Thisscclion presentstheresultsoflhefinileelement analysesdescribedin thepreceding chapler.Thcre.'wltsarefirSlillustratedforthcrectangularframemodcl.Theeffectof incorpor•.uingcurved versusslraight membersisthenshown throughcomparisonofthe structuralresponse of thetruncated cone anddome models.Basedon the outcome of

NoteIhat Ihefigurcsprovided arescaled toimprove visibility ofthedeformaliontrends:

undeformcdgcomelriesareprovidedinScction5.Conlaclarcasarchighlighledand

(137)

Tablel4-lnputPararnetersforRectangularFrameGlobalStruclural ResponseAnalyses

cified) 8.3kN/m

~~ .\ \ ,~~' I I

2

~ =O.9m

30°keel ..D/I=3530°keel

L. [

Figure60-GlobalStructuralResponseofRectangularFrameProteclion Struclure(2.5x magnification)

(138)

Figure61-Comparison ofTruncatedConeand DOlllC Structures(2.5x)

(139)

nf

,

~

---.-:~

, ~;~

I

r ·~~r " , "

60°keel

I L, I

(140)

,f \~~:f \

~"" fI·

60°keel

L. L.

Figure63-ComparisonofTruncatedConeandDome Struclurcs(2.5x)· Continued

(141)

I , fl :::/Fl

Figure64-Comparison ofTruncatedConeand DomeStruclUrcs (2.5x)-Continued

(142)

configuralionsproviding increased verticalsupportfor lhecircularbasemodelscould

requiremenlforlhelruncalcdconcanddomcgcomctries.Thercclangularconfiguration

lhecircularbasc.adjaccntlomembcrsundcrdircctpressurc.forthcothcrshapcs.Since

thcsidcofimpaclhave displaced inwards about 0.9 m. Thcinlcmclionwith the30"keel

(143)

grcatcrvcrticalcomponemrcsultingin lesshorizonlaldisplacemcnt than ilscountcrpan

Focusing on the frame response with D/I=25in Figure 60.the pointoffirslyieldoflhe

Figure 65.The area bctween lwoconseculivevcrticallines reprcsents aloadslcp.At lhispointIhcicekeel has surged about 3 melcrs and about27oflheassumedinilial

Figure65-HorizomaIForce-PenetralionCurvc-LoadSlcpScgmcnIs

In aside-by-sidccomparisonofthelruncatcdconcanddolllcmodclsiheresults shown in

Figure61-Figure64consislcnllydemonslralelheimprovcdeffcclivcnessoflhedome- likcstructureinconlrollinghighvcrticalloadsimposcdbythc600kcel.Comparisonof

(144)

Figure 64. Theadded stirrnesssendslherorceslhroughlhe pathorleastrcsistanceto the

To improvethe perronnanceorthetruncatedcone or domc modcls ilisrecommcndcdto

thcywouldlikclybcmorecompetcntinlhccascororr-ccntcricckcclcontact

rcctungulurrralllcconfiguration increasesits attractivencss.Theinclincdsections cXlcndingrromeachside orthcintcrior rramecouldpotcntiallybcconstructcdand

(145)

createunique andeXlrcmechallcngesinevery aspeCIofnew developmentslargeand

ApolCntialsolUlionfor Ihe prolcctionof single satellite wellswas presented.Thrcc separateconligurtions were consideredunderthecategory ofatubular frame proteclion

Theencrgyapproachwasemployedwilhconsidermionoficebcrgstabilityforsirnple shapes10asscssgloballoading.Theinilialkincticenergyofsampicicebergs was cqualcd 10thcworkdone incrushingfailureoftheicckeel over the contactnrca.andthe

(146)

simplificationoftheenergyapproachwhich conscrvalively assumcdcrushing failure cxc!usively-inlicuofbcttcrunderslanding-wasusedtoprcdicliceloads whichwere

prediclcd foreachslructuralconfiguration and adiscussionofthcrcsullscnsucd

Thcrcclangularframcconfiguralionbchavcdwcllundcrlhcprcdictcd globalloads.The

highvcnicalprcssurcswithoutincrcasingthcrnernbersizcrclmivc10therectangular frarncrnodcl:vcnicalsliffcningwasrccomrncnded.lncomparingthelruncaledconcand

(147)

bcrequircdlhallhearea-penelrationrelalionshipbcafunclionoflhckeelshapeofcach discrclclysimulated profile.Dirccl.cenlralinteraclioncvcnlswilhiccbergsltavcling horizontally havebcen assumed in the currcnt study.Itisrecollllllcnded10extend loadingscenariostoincorporalenon~ccnlralconiaciwhich wouldinducerotation about Ihevcrticalaxis.Thepotentialforverticalimpactfromaniccbcrgwilhsignific3n1heave

Apotentialavenuc10 caplurevarying stabilityand keclgeomctryislocmploy dislributionsoficcbcrgmelaccntricheight(withassociatcdmassandvclocitytcrms)and keel angle.Withkcclangle.thearea-penctrationrclationshipcanbccstirnatcdbascdon cOlltactwithknowIlSlructurcgeolllctry.Frolllthearea-pcnctralioncurvc.thccrushing pressurccanbccaJculatcdfrolllwhichthe normalforcecanbec:IJculatcd andrcsolvcd accordingly.Theapplicd horizontalandvcrticalforccsatthekccldetcrlllinehow much theicebcrg willpitchandheavedependingon the stability ofthe icebcrg.which is represenledbyits metacentricheighL Arnorcaccuraledcscriptionoftheloadpath duringIhcice-structurcintcractioncanbcachieved byupdating thepositionoflhckeel withrcspcctlothcstruclureaftereachincrcmcnlofhorizonlalpcnctration

(148)

tnkc advantageof theCoupledLagrangianEulerianapproachedbeingdcvclopcdin ABAQUS.although the conSlilulive models for ice wouldbe a significantchallcngc

Furtherwork ondefining keel geometry isrccommcndedtoasscss thegcncralpolcnlial forkcelprolrusions10induce local member failurc.Inaddilion101his.lheeffects of localiceprcssurcsonlubularmembersshouldbeasscsscdto furtherundersland potential

SinccpileinstallationontheGrand-Banksmaybcdifficult.itmayprovebeneficialto consideran alternative means toeslablishadequalclatcralrcsiSlance.Thcmaindownfall

vessel support)andlogislicsoplimization is needed. Oncc theslruCluralframe

(149)
(150)

"Oce:mlnduslry.".(1978.ovember).Belowmlld-Unell·ellcompleliollsystemlessells iceberg.anc!lor.lrawldamage.Oceall/lldllstry.13(11)64·65

Allen.S.(2000).OTCI1919-GlobalanalysisorwellheadprOlcctiongloryholesrorlerra nova.OffshoreTec!lllologyCOIl!erellceProceedillgs,Houslon.TX.1-13

ArupEncrgy.(2008).Gravitysllbseliprolecliofl(GSP).Rctricvcd04121.2008.rrom http://www.arup.comJaceplatforms/downloads/GSP.pdr

Bai.Y.(2003).orrShorcslructuresunderimpaclloads.Marille.\·trllct/lraldesigll(lstcd ..

pp.285-304).Kidlinglon.Oxrord.UK:ElscvicrScicnccLld

(151)

C-CORE.(2001 b). e erlo t s/sl se el illsr l tioll l (C-COREilJe i ReportNo.R01-COI Version2)

le l e er lo t so l s l se ll el i sr ioll tlli e i t t e ll report(C-CORE ReportNo.ROI·COI(Addendurn.VersionI))

C~C~~~'i~~~ld).lcebergrisktopi/Jelilles{If iterose(C-CORE Report o.OO-C45

(152)

C-CORE.(2007).S (SIRAM)-I re\·iew(C-COREReportNo.R-06-017-480v2.0)

(153)

DuvaI.J.J..Mercier.G..&Morin.P.(1980.January).AseasoflaloilprodllctioflSc"eme foriceberg-iflfestedl\·aters/lxJrl2/.0ceatl/t1dllslr)'./5(1)25-26

Environl1lcntCanada.(2003).Jcebergmigrllliolliflnllladicmll·lIIers.Retrieved6l412008.

2008. fromhllp:/lice-glaces.ec.gc.ca

Exprosorl.(2006}.\Vellmasler(1M):Reliabilil)'ofwellcomIJlefiotleqllipmem.Retrieved 11120.2006.rromhup:/Iwww.exprosoft.comlproduclslI?drlWeIIMasterWeb.pdf FMC Technologies.(2008).SulioilHydrogullfahRetrieved04121. 2008. from

hUp:/Iwww.rmctechnologies.comlSubsealProjectsINorway/SI3toiIGuIlfaks.aspx Fowlow.D.C.(2006).\Vellheadprorecliollcollceprsfol'slIb!u::amargiIIaldel'e/opmetlts-

gralldba1lksojllellfowul/llIu/.h.:elech2006.Banrr.Canada.I-8

Fuglem.M .. Muggcridge.K..&Jordaan.I.(1999).Designlo:ldca1culalionsforiccbcrg impacls.lmemmiollalJollrfla/ojOjfshorealldPo/al'ElIgilleerillg.9(4) Gabr.M. A..Lunnc.T..&Powell. J.J.(1994).P-yanalysisorlatcrallyloadedpilesin

clayusingDMT.JollrflafojGeoteclmicafElIgi/leeriflg.f20(5).816-837

(154)

GudmCSlad.O.T..&Lifero....P.(2007).DcsignofsubscacquipmcntlowithSlandforces fromice.Proceedi"gsofPOAC-07.Dalian. China. 787·797 Hauch.S..&Bai.Y.(2000).Bendingmomentcapacityofpipcs.O// lofOffslrorela

MeclulllicslllldArcticEugilleeritlg.I22(4).242·253

IntcrnationallccPalrol(lIP).(2008).WhalarellJesizeslilld.~/l(IfJe.\"oJicebergs?

RClric...cd06/25.2008.fromhttp://www.uscg.milllanlarealiip/faqllcebergs5.shtml Jackson.K.(1993.May).Innovation andcost-cuttingthc kcytosucccsssubsca

IElcctronicversionl.TheOi/mall.(5)96-98

(155)

Jordaan.J.J.•Press.D.. Milrord. P.(I999) Iceberg Dalabases and Verificalion PERD/CHC Report20-41. March.1999

Lcc.M.M.K.(1999).Strcngth.strcssandrractureanalysesoforrshorclUbularjoints usingfinitec]cmenls.JOllrnalofColIstrllcriOlllllSleel Re. earch.5l(3).265-286 Lolh.W.(2006).lnPikcK.P.(Ed.).Re:Directioflollproject-sacrijic:;alTreeiShear

plalle

(156)

PAL.(2001).The2001 iceberg seaSOI/Oll Ihegrafldbaflks,jillalreport!orthegra"d IXlllksmallagememteam.PALEnvironmcntalScrviccs PAL.(2002).Tile2002iceberg seasoll 011thegrafldbaflks,jillalreport!orlhegralld

ballhmllllagememteam.PALEnvironmcntalScrviccs PAL.(2003).Tile2003 icebergseaso/l 011tllegralldballks,jillalreport!or/he grand

ballhm llIgemeflfteam.PALEnvironmcntalScrviccs PAL.(2004).The2004icebergseaSO/l011tllegrandballh.jillafreporr!or/"egrand

banks/l/aJlagemell,tealll.PALEnvironmcntalScrviccs

Randolph.M.F.(2003).Scicnceandcmpiricisminpilcfoundaliondesign Geoteclmiqlle, 53(10).847-875

(157)

Reese.L.

c..

Cox.W.R,,&Koop.F. D.(1974).OTC2080-Analysisoflaleratlyloaded pilesinsand.O!fs"oreTec"noJogyConferenceProceedillgs.l-louston.TX

Rigzone(2008).Map: EasICalladitmO!fs"oreOilfieJds.RctrievcdOclober7.2008 fromhup:/Iwww.ngzone.comlnewslimagedelail.asp?imgid=2974

sand;~~;~~~.J~~~~~88).IceMechanics.Risksto Offshore Siructures.Graham&

landards or ay. . O O slandard - desigllo!sleel!JrIIcll/res. ysaker.

Norway: SiandardsNorway

(158)

WikipcdiaConlribulors.(2008).Ramberg-osgo(J{lrelatiollsltip.Rclricvcd03129.2008.

fromhllp:llen.wikinedia.org/wiki/ramberg-osgoodrelationship?oldid-198827830

(159)

pile thickness wasnotspccifiedin theavailable litcralurc.soa D/t ralioof25was

-UndrainedShearSb'ergth(kPa)- wtbu denPf Sl.nl kPa)

10 20 30 0 50 10 70 10

Figurc66-Assumed Undrained Shear StrengthProfile(Karlsrudctal..1993)

(160)

isappro imalcly2 A comparisonorbending momcntresponse rora20k'loadalso

Figure67-Horizontal Load vcrsusLatcralDisplacclllcntinCiay

(161)

-4-20 2 4 6II 101214161820

Figure68-DepthversusBcndingMomcntSinglcPilcinClay

Inastudywhichexamincdscicnceandempiricismin foundationdcsign.analytical

2003).AsdiscllsscdbyRandolph.thcmclhodofJardincandChow.known<lsthcMTD

diamclcrpilcof50mm wallthickncss.Thcpilccmbcdmentdcplhwastakenas100m.

inclaysoilwilh propcrtiessimilar 10those foundoffshoreWCSIAfrica.Theeffeclive

(162)

unitweightwastakenas 3.5kN/mJandundrainedshearstrength(kPa)isapproximated

l , :

Figure69-Undraincd Shear Strength andShaftFrictionversusDcpthinCiay

displacemenloblainedfromtheMTDmcthodandthe APIguidelines arecomparedin

(163)

/

0510152025 0 5 0 5

crnbcddcdtoadcpthofapproximatc]y22minsanclwithanintcrnalanglcorrrictionof 39°andancffcclivcunilwcightofI0.4kN/m3.Thcwalcrtablcwasrnaintaincdabovc lhcgroundsurface during loading10 simulalc conditionswhich wouldexist at anoffshore

pile. bcginning with a loadof small magnitude.Groundlinedisplaccmclllsandbending

(164)

pararnetcrsofthc field testwercrnatchcdinthenumericalanalysis.Rcsultsshowedgood agrccrncntbetwccnmeasured andpredictedgroundlinedcncctions(sccFigure71) with anaverage errorofapproximately 16.5.Abcndingmomemcurvcwasgiveninthe reportfor a 266k.Nlateral load. Figure72 displays a cOlllparison of the calculatedand measuredbendinglllomentcurveforthe266kNload.Excellcntagreclllcntisachieved

~ j l::

:!

: ::~

75o 5Groundlineut.,.IDllplac:emenllmm)10 15 20

r

25 ~0

~_;ded ~ .... ~ I

Figurc71-HorizomalLoadversusL.lIcralDisplaccmcntinSand

(165)

A 1994sludybyAI-Shafeielal.involvedtestingandanalysisoftensionand eomprcssionloadsonO.6lmdiarnetersleelpilesdrivcnlol8mdepthindcnsesand Figure 73showsacornparisonbetween Iheidealized bilinear t-z curveapproximatcd usingtheAPIguidelinesand themeasured t-zcllrvcfrornthcphysicaltcslat2mdeplh

(166)

I

~p"""""'1

~

o 0.002 0.00 0.006 0.008 0.01

(167)
(168)
(169)
(170)

Références

Documents relatifs

Un carré a quatre axes de symétrie qui sont les médiatrices de ses côtés et ses diagonales (un carré est à la fois un losange et un rectangle).

Un carré a quatre axes de symétrie qui sont les médiatrices de ses côtés et ses diagonales (un carré est à la fois un losange et un rectangle).

Quelle est l'aire de la figure rose si on prend pour unité d'aire l'aire du triangle vert puis celle du losange bleu.. On compte le nombre d'unités de longueur qui permettent de

Quelle est l'aire de la figure rose si on prend pour unité d'aire l'aire du triangle vert puis celle du losange bleu.. On compte le nombre d'unités de longueur qui permettent de

En utilisant uniquement la règle non graduée, place le point V, centre de symétrie de la figure, sachant que les points X et Y sont les symétriques respectifs des points E et F..

En utilisant uniquement la règle non graduée, place le point V, centre de symétrie de la figure, sachant que les points X et Y sont les symétriques respectifs des points E et F...

Quelles sont les formules permettant de calculer le volume d’un pavé droit, d’un cube, d’un cylindre, d’une pyramide, d’un cône?. III Brevet Pondichéry

En comparaison avec le lancer de marteau, quel type d’action doit exercer le Soleil sur une planète pour l’empêcher de s’échapper dans l’espace?. (figures 1 et