• Aucun résultat trouvé

Extension of the bifurcation method for diffusion coefficients to porous medium transport

N/A
N/A
Protected

Academic year: 2021

Partager "Extension of the bifurcation method for diffusion coefficients to porous medium transport"

Copied!
21
0
0

Texte intégral

(1)

HAL Id: hal-00327610

https://hal.archives-ouvertes.fr/hal-00327610

Submitted on 16 Oct 2008

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

Extension of the bifurcation method for diffusion

coefficients to porous medium transport

Cédric Descamps, Gerard L. Vignoles

To cite this version:

Cédric Descamps, Gerard L. Vignoles. Extension of the bifurcation method for diffusion coefficients to

porous medium transport. Comptes rendus de l’Académie des sciences. Série IIb, Mécanique, Elsevier,

2000, 328 (6), pp.465-470. �10.1016/S1620-7742(00)00038-6�. �hal-00327610�

(2)

Extension of the bifurcation method for diffusion coefficients to porous

medium transport

C. DESCAMPS

Snecma Propulsion Solide

Les 5 chemins,

F33187 LE HAILLAN Cedex, France

Cedric.descamps@snecma.fr

and

G. L. VIGNOLES

LCTS

Laboratoire des Composites ThermoStructuraux

3,Allée La Boëtie – Université Bordeaux 1

F33600 PESSAC, France

vinhola@lcts.u-bordeaux1.fr

Published in :

(3)

di usion oeÆ ients to porous medium

transport

Cedri Des amps and Gerard L. Vignoles

Laboratoiredes CompositesThermoStru turaux (UMR 5801 CNRS-SNECMA-CEA-UB1) 3, Allee La Boetie,Domaine Universitaire,

F33600PESSAC, Fran e Fax: (00 33) 5 56 8412 25 E-mail: des ampsl ts.u-bordeaux.fr

Abstra t

WepresentanextensionofBartlett'sbifur ationmethod(Bartlettetal.(1968))for

theapproximate omputationof multi omponentdi usion oeÆ ientsina gaseous

mixturetodi usioninporous media. Onbehalf ofthe remarkthatthebifur ation

oeÆ ients F i

aremerely proportional tothe square rootof the molar massesM i

,

we statethat Knudsendi usionmayalso be representedthrough somebifur ation

fa torF K

.Thisapproximationistestedinavarietyof ases,displayinggoodresults

ex eptforvery light gasspe ies.

Extension de la methode de bifur ation pour les

oeÆ- ients de di usion au transport en milieu poreux

Resume|Nouspresentonsuneextensiondelamethodedebifur ationdeBartlett

(4)

que les oeÆ ients de bifur ation F i

sont approximativement proportionnels a la

ra ine arreedes massesmolaires M i

, il estpose quela di usionde Knudsenpeut

aussi ^etre representee par un fa teur de bifur ation F K

. Cette approximation est

testee pour di erents as, et montre de bons resultats sauf pour des espe es tres

legeres.

Mots- les: Di usionmulti omposants; Milieuxporeux; Methode d'approximation

Key words: Multi omponent di usion; Porous Media;Approximationmethod

Version fran aise abregee

Pour le traitement dela di usion gazeuse multi omposants, qui requiert une

inversion des relations de Stefan-Maxwell (eq. 1), Bartlett et al. (1968) ont

propose une methode dite \de bifur ation", basee sur la onstatation que

haque oeÆ ient de di usion binaire pouvait ^etre ree rit suivant l'equation

(4).Ce iestjusti eenfaitparla orrelationassezetroiteentrelesfa teursde

bifur ation F i

etl'inverse dela ra ine arreedes masses molairesM 1=2 i

. Une

expression expli ite pour les ux massiques est alors obtenueen fon tion des

gradients (eqs. 5,6). Les oeÆ ients de bifur ation doivent ^etre pre- al ules

par une methodedeminimisation d'erreur, omme lesimplexe.

Nous proposons d'etendre ette pro edure aux equations de gaz poussiereux

de Mason et Malinauskas (1983) (eqs. 10), qui ontiennent en parti ulier la

ontributionsupplementairedeladi usiondeKnudsen(eq.12).Comme

elle- i fait aussi intervenir une proportionnalite a M 1=2 i

(5)

i K

poreux (eq.13).Desrelationsexpli itessontalorsobtenuespour les ux

mas-siquesdi usifsdes gaz (eqs. 21,22),etenprenant orre tementen ompteles

dependan esdi erentesdes di usionsbinaireetdeKnudsenalatemperature

eta la pression,ondoit orriger F K

suivant l'expression (24).

Lamethodeoriginalementproposeepresenteunepre isiondel'ordredequelques

pour- ents,sauf pour desespe es treslegeres outreslourdes.C'estegalement

le as del'extension proposeei i.

1 Introdu tion

In many modeling problems involving gas mixtures (distillation, ombustion,

atalysis, et ...), an important question is how to treat multi omponent

di usion. Con eptual diÆ ulties have been over ome sin e a long time, but

numeri al issues are still of a tuality, be ause a hieving simultaneously

a - ura y, onvergen e and omputational rapidity is not a simple task. In this

ontext, the bifur ation method appeared as a fairly good ompromise. On

the other hand, a popular treatment of di usive uxes in porous media,

fea-turingKnudsendi usion(also allede usion),istheDusty-GasModel,whi h

requiresasmu h omputationale ortasforthedeterminationoffree-medium

di usive uxes. We address here an extension of the bifur ation prin iple to

(6)

tothe Dusty-GasModel framewill bepresented and tested.

2 The Bifur ation Method

Letus rst re all brie y the ontext of Bartlett's approximation.

2.1 Multi omponentdi usion relations

Molar di usive uxes J i

are relatedtothe respe tivefor es rP i =RT through Maxwell-Stefan relations: rP i RT = n X j6=i x j J i x i J j D ij (1)

In a mass balan e equation, the divergen e of the uxes are needed : this

means that eq. (1) has to be solvedfor the uxes. This system also presents

also a singularity be ause (i) all mass uxes have to sum up to zero and (ii)

all gradients have to sum up to rP tot

=RT, whi h is determined elsewhere.

Removing these singularities and solving for the uxes may lead to heavy

omputations,soadire t,expli itformulawouldbeofgreatpra ti alinterest

inthe aseoflargesystemse:g: ombustionorpyrolysisproblems(Giovangigli

(1996)).

(7)

ij D ij = 3 16 p 4RT  q M ij  2 ij D ij (2) where M ij

is the redu ed mass of the pair (i;j) :

M ij = 1 2 M i M j M i +M j (3)

2.2 Prin iple of the bifur ation method

Theprin iple ofthebifur ation methodistostatethat ea hmulti omponent

di usion oeÆ ient may be expressedas :

D ij = D ref F i F j (4) where D ref

is some referen e di usion oeÆ ient and F i

a bifur ation fa tor

proper to ea h spe ies i. If n spe ies are present, then only n fa tors F i

are

to be determined instead of n(n 1)=2 oeÆ ients D ij

. In addition to this,

a dire t, expli it expression for the di usive mass uxes as a fun tion of the

gradients isobtained : j i =M i J i = n X j=1 D ij rP j (5)

(8)

8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : D ij = ! i M j RTF j D ref n X l=1 x l F l si i6=j D ii =(1 ! i ) M i RTF i D ref n X l=1 x l F l si i=j (6)

The reader is referred to the original referen e (Bartlett et al. (1968)) for

the detailed derivation ofthe latterexpressions.Using this relationspeeds up

strongly the resolution of mass transport problems, while keeping the main

physi al onstraint that the sum of the mass uxes is zero.

Comparing (4) to the theoreti al expression (2), one sees that this

approxi-mationwill bevalid assoonas :

q M i +M j  2 ij D ij = st=G (7)

The quantityG inthisrelationhas been omputed forasetof 69gasspe ies,

that is, for 2346 spe ies pairs. Fig. 1 is an histogram of G, showing that

this quantity possesses a modest standard deviation. The most important

deviationswere observedforvery heavy,poorly volatile spe ies su hasHgI 2

.

In order to determine the F i

oeÆ ient set, the simplex method is used. It is

hosen to minimize the following error fun tion :

E = n X i=1 n X j=i+1 (F i F j D ij D ref ) 2 (8)

(9)

exa tlyequal totheanalyti alpredi tion,sin einthis asetheapproximation

is indeedexa t.

Bartlett et al. (1968) report from their tests a mean error of 5% onthe

mul-ti omponent di usion oeÆ ients. We also performed a test on a set of 14

hydro arbons plus mole ular hydrogen. The mean error is 2.03%. The

maxi-maldeviationis 25.75%fortheH 2

CH 4

pair.Thiswastobeexpe tedsin e

they are the lightest spe ies presentin the system : their G fa toris well

be-low the mean G fa tor of all spe ies pairs. Forthe 69-spe ies system used to

he k validity of relation (7), the mean error was 3.44%, showing reasonable

usefulness of the approximation s heme tolarge systems.

2.3 In uen e of temperature

As the binary di usion oeÆ ients vary with temperature in amoderatebut

ompli ated way (from T 3=2

to T 2

), one should a priori take into a ount a

thermal variation of the F i

fa tors. Fig. 2 shows that when T in reases, the

F i

on erning the lightest spe ies tend to in rease while the heaviest spe ies

fa tors tend tode rease. However,one noti es that the overall thermal

varia-tion in a broad temperature range (300-1500K) for the F i

is small ompared

to the initial errors due tothe method. A ordingly, one may safely onsider

that these fa tors do not vary independently with temperature, the global

dependen e of di usion onT being in orporated inside D ref

(10)

Bartlettet al.(1968) alsohas shown fromexperimentaldataof Svehla (1962)

that the F i

maybeestimated fromthe empiri al orrelation :

F i /M i 0:461 (9)

This fa t may be expe ted from formulas (2,3), where it is readily seen that

D ij is proportional to (M i M j ) 1=2

if the G fa tor in eq. (1) does not vary

appre iably. Fig. 4 shows a plot of the F i

omputed in the 69-spe ies test

ase versus M 1=2 i

, in whi h dire t proportionality appears as a fairly good

approximation.

3 Appli ation to di usion in porous media

3.1 The Dusty-Gas Model equations

A popular extension of the Stefan-Maxwell relations to porous media is the

Dusty-GasModel(MasonandMalinauskas(1983)).Knudsendi usionisviewed

as the di usion of a spe ial gas pair, namely a true gas and the solid phase

des ribed asa olle tion of giant gasmole ules (\dust")whi hare held xed

(11)

(n+1) spe ies. Relations(1) be ome then : n X j6=i D 1 ij;e  x i ~ J D j x j ~ J D i  D 1 iK;e ~ J D i = rP i RT (10)

wherethe gas pairdi usion oeÆ ientshavebeen repla ed by e e tive

quan-tities D ij;e

whi h take intoa ount the in uen e ofthe porous medium:

D ij;e = 1 b D ij (11)

and where the Knudsen di usion oeÆ ientsD iK;e read : D iK;e = 1 K D iK = 1 K 1 3 s 8k B T M i d h (12) The quantities , d h ,  b , and  K

refer respe tivelytothe porosity,mean pore

diameter,binary di usiontortuosity,and Knudsendi usiontortuosityforthe

onsidered porous medium. All of them may be oordinate-dependent if the

medium is non-homogeneous, and the last two are se ond-order symmetri

tensors inthe ase of an anisotropi medium(Ofori and Sotir hos (1997)).

Ineq. 12we see learlythat the proportionalitytoM 1=2 i

ispreservedforthe

true gas i. A ordingly, the same kind of F i

that is used for multi omponent

(12)

Relation(12) mayberewritten : D iK = D ref F i F K (13) where F i et D ref

are the di usion fa tors and the referen e di usivity

om-putedfromthebinary(ordinary)di usiondata.F K

in orporatesa ontribution

arising fromthe solid phase. As a matterof fa t, F K

should be onsidered as

a eld whenit is non-homogeneous.

Now dire t expli it relations for the uxes may be attained, as in the ase of

standard multi omponent di usion. Summing up eqs. (10) on all gas spe ies

i, one has : n X i=1 0  n X j6=i D 1 ij;eff (x i ~ J D j x j ~ J D i ) D 1 iK ~ J D i 1 A = n X i=1 rP i RT (14)

and, aftersimpli ation :

n X i=1 D 1 iK ~ J D i = rP RT (15)

This relation is known as Graham'slaw of e usion. Introdu ing the

bifur a-tion, eqs. (10) and (15) are rewritten :

n X j6=i  b  x i ~ J D j x j ~ J D i  F i F j  K ~ J D i F i F K =D ref rP i RT (16) n X i=1 ~ J D i F i F K =  1 K D ref rP RT (17)

(13)

 b  x i ~ J D i F i F i x i ~ J D i F i F i  (18)

Eq. (16) nowreads :

 b 0  x i F i n X j=1 ~ J D j F j ~ J D i F i n X j=1 x j F j 1 A  K ~ J D i F i F K =D ref rP i RT (19)

Combiningthis last equationwith eq. (17) yields :

D ref RT  rP i  b  1 K x i F i F K rP  = 0   b n X j=1 x j F j + K F K 1 A ~ J D i F i (20)

Using mass uxes insteadof mole uxes, one obtains nally a Fi kianform :

~ j D i = n X j=1 D ij rP j (21)

where the porous-mediummulti omponent di usion oeÆ ientsD ij read : 8 > > > > > > > > > < > > > > > > > > > : D ij = D ref M i RTF K 0  n X j=1  b x j F j + K F K 1 A 1  b  1 K x i if i6=j D ii = D ref M i RTF i F K 0  n X j=1  b x j F j + K F K 1 A 1   b  1 K x i F i +F K Id  if i=j (22)

3.3 Determination of the Knudsen di usion fa tor

The Knudsen di usion fa torF K

may be dire tly determined fromthe

inver-sion of (13) : F K = D ref F i D K i (23)

(14)

K

approximately the ase, sin e the F i

fa tors are only approximately

propor-tionaltoM 1=2 i

.Fig.5isaplotofF K

fromeq.(23)forthepre eding15-spe ies

set. Itis learlyseen fromthis gurethat the dis repan yfromthe averageis

largerfor thelightest gaseousspe ies, and mainlyfor hydrogen.Alternatively

to the hoi e of a simple average , the F K

fa tor may be determined by the

aforementioned simplex method, altogetherwith the F i

fa tors.

Knudsendi usiondependsontemperatureandpressureinadistin twaythan

ordinarydi usion:theformervariesasT 1=2

whilethelattervariesasT 3=2 P 1 ormore(a tually,asT 1:75 P 1

a ordingtoFuller'smodel forbinary di usion

oeÆ ients (Reid et al. (1987))). A onsequen e of this is that if D ref arries the usual T 1:75 P 1

dependen e, then the Knudsen bifur ation fa tor F K

has

tobe anexpli it fun tionof temperatureandpressure, whilethe F i are not : F K =F 0 K  T T 0  1:25 P 0 P ! (24) 3.4 Computational a ura y

Themulti omponentdi usionmatri esobtainedthroughthisbifur ationmethod

havebeen omparedtothestandardDusty-GasModelvaluesinthe15-spe ies

test ase. Verya eptablemean errorsareobtained (about 1%),but the

max-imal error is important for the lightest spe ies (up to 30%). This ould be

(15)

is that the mean error islowerin the porous medium ase.

Figs. 7 and 6 are plots of the mean error as a fun tion of temperature and

pore diameter. Again, itappears thatthe temperaturehas onlyasmall e e t

onthe results. On the other hand,the pore diameter has astrongerin uen e

:the larger the pores, thelarger the meanerror, but the smallerthe maximal

error. Tointerpretthis fa t, re allthat the maximal error is due tothe

light-estgasspe ies, forwhi hana priori evaluation of F K

wouldbe substantially

largerthantheaverage( g.5).Hen e,thiserror(duetotheextrahypothesis)

be omes more and more visible asthe pore radius de reases.

4 Con lusion

An extension of the bifur ation method presented by Bartlett et al. (1968)

tothe Dusty-GasModel(Mason and Malinauskas(1983))has been presented

andtested.Itprovidesanexpli itexpressionforthedi usivemulti omponent

uxes inporous mediawhi hretainsGraham'slawofe usionasa onstraint.

Theapproximated oeÆ ientsexhibitthe samedegreeof pre isionthan when

noporous medium ispresent,that is :

 The mean error is of the same order of magnitude, and even somewhat

lower.

(16)

 Tests performed in the absen e of very light gas spe ies have proved very

satisfa tory a ura y onall spe ies.

Thelimitsof ombiningthebifur ation methodandtheDusty-GasModelare

only the independent limits of both models ; so, inside them, it appears as

a valuable omputational speed-up for problems dealingwith mass transport

of large hemi al systems in porous media like har ombustion, pyro arbon

in ltration, et ...

5 A knowledgements

The authors are indebted to SEP, divison de SNECMA,for a Ph.D. grant to

C.D.. They also wish to thank Ph.Le Helley (SEP-SNECMA) and G. Du a

(17)

Bartlett, E. P., Kendall, R. M., and Rindal, R., An analysis of the

oupled hemi ally rea ting boundary layer and harring ablator. Part IV

: A uni ed approximation for mixture transport properties for

multi om-ponent boundary layer appli ations, Te hni al Report CR-1063, NASA,

(1968).

Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport

Phe-nomena, John Wiley, New York City,NY, USA, 1960.

Giovangigli, V.,ModelisationdelaCombustion,CNRS, Paris, Fran e,

Im-ages des Mathematiques, 1996.

Mason, E. A. and Malinauskas, A. P., Gastransport in porous media:

the Dusty-Gasmodel,Chemi alengineeringmonographs,Elsevier,

Amster-dam, The Netherlands, 1983.

Ofori, J.Y.andSotir hos,S.V.,Multidimensionalmodelingof hemi al

vapor in ltration: Appli ation to isobari CVI, Ind. Eng. Chem. Res. 36

(1997), 357-367.

Reid, R. C., Prausnitz, J. M., and Poling, B. E., The properties of

gases andliquids, M GrawHillBookCompany,NewYorkCity,NY, USA,

4 th

edition,1987.

Svehla, R. A., Estimatedvis osities andthermal ondu tivitiesof gasesat

(18)

0

1

2

3

4

5

6

7

8

0.315

0.615

0.915

1.215

1.515

%

Function G

Fig.1. Histogramof G(see eq. (7)in text)

0

0.5

1

1.5

2

2.5

3

200

400

600

800 1000 1200 1400 1600

H

2

CH

4

C

3

H

8

C

6

H

6

C

6

H

12

F

i

T(K)

Fig. 2. Bifur ation oeÆ ients F i

vs: temperature. Chemi al system of 5 C- and

(19)
(20)

0

0.5

1

1.5

2

0

2

4

6

8

10

F

i

F

i

M

i

1/2

Fig. 4.Plot ofdi usionfa tors vs: thesquare rootofthemolar mass.

Fig.5.Plotof theKnudsendi usionfa torfrom eq. (23)vs: thesquarerootofthe

(21)

thelargestdi usion oeÆ ient.

Fig.7.Meanerrorin%onthemulti omponentdi usionmatrixwithrespe ttothe

Figure

Fig. 1. Histogram of G (see eq. (7) in text)
Fig. 4. Plot of diusion fators vs: the square root of the molar mass.
Fig. 7. Mean error in % on the multiomponent diusion matrix with respet to the

Références

Documents relatifs

Cluster analysis on bulk C/N and total cellulosic sugar profiles (results not shown) showed that the advanced regeneration stage profile is more similar to bare peat than any

Experimentally, it has long been known that a non linear relationship between the flow rate and the pressure drop imposed on the porous medium is obtained for non-Newtonian fluids

Worthy to mention are the studies in [33] using an implicit moving mesh algorithm; [41], employing a moving-mesh approach with local grid refinement; a special zero- thickness

Finally, note that the idea of plugging an approximation of the solution into the relative entropy method should certainly apply to other degenerate particle systems and allow to

ةماع ةمتاخ 98 اهركفم للاخ نم ةيناسنلإا تاقلاعلا ةسردم كلذ دعب تيأتل ،طقف ةيدالما زفاولحا ىلع رصتقت زيفحتلا ةيلمع برتعي &#34; ويام تنلإ &#34; لما زفاولحا بناج

When a semiparametric regression model involving a common dimension reduction direction β is assumed for each block, we propose an adaptive SIR (for sliced in- verse

Conclusions We studied 276 circulating biomarkers in patients with HFrEF and central sleep apnoea; of these biomarkers, three added signi ficant prognostic information on top of the

Dans la deuxième partie de ce chapitre nous proposons une méthode pour alimenter le convertisseur matriciel qui s’appuie sur la théorie de VENTURINI sur les paramètres