• Aucun résultat trouvé

Deciphering the molecular basis of ferroportin resistance to hepcidin: Structure/function analysis of rare SLC40A1 missense mutations found in suspected hemochromatosis type 4 patients

N/A
N/A
Protected

Academic year: 2021

Partager "Deciphering the molecular basis of ferroportin resistance to hepcidin: Structure/function analysis of rare SLC40A1 missense mutations found in suspected hemochromatosis type 4 patients"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-01679064

https://hal.sorbonne-universite.fr/hal-01679064

Submitted on 9 Jan 2018

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons

Attribution| 4.0 International License

Deciphering the molecular basis of ferroportin resistance to hepcidin: Structure/function analysis of rare

SLC40A1 missense mutations found in suspected hemochromatosis type 4 patients

M. Le Tertre, C. Ka, J. Guellec, I. Gourlaouen, C. Férec, I. Callebaut, G. Le Gac

To cite this version:

M. Le Tertre, C. Ka, J. Guellec, I. Gourlaouen, C. Férec, et al.. Deciphering the molecular basis of

ferroportin resistance to hepcidin: Structure/function analysis of rare SLC40A1 missense mutations

found in suspected hemochromatosis type 4 patients. Transfusion Clinique et Biologique, Elsevier,

2017, 24 (4), �10.1016/j.tracli.2017.07.002�. �hal-01679064�

(2)

Disponibleenlignesur

ScienceDirect

www.sciencedirect.com

TransfusionCliniqueetBiologique24(2017)462–467

Research perspectives

Deciphering the molecular basis of ferroportin resistance to hepcidin:

Structure/function analysis of rare SLC40A1 missense mutations found in suspected hemochromatosis type 4 patients

Mécanismes de résistance de la ferroportine à l’hepcidine : analyses structure/fonction de mutations faux-sens rares du gène SLC40A1 identifiées chez des patients présentant une surcharge en fer

typique de l’hémochromatose de type 4

M. Le Tertre

a,b,c,∗

, C. Ka

a,b,c

, J. Guellec

a,b,e

, I. Gourlaouen

a,b,d

, C. Férec

a,c,d

, I. Callebaut

f

, G. Le Gac

a,b,c,d

aInsermUMR1078,facultédemédecineetdessciencesdelasanté,universitéBretagneLoire–universitédeBretagneOccidentale,IBSAM,IBRBS,22,rue Camille-Desmoulins,29200Brest,France

bLaboratoryofExcellenceGR-Ex,institutImagine,24,boulevardduMontparnasse,75015,Paris,France

cLaboratoiredegénétiquemoléculaireethistocompatibilité,hôpitalMorvan,CHRUdeBrest,2,avenueFoch,29200Brest,France

dÉtablissementfran¸caisdusang,Bretagne,sitedeBrest,46rueFélix-Le-Dantec,29200Brest,France

eAssociationGaetan-Saleun,29,rueFélix-Le-Dantec,29200Brest,France

fMuséumd’histoirenaturelle,IRDUMR206,case115,IMPMC,Sorbonneuniversités–UMRCNRS7590,UPMCuniversitéParis06,4,placeJussieu,75252 Pariscedex05,France

Availableonline18August2017

Abstract

Geneticmedicineappliedtothestudyofhemochromatosishasidentifiedthesystemicloopcontrollingironhomeostasis,centeredonhepcidin- ferroportininteraction.Currentchallengesaretodissectthemolecularpathwaysunderlyingliverhepcidinsynthesisinresponsetocirculatory iron,HFE,TFR2,HJV,TMPRSS6andBMP6functions,andtodefinethemajorstructuralelementsofhepcidin-ferroportininteraction.Webuilt afirst3Dmodelofhumanferroportinstructure,usingthecrystalstructureofEmrD,abacterialdrugeffluxtransporteroftheMajorFacilitator Superfamily,astemplate.Themodelenabledstudyofdisease-associatedmutations,andguidedmutagenesisexperimentstodeterminetheroleof conservedresiduesinproteinstabilityandirontransport.Resultsrevealednovelaminoacidsthatarecriticalfortheironexportfunctionandthe hepcidin-mediatedinhibitionmechanism:forexample,tryptophan42,localizedintheextracellularendoftheferroportinporeandinvolvedinboth biologicalfunctions.Here,weproposeastrategythatisnotlimitedtostructureanalysis,butintegratesinformationfromdifferentsources,including humandisease-associatedmutationsandfunctionalinvitroassays.ThefirstmajorhypothesisofthisPhDthesisisthatferroportinresistanceto hepcidinreliesondifferentmolecularmechanismsthatarecriticalforferroportinendocytosis,andincludeatleastthreefundamentalsteps:(i) hepcidinbindingtoferroportin,(ii)structuralreorganizationoftheN-andC-terferroportinlobes,and(iii)ferroportinubiquitination.

©2017ElsevierMassonSAS.Allrightsreserved.

Keywords: Ironmetabolism;Hemochromatosis;Ferroportin;Hepcidin;Gain-of-functionmutations Résumé

L’étudedesformesraresd’hémochromatoseacontribuéàunemeilleureconnaissancedesmécanismescellulairesetsystémiquesquiparticipent aumaintiendel’homéostasieduferetquidépendentdel’axehepcidine-ferroportine.Desquestionsfondamentalesmajeuresrestentposéessurles voiesd’activationdelasynthèsed’hepcidineenfonctiondelaquantitédeferplasmatiqueetdel’actionàlasurfacedeshépatocytesdesprotéines

Correspondingauthor.

E-mailaddress:marlene.letertre@etudiant.univ-brest.fr(M.LeTertre).

http://dx.doi.org/10.1016/j.tracli.2017.07.002

1246-7820/©2017ElsevierMassonSAS.Allrightsreserved.

(3)

M.LeTertreetal./TransfusionCliniqueetBiologique24(2017)462–467 463 HFE,TFR2,HJV,TMPRSS6etBMP6,ainsiquesurlesbasesstructuralesdel’interactionhepcidine-ferroportine.Nousavonsconstruitunpremier modèletridimensionneldelaferroportinehumaineàpartirdelastructurecristallographiéed’EmrD,unexportateurdedroguesbactérienqui appartientàlafamilledestransporteurssecondairesMFS(«MajorFacilitatorSuperfamily»).Cettemodélisationapermis,enlienavecl’étude fonctionnelledemutationsfaux-sensidentifiéeschezdespatientsprésentantdesphénotypestypiquesd’hémochromatosedetype4,d’identifier desacidesaminésquiontunefonctioncritiquedanslastabilitédelaferroportine,lafonctiond’exportdufer,oularégulationparl’hepcidine.

Letryptophaneenposition42s’est,parexemple,révéléimportantàlafoispourlapriseenchargeduferetl’endocytosedelaferroportineàla suitedelafixationdel’hepcidine.Nousproposonsiciunestratégiequicombineanalysesstructurales,corrélationsgénotype/phénotypeettests fonctionnelsinvitro.Cetravaildethèseviseàrévélerlesdifférentsmécanismesmoléculairesquisous-tendentleprocessusdedégradationdela ferroportine.Ceprocessussemblecomprendretroisétapesessentielles:(i)fixationdel’hepcidineàlaferroportine,(ii)réorganisationstructurale deslobesNetC-terminauxdelaferroportine,et(iii)ubiquitinationetinternalisationdutransporteur.

©2017ElsevierMassonSAS.Tousdroitsr´eserv´es.

Motsclés:Métabolismedufer;Hémochromatose;Ferroportine;Hepcidine;Mutations«gain-de-fonction»

1. Introduction

Ironisessentialtonormalcellbiology.Asacomponentof heme,itisparticularlyimportantforerythropoiesisandoxygen transport.However,ironexcessand“free”reactiveironistoxic.

Bodyironlossisinsufficient,andintertwinedmechanismshave evolvedtomaintainintracellularandsystemicironhomeostasis.

Ferroportin (FPN1,also referred toas SLC40A1, SLC11A1, MTP1andIREG1)istheonlyknownironexporterinmammals andisconsideredakeycoordinatorofironbalancebetweenthe twocompartments[1].

Ferroportin is expressed in all types of cell that handle majorironflow,includingiron-recyclingmacrophages,absorp- tiveenterocytesandstoringhepatocytes(Fig.1).Ferroportinis predominantlyregulatedbytheliver-derivedpeptidehepcidin, whichbindsferroportinonthecellsurface,inducinginternal- izationanddegradation[2].Hepcidin-ferroportininteractionis critical inbothnormal ironhomeostasis andincommoniron metabolismpathologies,includingnotonlyinheriteddisorders andironoverloadbutalsonon-geneticdiseasesandanemia[3].

1.1. Regulationofferroportinactivity

Ferroportin expression is regulated transcriptionally, post- transcriptionally,andpost-translationally.Atthecellularlevel, ferroportinsynthesis is regulated via the iron-responsive ele- ment/ironregulatoryproteinssystem.Thissystemorchestrates thepost-transcriptionalregulationofseveralotherimportantiron metabolismgenes[4].Attheleveloftheorganism,ferroportinis subjecttopost-translationaldownregulationviatheliver-derived peptidehepcidin[2,5].Themolecularmechanismofhepcidin- mediatedferroportindownregulationisnotfullyunderstood,but includesatleastthreefundamentalsteps:

• hepcidin bindingtoferroportin, astep that involvesamino acidresiduep.Cys326[6];

• ferroportinubiquitination, astepthat is thoughtto involve severallysineresiduesbetweenpositions229and269[7];

• ferroportintraffickingtothemultivesicularbodyanddegra- dationinthelateendosome/lysosomecompartment[8].

1.2. DichotomouspatternsofhumanSLC40A1mutation Inhumans,mostferroportinmutationsaffectplasmamem- branelocationand/orironexportability.Theseloss-of-function mutationsexplaintheclassicalreportsofisolatedserumferritin elevation,relativeplasmairondeficiencyandpreferentialiron retentionincellsofthereticuloendothelialsystem.Thishisto- logicalpicture iscommonlyreferredtoas ferroportindisease [9].

In contrast, some SLC40A1 mutations do not impair the abilityofferroportintoexportironbutresultinpartialtocom- pleteresistancetohepcidin.Patientswiththesegain-of-function mutations(hemochromatosistype4)usually displayhistolog- ical andclinical presentationssimilar to thoseof the typical HFE-relatedhemochromatosis.Moreespecially,duetogreater flowofironthroughiron-recyclingmacrophagesandincreased ironabsorption,transferrinsaturationisexpectedtobemarkedly elevatedinthesepatients[10,11].

1.3. Ferroportinstructure

Thestructuralorganizationofhumanferroportininthelipid bilayeriscontroversial.Wallaceandcollaboratorsreportedthe first modelof the3D structureof humanferroportin, with12 predicted transmembrane helices built de novo (i.e., without homology).Theysubsequentlyfittedthemodeltoexperimental data,usingEscherichiacoliglycerol-3-phosphate(GlpT)trans- porter as template [12]. This template belongs to the Major Facilitator Superfamily (MFS),whichis the largest groupof secondaryactivemembrane transporters,transporting arange ofdiversesubstratesacrossmembranes.

BonaccorsidiPatiandcollaboratorsdescribedafairlysimilar 3D model of ferroportin, based on threading/ab initio mod- eling [13]. Thisisnot surprising,since,independently of the algorithms used, the Italian group predicted an inward-open conformationoftheferroportinirontransporter,usingGlpTas template.TheyusedadifferentMFSmember,E.coliL-fucose protonsymporter(FucP),tobuildanoutward-openconforma- tionofferroportin.Theswitchbetweenthetwoconformations isbelievedtodriveirontransportacrosstheplasmamembrane.

(4)

Fig.1.Schematicrepresentationofironmetabolism.IronispartlyimportedinduodenalenterocytesbyDMT1(DivalentMetalTransporter1),storedinhepatocytes andrecycledfromsenescentredbloodcells(RBC)inmacrophages.Ferroportin(FPN1)mediatesironexportintothebloodstreamfromiron-absorptiveenterocytes, iron-recyclingmacrophagesandiron-storinghepatocytes.Theironreleasedintotheplasmaistransportedbytransferrinmainlytothebonemarrowforerythropoiesis.

Cellularironexportisregulatedbyhepcidin,whichdirectlybindsferroportinandleadstoitsinternalizationanddegradation.

Webuiltathird3Dmodelofferroportin,usingatruecom- parativemodelingapproach,withsensitivemethodsforremote homology detectionbased on profile–profile alignments, and foralignmentrefinement(specifichydropathyprofiles,deduced fromhydrophobicclusteranalysis),andvalidatingtheuseofthe crystalstructureofoneMFSantiporter,E.colimultidrugefflux proteinD(EmrD),astemplate[14].ThestructureofEmrDwas determined inanoccluded state.It ismorecompactthanthe crystalstructureofGlpT,andthe12transmembranehelicesare arrangedaroundacentralpore.

Acomparisonofthe3Dmodelsofallpossiblestatesaccom- panyingirontransportisessentialforunderstandingthestructure andbiologyofhumanferroportin. Inadditiontotheoutward- andinward-facingstates,MFStransportersarethoughttoforma transitionaloccludedstate,inwhichthesubstrateissequestered frombothsidesofthemembrane.Therecentreportofthecrys- talstructuresof aputativebacterial homologueof ferroportin (BbFPN) andthe description of intra-domain conformational rearrangementsduringirontransportopensupnewavenuesfor predictingtheatomicdetailsoftheorganizationofferroportin transmembranehelicesandelucidatingthedetailedmechanisms ofironegressandhepcidin-mediateddownregulation[15].

2. Objectives

Fundamentalquestionsconcerningferroportinstructureand biologyremaintobeanswered.Basedonstructuralandmuta- tionalanalyses,weaimto:

• getinsightintotheinteractionofhepcidinwithferroportin;

• characterizesequenceinvariantsthatmayplayakeyrolein conformationalchangesfollowinghepcidinbinding;

• improveinterpretationof raremissensemutationsfoundin suspectedhemochromatosispatients.

Ourresearchprojectisorganizedaroundthreequestions.

2.1. Howcanthestudyofmissensemutationsidentifiedin hemochromatosispatientshelptorevealthemolecular mechanismsunderlyingphenotypicvariabilityandtoshed lightonproteinfunction?

As mentioned above, ferroportin gene mutations fall into 2 functional categories, responsible for different phenotypes (hemochromatosis type 4 vs. ferroportin disease). Most are unable to export iron (loss-of-function mutants; ferroportin disease), while others retain full capability but are insensi- tivetodown-regulationbyhepcidin(gain-of-functionmutants;

hemochromatosistype4).Mostferroportinmutantsareprivate, and most alteramino acids. Thishinders bothdiagnosis and therapeuticdecision-making,butstructure-functionstudiesmay shedlightonferroportinfunctionanditsrelationshipwithhep- cidin.Thisisexemplifiedbytheresultsoftwopreviousstudies:

thefirststudieddisease-causingmutationsandrevealedaclear dichotomybetweengain-of-functionmutations,whichclustered in a regionexposed to the extracellular milieu, accessibleto hepcidin,andloss-of-functionmutations,locatedatthecytoplas- micinterface,whereintracellularironisdeliveredtoferroportin forexport[14];thesecondfunctionallycharacterizedmissense mutationsofunknownsignificanceandidentifiednovelcritical aminoacids[11].

(5)

M.LeTertreetal./TransfusionCliniqueetBiologique24(2017)462–467 465

Fig.2.Ferroportindown-regulationmechanisms.A.Gain-of-functionferroportinmutationsidentifiedinpatientsandfunctionallycharacterized.Substitutionresidues generatingpartialresistanceofferroportintohepcidinarelabeledingreen,andthosegeneratingstrongresistanceinred.B.Modelofhepcidin-mediateddown- regulationofferroportin.HepcidinbindstotheferroportinC-terlobe,preventingitsreturntotheinwardconformation.Intracellularloopaccessisimproved,enabling ubiquitinationbyubiquitinligases,triggeringinternalizationanddegradationoftheironexporter(adaptedfromTaniguchietal.,2015[15]).

2.2. Howtoimproveourknowledgeofthehepcidindocking process?

Acriticalpointintheelucidationofthestructureandbiol- ogyof ferroportinwasreached withthe recentpublication of theoutward-andinwardfacingstructuresofaputativebacterial homologueof ferroportin(BbFPN).Taniguchi andcollabora- torssuppliedveryimportantcluesforidentifyingaminoacids involvedintheiron-bindingsiteandfordecipheringinteraction networksbetweentransmembranehelicesintheoutward-and inward-facingextremestructures.Theyfurtherrevealedthepiv- otalroleofacentralcavitythathoststheiron-bindingsiteinthe intra-andextra-cellularopenstatesofBbFPNandislikelyto betargetedbyhepcidinintheoutward-facingconformationof humanferroportin[15].Althoughveryimportant,thesedataare notthelastword,butwillserveasthestartingpointtopredict atomicdetailsoftheorganizationofferroportintransmembrane helicesandtoachieve accuratemodeling ofthe humanferro- portin3Dstructure.

Itnoteworthy thatmissensemutationsleading tothe high- est degrees of hepcidin resistance are located in the C-ter lobe of ferroportin [6,11,16–18], in the vicinity of Cys326, whichis known tobe essential to hepcidin/ferroportin inter- action,while severalmissense mutationslocated inthe N-ter lobe have proved to induce partial resistance to hepcidin (Fig.2A)[6,16,19,20].Results,however,areconflicting,prob- ablybecausedifferentconcentrationsofhepcidinanddifferent experimentalprocedureswereusedbythevariousgroups.Fur- thermore,manymissensemutationsidentifiedinpatientswith atypicalhemochromatosisphenotypehavenotbeenevaluated

functionally.Homogenousproceduresareneeded,tobetterdis- cern gain-of-functionmutations andconfirm the existence of afunctional dichotomybetweenthe N- andC-terferroportin lobes.

2.3. Howtoidentifyferroportindomainsthatareimportant forhepcidin-inducedendocytosis?

Ingeneral,ligand-inducedendocytosisofplasmamembrane transportersistriggeredbyaconformationalchangefollowed byphosphorylationand/or ubiquitinationoftheir cytoplasmic segments[21].Qiaoetal.demonstratedthattheubiquitination oflysinesbetweenresidues229and269inthethirdintracellu- larloopofferroportinisthemajorsignalforincorporationinto themultivesicularbodyanddegradationinthe lateendosome compartment.Theyfurthershowedthatthehumanferroportin mutationp.Lys240Glu(K240E) causedresistance tohepcidin invitrobyinterferingwithferroportinubiquitination[7].The specificdetailsofferroportin’scellularinternalizationprocess, including which ubiquitin-binding adaptor proteins may be involved,remaintobedetermined.Inaddition,nothingisyet known aboutthe conformationalchanges that resultfrom the interactionofhepcidinwithferroportin.

ThefactthatseveralmissensemutationsintheN-terlobeare associatedwithpartialresistancetohepcidinwithoutaffecting theprimarydockingstep[6]suggeststhatlocalchangesinthe firstsixhelicesplayanimportantrole(Fig.2B).Here,weplan tofunctionally characterize10 missensemutations locatedin transmembranehelices1,2,4,5 and6.Thiscouldhelpiden- tifyinter-domaininteractionsandresiduesthatarecriticalfor

(6)

hepcidin-inducedendocytosis,inastepthatdependsonhepcidin binding and comes before ubiquitination of lysines between residues229and269.

3. Experimentalprocedures 3.1. Geneticstudies

Inrecentyears,wecontributedtoreportingahandfulofnew mutationsanddiseasephenotypesinpatientswithironoverload.

WewillcapitalizeonourexpertisetoinvestigatenewSLC40A1 missensemutations inpatients withwell-definedphenotypes.

Thiswillbefacilitatedbyanationalmedicalresearchprogram (PHRC)todeterminetheprevalenceandseverityofferroportin- associated ironoverload.Eighteen missensemutations,found in44Frenchpatients,havealreadybeenreportedandfunction- allycharacterized[11].Fivemissensemutationsarestillunder investigation,andwecanconfidentlypredictthatafewothers willbeidentifiedinthecomingtwoyears.

3.2. Functionalinvitrotesting

To testthe degree of resistanceof the ferroportin variants tohepcidin, we will useWestern blot analysis,flow cytome- try andmeasurements of radiolabeled 55Fe.We will use the HEK293T cells as a cellular model to transiently or stably (tetracyclin-inducible system) overexpress ferroportin, while humanhepcidinwillbeproducedinstablytransfectedHep3B cells. This will enable us toperform co-culture experiments and improve our ability to reveal subtle differences between mutationsthatcauseresistancetohepcidin.AC-terbiotinylated hepcidinsyntheticpeptidewillbeusedinpull-downandWest- ernblottingexperimentstotesttheinteractionbetweenhepcidin andferroportinmutants.125I-Hepcidinuptakeexperimentsand global analysis of lysine ubiquitinationwill be performed to investigateaminoacidsthatdonotdirectlyinteractwithhepcidin butcouldbeinvolvedinferroportinendocytosis.

3.3. Structuralstudies

Wewillseektoprovidearefinedmodelofhumanferroportin despitearelativelylowlevelofsequenceidentity(24%)with thebacterialtemplate.Thiswillbecompletedbyamolecular- dockingapproachtostudytheinteractionbetweenhepcidinand ferroportin.Thistheoreticalanalysis,combinedwithexperimen- taltesting,willbenefitfromourpastexperienceinmembrane proteinmodeling(e.g.,CFTR)[22,23].

4. Milestones

• M1-Accuratestructurepredictionofhumanferroportin;

• M2-Betterdefinitionof thehepcidin-bindingsiteonferro- portin;

• M3-Identificationofthefunctionalnetwork(keyresiduesand interactions) that orchestrate hepcidin-induced ferroportin endocytosis;

• M4-Betterunderstandingofthemolecularandphysiological basesofhemochromatosis,bycharacterizingnewmutations andreportingwell-definedphenotypes.

Disclosureofinterest

Theauthorsdeclarethattheyhavenocompetinginterest.

References

[1]HentzeMW,MuckenthalerMU,GalyB,CamaschellaC.Twototango:

regulationofmammalianironmetabolism.Cell2010;142:24–38.

[2]NemethE,TuttleMS,PowelsonJ,VaughnMB,DonovanA,WardDM, etal.Hepcidinregulatescellularironeffluxbybindingtoferroportinand inducingitsinternalization.Science2004;306:2090–3.

[3]GanzT,NemethE.Thehepcidin-ferroportinsystemasatherapeutictarget inanemiasandironoverloaddisorders.HematolAmSocHematolEduc Program2011;2011:538–42.

[4]MuckenthalerMU,GalyB,HentzeMW.Systemicironhomeostasisand theiron-responsiveelement/iron-regulatoryprotein(IRE/IRP)regulatory network.AnnuRevNutr2008;28:197–213.

[5]Ganz T. Hepcidin and iron regulation, 10years later. Blood 2011;117:4425–33.

[6]FernandesA,PrezaGC,PhungY,DeDomenicoI,KaplanJ,GanzT,etal.

Themolecularbasis ofhepcidin-resistanthereditary hemochromatosis.

Blood2009;114:437–43.

[7]QiaoB,SugiantoP,FungE,del-Castillo-RuedaA,Moran-JimenezM-J, GanzT,etal.Hepcidin-inducedendocytosisofferroportinisdependenton ferroportinubiquitination.CellMetab2012;15:918–24.

[8]DeDomenicoI,WardDM,LangelierC,VaughnMB,NemethE,Sundquist WI,etal.Themolecularmechanism ofhepcidin-mediatedferroportin down-regulation.MolBiolCell2007;18:2569–78.

[9]Pietrangelo A. The ferroportin disease. Blood Cells Mol Dis 2004;32:131–8.

[10]Anderson GJ, McLaren GD. Ironphysiology and pathophysiology in humans.NewYork:HumanaPress;2012.

[11]CallebautI,JoubrelR, PissardS,Kannengiesser C,Gérolami V,Ged C,etal.Comprehensivefunctionalannotationof18missensemutations foundinsuspectedhemochromatosis type4patients. HumMolGenet 2014;23:4479–90.

[12]WallaceDF,HarrisJM,SubramaniamVN.Functionalanalysisandtheo- reticalmodelingofferroportinrevealsclusteringofmutationsaccordingto phenotype.AmJPhysiolCellPhysiol2010;298:C75–84.

[13]BonaccorsidiPattiMC,PolticelliF,CeceG,CutoneA,FeliciF,Persichini T,etal.Astructuralmodelofhumanferroportinandofitsironbinding site.FEBSJ2014;281:2851–60.

[14]Le Gac G, Ka C, Joubrel R, Gourlaouen I, Lehn P, Mornon J-P, etal.Structure-functionanalysisofthehumanferroportinironexporter (SLC40A1):effectofhemochromatosistype4diseasemutationsandiden- tificationofcriticalresidues.HumMutat2013;34:1371–80.

[15]TaniguchiR,KatoHE,FontJ,DeshpandeCN,WadaM,ItoK,etal.

Outward-andinward-facingstructuresofaputativebacterialtransition- metaltransporterwithhomologytoferroportin.NatCommun2015;6:8545.

[16]Drakesmith H, Schimanski LM, Ormerod E, Merryweather-Clarke AT, Viprakasit V, Edwards JP, et al. Resistance to hepcidin is con- ferredbyhemochromatosis-associated mutations offerroportin. Blood 2005;106:1092–7.

[17]MayrR,GriffithsWJH,HermannM,McFarlaneI,HalsallDJ,Finkenstedt A,etal.IdentificationofmutationsinSLC40A1thataffectferroportinfunc- tionandphenotypeofhumanferroportinironoverload.Gastroenterology 2011;140:2056–63[e1].

[18]PrezaGC,RuchalaP, PinonR,RamosE, QiaoB,PeraltaMA, etal.

Minihepcidinsarerationallydesignedsmallpeptidesthatmimichepcidin activityinmiceandmaybeusefulforthetreatmentofironoverload.JClin Invest2011;121:4880–8.

(7)

M.LeTertreetal./TransfusionCliniqueetBiologique24(2017)462–467 467 [19]PraschbergerR,SchranzM,GriffithsWJH,BaumgartnerN,HermannM,

LomasDJ,etal.ImpactofD181VandA69Tonthefunctionofferro- portinasanironexportpumpandhepcidinreceptor.BiochimBiophys Acta2014;1842:1406–12[MolBasisDis].

[20]DétivaudL,IslandM-L,JouanolleA-M,RopertM,Bardou-JacquetE,Le LanC,etal.Ferroportindiseases:functionalstudies,alinkbetweengenetic andclinicalphenotype.HumMutat2013;34:1529–36.

[21]BonifacinoJS,TraubLM.Signalsforsortingoftransmembraneproteins toendosomesandlysosomes.AnnuRevBiochem2003;72:395–447.

[22]Mornon J-P, Lehn P, Callebaut I. Atomic model of human cys- tic fibrosis transmembraneconductanceregulator: membrane-spanning domains and coupling interfaces. Cell Mol Life Sci 2008;65:

2594–612.

[23]MornonJ-P,HoffmannB,JonicS,LehnP,CallebautI.Full-openandclosed CFTRchannels,withlateraltunnelsfromthecytoplasmandanalternative positionoftheF508region,asrevealedbymoleculardynamics.CellMol LifeSci2015;72:1377–403.

Références

Documents relatifs

We use the experimental results to illustrate the two main results: (1) The adaptive controller is able to track the reso- nant frequency of the robot which is a function of

I showthat (i) Drosophila and rodent genes tend to prefer codons that minimize errors; (ii) this cannot be merely the effect of mutation bias; (iii) the degree of error minimization

Recently, two missense mutations in the mechanically activated PIEZO1 (FAM38A) ion channel were associated with dehydrated hereditary stomatocytosis.. However, it is not known how

Three genes related to neurological function (STXBP1, SNCA, and SOD2) by comparing wild-type THAP1 cell line with both mutant cell lines and seven candi- dates from dysregulated

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Rare occurrence of doravirine resistance-associated mutations in HIV-1-infected treatment-naive patients.. Cathia Soulié, Maria Mercedes Santoro, Charlotte Charpentier,

arginine170 to leucine substitution. The genetics of inherited sideroblastic anemias. Frederic MY, Lalande M, Boileau C, Hamroun D, Claustres M, Beroud C, Collod-Beroud

Recently, somatic amplification and gain-of- function mutations of the anaplastic lymphoma receptor tyrosine kinase ( ALK, MIM 105590) gene, either somatic or germline,