• Aucun résultat trouvé

Recent algorithmic advances for combinatorial optimization in graphical models

N/A
N/A
Protected

Academic year: 2021

Partager "Recent algorithmic advances for combinatorial optimization in graphical models"

Copied!
81
0
0

Texte intégral

(1)

HAL Id: hal-02785380

https://hal.inrae.fr/hal-02785380

Submitted on 4 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Recent algorithmic advances for combinatorial optimization in graphical models

David Allouche, Simon de Givry, Georgios Katsirelos, Thomas Schiex, Matthias Zytnicki, Abdelkader Ouali, Samir Loudni

To cite this version:

David Allouche, Simon de Givry, Georgios Katsirelos, Thomas Schiex, Matthias Zytnicki, et al..

Recent algorithmic advances for combinatorial optimization in graphical models. 23rd International Symposium on Mathematical Programming (ISMP-18), Jul 2018, Bordeaux, France. 80 p. �hal- 02785380�

(2)

ISMP’18

Recent algorithmic advances for combinatorial optimization in graphical models

Simon de Givry, Thomas Schiex, David Allouche, George Katsirelos, Matthias Zytnicki, MIAT – INRA, Toulouse, France

Abdelkader Ouali, Samir Loudni, GREYC, University of Caen, France

(3)

Plan

Graphical models

Examples and definitions

Local reasoning techniques

Bounding, clique cut, pruning

Complete search methods

Hybrid search, iterative search, large neighborhood search

Experimental results

Open-source C++ exact solver toulbar2 v1.0.0

https://github.com/toulbar2/toulbar2

(4)

Earth Observation Satellite Management (SPOT5)

(Bensana et al, Constraints 1999 ; IJCAI09)

(5)

Radio Link Frequency Assignment (CELAR)

(Cabon et al, Constraints 1999 ; CP97 – AAAI06 – IJCAI07 – IJCAI09 – CP10)

n ≤ 458, d=44, e(2) ≤ 5,000

(6)

Mendelian error correction in complex pedigree (MendelSoft)

(Constraints08)

n≤20,000, d≤66, e(3)≤30,000

(7)

Genetic Linkage Analysis

(Marinescu & Dechter, AAAI 2006 ; IJCAI11)

n≤1,200, d≤7, e(2-5)≤2,000

(8)

Protein Design

(CP12 – Bioinformatics13 - AIJ14 – JCTC15 – ISMP18)

n≤120, d≤190, e(2)≤7,260

(9)

Graph Matching

(worms segmentation)

(Kainmueller et al, Med Image Comput 2014 ; Haller et al, AAAI 2018)

n≤558, d≤128, e(2)≤23,407

(10)

Graphical Model

Slides from Sabbadin’s invited talk at JFRB 2018

(11)

Probabilistic Graphical Models

X1 X2 X3 X4

(12)

Probabilistic Graphical Models

X1 X2

(13)

Probabilistic Graphical Models

X3

X1 X2

X4

123

124

(14)

Deterministic Graphical Model

X1 X2

X4

w

123

w

124

(15)

Deterministic Graphical Model

X3

X1 X2

X4

w

123

= -log �

123

w

124

= -log �

124

Energy minimization task is equivalent to finding the most probable explanation

Minimization task: min w(X

1

,…,X

n

) NP-hard problem

(16)

Example

{

problem: { name: "maximization", mustbe: ">-5.0"}, variables: { "X1": ["a", "b"], "X2": ["c", "d"] },

functions: {

"w0": {scope: [], costs: [-6.0]},

"w1": {scope: ["X1"], costs: [1.0, 0.5]},

"w2": {scope: ["X2"], costs: [1.0, 0.5]},

"w12": {scope: ["X1", "X2"], costs: [-1.0, 0.5, -2.0, 5.5]}

} }

In JSON compatible toulbar2 cfn format

X1 X2

w

12

(17)

Micro-Structure

{

problem: { name: "maximization", mustbe: ">-5.0"}, variables: { "X1": ["a", "b"], "X2": ["c", "d"] },

functions: {

"w0": {scope: [], costs: [-6.0]},

"w1": {scope: ["X1"], costs: [1.0, 0.5]},

"w2": {scope: ["X2"], costs: [1.0, 0.5]},

"w12": {scope: ["X1", "X2"], costs: [-1.0, 0.5, -2.0, 5.5]}

} }

0.5 0.5

1 -1 1

-2 0.5 5.5

wØ=-6 LB > -5

b a

d c

X1 X2

(18)

Minimization with non-negative integer costs

{

problem: { name: "maximization", mustbe: ">-5.0"}, variables: { "X1": ["a", "b"], "X2": ["c", "d"] },

functions: {

"w0": {scope: [], costs: [-6.0]},

"w1": {scope: ["X1"], costs: [1.0, 0.5]},

"w2": {scope: ["X2"], costs: [1.0, 0.5]},

"w12": {scope: ["X1", "X2"], costs: [-1.0, 0.5, -2.0, 5.5]}

} }

5 5

0 65 0

75

wØ=60 50 UB < 125

X1 X2

a c

(19)

Constraints are Cost Functions

{

problem: { name: "maximization", mustbe: ">-5.0"}, variables: { "X1": ["a", "b"], "X2": ["c", "d"] },

functions: {

"w0": {scope: [], costs: [-6.0]},

"w1": {scope: ["X1"], costs: [1.0, 0.5]},

"w2": {scope: ["X2"], costs: [1.0, 0.5]},

"w12": {scope: ["X1", "X2"], costs: [-1.0, 0.5, -2.0, 5.5]}

} }

5 5

0 65 0

75 50 0

wØ=60 UB < 125

X1 X2

b a

d c

(20)

Constraints are Cost Functions

{

problem: { name: "maximization", mustbe: ">-5.0"}, variables: { "X1": ["a", "b"], "X2": ["c", "d"] },

functions: {

"w0": {scope: [], costs: [-6.0]},

"w1": {scope: ["X1"], costs: [1.0, 0.5]},

"w2": {scope: ["X2"], costs: [1.0, 0.5]},

"w12": {scope: ["X1", "X2"], costs: [-1.0, 0.5, -2.0, 5.5]}

} }

5 5

00

wØ=60 50 UB < 125

X1 X2

a c

(21)

Other equivalent formulations

WCSP

wcsp 2 2 4 125 2 2

2 0 1 0 4 0 0 65 0 1 50 1 0 75 1 1 0

1 0 125 2 0 0

1 5

1 1 125 2 0 0

1 5 0 60 0

MRF

MARKOV 2

2 24 2 0 1 1 0 1 1 1 04

0.000341454887383 0.00215443469003 0.0001

1.0 21.0

0.541169526546 2

1.0

0.541169526546 2

0.00063095734448 0.00063095734448

Max-SAT

p wcnf 2 7 125 65 1 2 0

50 1 -2 0 75 -1 2 0 5 -1 0 5 -2 0 60 1 0 60 -1 0

QPBO

4 13 1 3 32.5 1 4 25 2 3 37.5 2 2 5 4 4 5 1 1 60 2 2 60 1 1 -1000 2 2 -1000 1 2 1000 3 3 -1000 4 4 -1000 3 4 1000 In various toulbar2 input formats

(22)

Local reasoning techniques

Cost Function Propagation

(23)

Reparameterization and pruning

5 5

0 65 0

75 50 0

wØ=60 UB < 125

X1 X2

b a

d c

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)

(24)

Reparameterization and pruning

5 5

00

50 0

wØ=60 UB < 125

X1 X2

b a

d c

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)

(25)

Reparameterization and pruning

5 5

0 ∞ ∞

50 0

wØ=60 UB < 125

X1 X2

b a

d c

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)

(26)

Reparameterization and pruning

5 5

0 ∞ ∞

50 0

wØ=60 UB < 125

X1 X2

b a

d c

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)

(27)

Reparameterization and pruning

5 5

50 ∞ ∞

0 0

wØ=60 UB < 125

X1 X2

b a

d c

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)

(28)

Reparameterization and pruning

5 5

50 ∞ ∞

0 0

wØ=60 UB < 125

X1 X2

b a

d c

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)

(29)

Reparameterization and pruning

0 5

45 ∞ ∞

0 0

wØ=65 UB < 125

X1 X2

b a

d c

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)

(30)

Reparameterization and pruning

0 5

45 ∞ ∞

0 0

wØ=65 UB < 125

X1 X2

b a

d c

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)

(31)

Reparameterization and pruning

0 0

45 ∞ ∞

0 0

wØ=70 UB < 125

X1 X2

b a

d c

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)

(32)

Reparameterization and pruning

Reparameterization produces a feasible solution of the dual of a strong LP relaxation

We use a sequence of reparameterizations

Faster than LP

Not optimal: weaker dual bounds than LP

Many fixpoints

and domain value pruning

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)

(33)

Same Example in 01LP

Direct LP formulation

Minimize

+50 t_0_0_1_1 +75 t_0_1_1_0 +65 t_0_0_1_0 -5 d0_0 -5 d1_0 +60 t +10 t Subject to:

+1 d0_0 -1 d1_0 - t_0_0_1_1 <= 0 -1 d0_0 +1 d1_0 - t_0_1_1_0 <= 0 +1 d0_0 +1 d1_0 - t_0_0_1_0 <= 1 Bounds

t_0_0_1_0 <= 1 t_0_0_1_1 <= 1 t_0_1_1_0 <= 1 t = 1

Binary

d0_0 d1_0 End

Stronger LP formulation

Minimize

+50 t_0_0_1_1 +75 t_0_1_1_0 +65 t_0_0_1_0 -5 d0_0 -5 d1_0 +60 t +10 t

Subject to:

+1 t_0_0_1_0 +1 t_0_0_1_1 -1 d0_0 = 0 +1 t_0_1_1_0 +1 t_0_1_1_1 +1 d0_0 = 1 +1 t_0_0_1_0 +1 t_0_1_1_0 -1 d1_0 = 0 +1 t_0_0_1_1 +1 t_0_1_1_1 +1 d1_0 = 1 Bounds

t_0_0_1_0 <= 1 t_0_0_1_1 <= 1 t_0_1_1_0 <= 1 t_0_1_1_1 <= 1 t = 1

Binary

d0_0 d1_0 End

(CPAIOR16 – Constraints16)

(34)

Uncapacitated Warehouse Location Problem

Instance cplex 12.7.1 toulbar2 1.0.0

Capmo1 100x100 13.01 20.13

Capmo2 100x100 3.06 3.02

Capmo3 100x100 13.32 11.40

Capmo4 100x100 3.26 7.45

Instance cplex 12.7.1 toulbar2 1.0.0

Capmo1 100x100 155 7,581

Capmo2 100x100 25 2,024

Capmo3 100x100 93 5,439

Capmo4 100x100 23 4,055

Capmo5 100x100 28 2,664

Search nodes

CPU time (sec. on PC i7 3GHz)

(Kratica et al., RAIRO OR 2001)

(35)

Clique cuts

(36)

Clique cuts in CFN

(CP17)

(37)

Reparameterization for clique

1 2

0 0

w

Ø

=0

X1 X2

b a

d c

(CP17)

3 0 X3

f

e

≤ 1

C1

(38)

Reparameterization for clique

0 0

1 0

w

Ø

=3

X1 X2

b a

d c

(CP17)

1 0 X3

f

e

≤ 1 C1

w

123

(b,d,f)→ 2

(39)

Reparameterization for cliques

0 0

1 0

w

Ø

=3

X1 X2

b a

d c

(CP17)

1 0 X3

f e

4 0 X4

v u

C1 C2

w

123

(b,d,f)→ 2

(40)

Reparameterization for cliques

0 0

1 1

w

Ø

=4

X1 X2

b a

d c

(CP17)

0 0 X3

f e

3 0 X4

v u

C1 C2

w

123

(b,d,f)→ 2 w

234

(d,f,v)→ 1

(41)

Reparameterization for cliques

1 0

0 1

w

Ø

=5

X1 X2

b a

d c

(CP17)

0 0 X3

f e

1 0 X4

v u

C1 C2

Propagating C2 before C1

Select the clique with the largest lower bound increase first

w

123

(b,d,f)→ 0 w

234

(d,f,v)→ 3

(42)

Experimental Results

(CP17)

* Including bounded clique detection with Bron-Kerbosch algorithm in preprocessing

*

(43)

Complete tree search methods

Hybrid search

(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)

Benchmark

(61)

(CPAIOR16 – Constraints16)

Normalized lower and upper bounds on 1208 difficult instances as time passes

(62)

Results exploiting cliques

(CP17)

(63)

Limited Discrepancy Search

(Ginsberg 95)

- Small example with 3 variables and 2 values per domain

E1

l=0

(64)

Limited Discrepancy Search

- Small example with 3 variables and 2 values per domain

l

E

2

E

3

E

5

l=1

(65)

Limited Discrepancy Search

(Ginsberg 95)

l=2

E

4

E

6

E

7

(66)

l=3 optimality proof

Full exploration

lmax = n *(d - 1) : in this case, lmax=3*(2-1)=3

Limited Discrepancy Search

(Ginsberg 95)

E8 l=3

(67)

vns Variable Neighborhood Search

(Hansen 97)

LDS SEARCH

with given discrepancy

(68)

UDGVNS : Exploration of both k and l dimensions

LDS

(69)

Step 1 : Initial solution

Lds

Greedy assignment

(70)

NEW SOLUTION WITH BETTER E → RESTART

Lds

New E best

(71)

Lds

Proof of Optimality

IFF ub=lb(problem) can be before kmax

(72)

Lds

Proof of Optimality

In the worst case l >= max number of right branches

( lmax= |x|*(Dmax-1) )

(73)

Lds

Proof of Optimality

In the worst case l >= max number of right branches

( lmax= |x|*(Dmax-1) )

Iff k = kmax = problem size

In practice can be before lmax ( due to the pruning in DFBB)

(74)

Neighborhoods using problem structure

(75)

Cluster visit in a topological order :

(76)

Results

(UAI17)

(77)

Results

(UAI17)

(78)

Results

(UAI17)

(79)

Parallel VNS

Unified Parallel Decomposition Guided VNS (UPDGVNS)

(80)

Results

(UAI17)

(81)

References

Peyrard et al. Exact and approximate inference in graphical models:

variable elimination and beyond, 2017.

https://arxiv.org/pdf/1506.08544.pdf

Hurley et al. Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization. Constraints, 2016.

http://genoweb.toulouse.inra.fr/~degivry/evalgm

Cooper et al. Soft arc consistency revisited. Artificial Intelligence, 2010

Katsirelos et al. Clique Cuts in Weighted Constraint Satisfaction. In Proc.

of CP-17, Melbourne, Australia, 2017

Katsirelos et al. Anytime Hybrid Best-First Search with Tree

Decomposition for Weighted CSP. In Proc. of CP-15, Cork, Ireland, 2015

Ouali et al. Iterative Decomposition Guided Variable Neighborhood Search for Graphical Model Energy Minimization. In Proc. of UAI-17, Sydney, Australia, 2017

https://github.com/toulbar2/toulbar2

Références

Documents relatifs

MOTS CLEFS : lettre de liaison de sortie ; communication ville-hôpital ; médecin traitant ; continuité des soins ; parcours de soins ; messagerie sécurisée de santé. ---

Use weak duality theorem on conic primal-dual pair and extend objective values to the separable opti- mization problems.

Therefore, this observation allows us to construct a larger VAC-integral subset than that given by collecting the variables that satisfy the VAC-integrality property given a

We compare the performance of the 0/1 linear programming and 0/1 quadratic programming solver cplex, the semidefinite programming based Boolean quadratic optimization tool

This de- composition process can be recursively repeated on the re- sulting cost functions f 1 , f 2 until no pairwise decomposition can be found for each remaining cost function..

Notre étude est également surprenante car nous avons découvert que 7 patients sur les 12 atteints de cervicalgies ont été initialement améliorés par la pose de la prothèse puis

Qu’il soit ici remerci´e pour sa lecture attentive du manuscript, pour ses conseils ´eclair´es qui m’ont permis de parfaire ce travail et aussi pour son soutien efficace durant

Fruit d’un colloque internatio- nal intitulé « La littérature mon- diale et ses possibles : la traduction franco-japonaise en perspective » (13-14  avril  2018, Institut français