• Aucun résultat trouvé

Wind uplift resistance data of TPO roofing systems with new seaming concepts

N/A
N/A
Protected

Academic year: 2021

Partager "Wind uplift resistance data of TPO roofing systems with new seaming concepts"

Copied!
73
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Institute for Research in

Construction), 2000-10-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=83399da7-0d4b-4833-ab95-9648d3132066

https://publications-cnrc.canada.ca/fra/voir/objet/?id=83399da7-0d4b-4833-ab95-9648d3132066

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20378489

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Wind uplift resistance data of TPO roofing systems with new seaming

concepts

(2)

S e r

I TH1 National Research Conseil national Council Canada de recherches Canada

R 4 i i 7 I n o .

617

I

c.2

I

IR(Z

I

Institute for lnstitut de

Research recherche

in Construction en construction

Wind Uplift Resistance Data of

TPO

Roofing Systems with New Seaming

Concepts

G. Xu and A. Baskaran

Internal Report No. IRC-IR

817

(3)

Executive Summary

Developments of new field application technologies and tools in mechanically attached

Single Ply Roofs (SPR) have led to new seaming concepts. Conventionally, these

seams have an overlap of

5"

with the fastener placed 1.5" from the edge of the under

sheet, and

3.5

from the edge of the overlapping sheet. The portion of the seam beyond

the fastener row is welded with hot air such that a waterproof top surface is obtained.

The width of the welded portion varied between 1.5" and 1.75". This application is

termed as One Side Weld (OSW). Genflex Roofing Systems approached NRC' with a

concept of Double Side Weld (DSW). In the DSW, the fasteners are placed at the seam

middle and hot air welding is performed simultaneously on both sides of the fastener

row.

To investigate the DSW system performance under dynamic conditions and to compare

with those of the OSW systems, several investigations were completed. The

measurements were made in the Dynamic Roofing Facility (DRF) of the National

Research Council of Canada. More information about the DRF' s features was

documented by Baskaran and Lei (1997)'. For these investigations, SIGDERS dynamic

test protocol was used. Details of the test protocol were documented by Baskaran and

Nabhan (2000)~.

Ten experiments using five different systems were completed. Figures

1

to 5 provide

isometric views of the used components in these systems whereas Tables 1 to

5

group

component details and their nominal physical and mechanical properties. Figures

6

to

10 show the layout of the sensors that were instrumented to quantify the system

response. Tables 6 and 7 summarize the statistics for the tested system response. By

following a common format as shown in Figure 11, Appendix 1 archive the system

response by means of the time history plots.

These data can be used to document a good practice guide for wind resistance of roofs

with flexible membrane. In addition, one can use these data to develop analytical tool to

forecast system rating.

'

Authors acknowledge GenFlex Roofing Systems for support. Authors also appreciate David Scott of GenFlex Roofing Systems and William Lei of NRC for the system installations.

*

Baskaran, A. and Lei, W. (1997), "A New Facility for Dynamic Wind Performance Evaluation of Roofing Systems: Proceedings of the Fourth International Symposium on Roofing Technology, NRCA/NIST,

Washington, D.C., U.S.A., pp. 168-179.

3 Baskaran, A and F. Nabhan, (ZOOO), "Standard Test Method for the Dynamic Wind Upliff Resistance of

Mechanically Attached Membrane Roofing Systems'; Internal Repofi IRC-IR 699, National Research Council, Canada.

(4)
(5)

r

Top sheet

Welded portion

Fasteners

8

plates

Bottom sheet

Polyiso Insulation

Steel deck

One Side Hot

Air Weld

4-318"

P

!+

ci

(6)

Top sheet

Welded portion

Fastener

& batten strip

Bottom sheet

Polyiso Insulation

Steel deck

Double Side Weld

4-318"

I----_-L.l

Figore 2: System 2 -Double S~de Weld with Metal Batten Strips

(7)

Top sheet

Welded portion

12" olc

-

Fastener & batten strip

Bottom sheet

Polyiso Insulation

Steel deck

Side-view

Double Side Weld

4-318"

(8)

j-

Top sheet

Welded portion

Fastener

&

batten strip

Bottom sheet

Polyiso Insulation

Steel deck

Double Side Weld

4-318''

Figure 4 : System 4

-

System 3 with Full and Half Sheets Layout

(9)

Top sheet

Welded portion

12" olc

Fasteners

& plates

Bottom sheet

Polyiso Insulation

Steel deck

I

One Side Hot Air Weld

4-318"

i

,

(10)

Page 8 of 71

(11)

Table 1: System 1

-

Nominal physical and mechanical properties of the components (One Side Weld with Spot Fasteners)

/

Type

I

Profiled metal sheeting 22-gauge

Thickness

1

0.030 (0.76 mm)

Depth

1

1.5" (38 mm)

Flllte Snacinn

1

59" (150 mmb

.

-E---... I . - - ...-,

Fastener Pullout as per ANSIISPRI FX-1-1996*

1

470 lbf (21 20 N)

I VirWest Steel I

lnsulation

Type

/

Polyiso ( E ' N R G ' Y ~ ~ )

Dimension

/

2 boards of 4' x 8' (1218 mm x 2436 mm) x

Compressive Strength as per ASTM D l 621 -94- Source AirNapor BarrierlRetarders

I

None used 2" thick (50.8 mrnj 18.8 psi (1 30 kPa) Johns Manville Insulation Attachment

f

i

embrane Fastener Plate Fastening Pattern Source

Assembled 5" (128 mm) screws & plates 3" (77 mm) plastic lock plate

4 fasteners per board Olympic Membrane

I_

I ype Width Thickness

Tensile property as per ASTM D 751-98 (Grab)*

Attachment

TPO

74 718" (1 910 mm) 45 mil (1 .l mm)

MD XD

Breaking strength, kN (Ibf) 1.3(293) 1.1 (248)

Elongation at Max. load, % 29 29

-

Type Fastener" Plate

Fastener Row Spacing Fastener Spacing Slippage Control

Mechanical fasteners with plates 5" (128 mm) Genfast #15

2 38" (61 mm) Dia. metal plate

70

in"

(1 790 mm) 12" (305 mm) Yes Seam Type Seaming Weld Condition

Hot air welding

Overlap: 4 38" (1 11 mm) Type: One Side Weld

Good Weld Cold Weld

Temperature: 950 'F (510

'

C

) 500 'F (260 'C )

Speed: 7.9' Irnin(2.4m/min) 11.8'/min(3.6m/rnin)

Weight: 1 weight (6 lbs) 1 weight (6 lbs)

(12)

Table 2: System 2

-

Nominal physical and mechanical properties of the components (Double Side Weld with Metal Batten Strips)

Type Thickness

Depth

Flute Spacing

Fastener Pullout as per ANSIISPRI FX-1-1996'

Sn, WPP

Insulation Attachment

Profiled metal sheettng 22-gauge 0.030" (0.76 mm)

1 . 5 (38 mm) 5 . 9 (150 mm)

470 lbf (2120 N)

VirwD~t S ~ D D ~

Compressive Strength as per ASTM D l 621 -94* Source 2" thick (50.8 mm) ' 18.8 psi (130 kPa) Johns Manville AirNapor BarrierlRetarders

I

None used Type Fastener Plate Fastening Pattern Source

Mechanical fasteners with plates

Assembled 5 (128 mm) screws & plates 3 (77 mm) plastic lock plate

4 fasteners per board Olympic Membrane

.

. . -. .

-

.

--

.-

. .

-

.

-

. .., ;enfast #15 (XHD) -- :, u.u41" (1.20 mm)thi_ck- --. . . - Type Width Thickness

Tensile property

as

per ASTM D 751-98 (Grab)'

Membrane Attachment f u irz (1790 mm) 12" (305 mm)

.

, TPO 74 718" wide (1910 rnm) 45 mil (1 .l mm) MD XD Breaking strength, kN (lbf) 1.3(293) 1.1 (248)

Elongation at Max. load, % 29 29

Type Fastener* Plate

Fastener Row Spacing Fastener Spacing Slippage Control

Seam

Metal batten strin and fasteners

I

5 (1 28 mm) C

1

"

wid€ ^ ^"

--

. .-8,

-

yes

I

Type

I

Hot air welding

Seaming

I

Overlap: 4 318" (11 1 rnm)

I

Weld Condition

T e: Double Side Weld

Good Weld Cold Weld

Temperature: 950

V

(510 % ) 801 *F (427 'C ) Speed: 6.5'1rnin (2 mlmin) 9.8'lmin (3 mlmin) Weight: 1 weight (10 lbs.) 2 weight (2x10 lbs.)

L

I

I

Position: in normal position inner side

* NRC test results

(13)

Table 3: System 3

-

Nominal physical and mechanical properties of the components (Double Side Weld with Polymer Batten StripsJ

Thickness

1

0.030 (0.76 mm) Depth -. - .

1

1.5 (38 mm) ' i" (1 52 mm) i85 lbf (3050 N) Flute Spacing 16

Fastener Pullout as per ANSIISPRI FX-1-1996-

16

Snl ~ r c e I

,

r

3anam Steel

I

Insulation

Type

I

Polyiso (E'NRG'Y2IM)

Dimension

1

2 boards of 4' x 8' (1218 mm x 2436 rnm) x

zal fasteners with plates

28 mm) screws & plates

Plate

1

3" (77 mm) plastic lock plate

Fastening Pattern

/

4 fasteners per board

Snl l r ~ p I nltnnnir

Compressive Strength as per ASTM D l 621 -94* Source AirNapor Barriermetardew None used 2" thick (50.8 mm)' 18.8 psi (1 30 kPa) Johns Manville Membrane Type

/

TPO

Width

1

74 718" (1910mm) wide sheets, Lot # 30144,color

Breaking strength, kN (Ibf) 1.3(293) 1.1 (248)

Elongation at Max. load, % 29 29

Thickness

1

45 mil ( I . l mm)

Membrane Attachment

Tensile property as per ASTM D 751-98 (Grab)

'

--- - -

-,

-nd fasteners

1

MD XD Type Fastener*

.

-

. .

-

,

. .

- -

. .

. . . .

-

. .

,

12" (305 mrn) . -. . -.

I

Slippage Control

I

Yes

I

Polymer batter :!!; :

5" (128 mm) Genfast #15 (WH)

1

Ratten Strip 1" wide, 0.057" (1.45 mm) thick

tener Rnw Snadnn 71) i 17" 11 741) mrnl

Seam Type Seaming

Hot air welding

Overlap: 4 318" (1 11 rnm) Type: Double Side Weld Welding Condition

Temperature: 950 'F (51 0 ' C )

Speed: 6.5'lmin (2 mlmin) Weight: 1 weight (10 lbs.) * NRC test results

(14)

Table 4: System 4 - Nominal physical and mechanical properties of the components (System 3 with Full and Half Sheets)

Deck

Type

I

Profiled metal sheeting 22-gauge

Thickness

1

0.030 (0.76 mrn)

Insulation

Type

/

Polyiso

(t'runtivz

)

Dimension

1

2 boards of 4' x 8' (121 8 mm x 2436 rnm) x

Depth

Flute Spacing

Fastener Pullout as per ANSIISPRI FX-1-1996' Source

1

2" thick (50.8 mm)

Compressive Strength as per ASTM D1621-94'

1

18.8 psi (1 30 kPa)

Source

I

Johns Manville

1.5" (38 mm) 6 (1 52 rnm) 685 lbf (3050 N) Canarn Steel AirNapor BarrierIRetarders None used Insulation Attachment Membrane Type

/

TPO

Width

/

74 718" (1910mrn) full sheet & 37 7/16" (951 rnm)

Type Fastener Plate

Fastening Pattern Source

Mechanical fasteners with plates

Assembled 5" (128 mm) screws & plates 3 (77 mrn) plastic lock plate

4 fasteners per board Olympic

Membrane

Type

,

.

-.

.

,

. .

.- .

I-..-.

.

-..

.

-

Fastener*

1

5" (128 mm) G

Batten Strip

I

1

"

wide, 0.057 (1.43

Thickness

Tensile property as per ASTM D 751-98 (Grab) *

half sheet 45 mil (1.1 rnm)

MD XD

Breaking strength, kN (Ibf) 1.3(293) 1.1 (248)

Elongation at Max. load, % 29 29

Welding Condition

Temperature: 950 'F (51 0 % )

Speed: 6.5'lrnin (2 rnlrnin) Weight: 1 weight (10 lbs.) * NRC test results Seam Type

p

Page 12 of 71 Seaming Overlap: 4 318" (1 1 1 rnrn)

(15)

Table 5: System 5

-

Nominalphysical and mechanical properties of the components (System 1 with Foll and Half Sheets)

Deck Type Thickness Depth

Flute Spacing

Fastener Pullout as per ANSllSPRl FX-1-1996- Source

Insulation

(

Source

(

Olympic

-

Profiled metal sheeting 22-gauge 0.030 (0.76 mm) 1.5 (38 mm) 6" (1 52 mm) 685 lbf (3050 N) Canam Steel Type Dimension

Compressive Strength as per ASTM D1621-94* Source Insulation Attachment AirNapor BarrierlRetarders

I

None used Polyiso (E'NRG'Y2IM) 2 boards of 4' x 8' (1218 mm x 2436 mm) x 2 thick (50.8 mm) 18.8 psi (1 30 kPa) Johns Manville Type Fastener Plate Fastening Pattem Membrane Type

1

TPO

Width

1

74 718" (1 910 mm) full sheet & 37 7/16" (951 mm)

Mechanical fasteners with plates

Assembled 5 (128 mm) screws & plates 3 (77 mm) plastic lock plate

4 fasteners per board

Thickness

Tensile property as per ASTM D 751-98 (Grab)"

half sheet 45 mil (1 .l mm)

MD XD

Breaking strength, kN (Ibf) 1.3(293) 1.1 (248)

Elongation at Max. load, % 29 29

Membrane Attachment Type

Fastener* Plate

Fastener Row Spacing Fastener Spacing Slippage Control

Seam

Metal plates and fasteners 5" (128 mm) Genfast #15 (XHD)

2 318" (61 mm) dia. Metal plate 70 112" (1790 mm), 32 718'' (835 mm) 12" (305 mm)

Yes

Type Seaming

Hot air welding

Overlap: 4 318" (1 11 mm) Type: Single Side Weld Welding Condition

Temperature: 950 'F (51 0

'

C

)

Speed: 7.9'1min (2.4 mlmin) Weight: 1 weight ( 6 lbs.) NRC test results

(16)
(17)

L

SIGDERS Table 236" x 79"

(18)

SIGDERS

Table 236"

x 79"

Note: Two tests were done with System 2

-

Test 0802 employed one pressure sensor (PI) while Test 0806 employed two pressure sensors (PI.,, PI.d.

Figure 7: System 2

-

Instrumentation Layout

(19)

i

SW

=

4-318''

L

SIGDERS Table 236" x 79"

(20)

L

SlGDERS Table 236" x 79"

Figure 9: System 4

-

Instrumentation Layout

(21)

L

SlGDERS Table 236" x 79'

Figure 10: System 5 -Instrumentation Layout

(22)
(23)

Table 6: Wind uplift resistance data using SIGDERS protocol

-

Imperial Units System System 1

I

and tear Test Number 08991201 System 2 I I I I I System Zc I I I I I Pressure* Psf W60 08991202 System lc System 1, System 2~ 08991203 I I I I I Load* I bf W254 9011 05 08991204 08991205 0800061 5 System 3 I I I I I W60 System 4 System 5 I I I I I I

*

Value before the forward slash: the maximum (pressure, load or deflection) the system sustained; value after the forward slash: at which the system failed. Example: 90/105 in the Pressure column means the system sustained a pressure of 90 psf but failed at 90 psf.

Xmeans not applicable; C denotes cold weld; R denotes repeated test; D denotes tests on a deck with pullout resistance of 690 lbf.

Deflection* In W10.1 3881446 W60 60175 75190

I

0800061 6 I I I I

,

Table 7: Wind uplift resistance data using SIGDERS protocol

-

SI Units Failure Mode Membrane delamination W269 08000617 0800071 9 System 5, 8.519.5 W1 4 4 2781255 3581396 10511 20 Fastener pullout Xn.0 120K

I

08000720 Seam delamination W5.8 7.718.4 7.818.4 5061555 Membrane tear at C4 75/90 Seam delamination Membrane delamination and tear at 84 Membrane tear 500K 9.219.4 3 1 51246 Membrane tear At EM 60175 Fastener pullout 9.7K 8.218.7 Passed 120 psf 273121 3 6.917.4

(24)

System

I

Test

1

P r e ~ ~ u r e *

1

Load' Deflection* Failure

Number Mode

I t I I I

System

2

,

1

0819991203

1

XI2873

1

XI1195

I

W178

I

Seam delamination System 1 System

2

0819991201

081

9991

202

I

I

I

I

I

System 1 R System

2~

I I I I I

System

5

1

08000719

1

359114309

1

140011093

1

2081221

1

Membrane tear at

C4

XI2873

430915027

System

l c

System

3

System

4

I

I

I

I

I

System

5R

1

08000720

1

287313591

1

121 31947

1

1751188

1

Membrane tear at 84

W640

081

9991205

08000615

1

I

I

Value before the forward slash: the maximum (pressure, load or deflection) the system sustained; value after the forward slash: at which the system failed. Example: 90/105 in the Pressure column means the system sustained a pressure of 90 psf but failed at 90 psf.

Xmeans not applicable; C denotes cold weld; R denotes repeated test; D denotes on

a deck with ~ u l l o u t resistance of 690 lbf.

W1127

172411982

0819991204

08000616

0800061

7

Page 22 of 71

XI2873

W1

47

287313591

359114309

W255

21 61241

Seam delamination

502715746

5746K

Membrane delamination and tear Fastener pullout

123611 133

I59111760

224912466

2222K

196121 3

1981213

Membrane delamination and tear at

84

Membrane tear

2341239

246lX

Fastener pullout Passed

120

psf

(25)

Weld Type

(1 W = One Side Weld or 2W = Double Side Weld or CW = Cold Weld or GW = Good Weld) System Response (Pressure or Load or Deflection) Fastener Pullout

I

I

Resistance

I

(470 lbf or 680 IbD Sensor Location

A

(as shown in Fig 6 to 10)

Response Fastener Spacing

(72")

Figure 11. Generalized Format for the Time History Plots Grouped in Appendix 1.

-

System Details

S1

System Detail

(as

shown in Fig 1 to 5)

-

Fastener Row Spacing

(70

in"

or 32 7/8'1

(26)
(27)

Appendix 1

Time History Plots Using

SIGDERS

Test Protocol

400 cycles

<a

500 cycles

<q

800 cycles

<a

11 OO cycles

<q

Grgup 1

/ %

A

en

25 25

2200 cycles

<-I

"

1

2

3

4

5

6

7 8

Loading sequence

(28)
(29)

-

I S1; Fr=70 112"; Fs=12"; Fp=470 Ibf; IW-GW; Pressure O Pref: Fig 61

120

10000 20000 30000 40000

Time, sec

OBDIW

S1; Fr=70 112"; Fs=12"; Fp=470 Ibf; 1W-GW; Pressure O -- PI: Fig 6

120 1 I I

I

10000 20000 30000 40000

(30)

S1; Fr=70 . . l/Z ; Fs=12 ; Fp=470 Ibf; 1W-GW; Load @ L4Z: Flg 6

10000 20000 30000 40000

Time, sec

~ I U Z

S1; Fr=70 1R"; Fs=12"; Fp=470 Ibf; 1W-GW; Load @ 152: Fig 6

10000 20000 30000

Time, sec

(31)

S1; Fr=70 112"; Fs=12"; Fp=470 Ibf; 1W-GW; Load O L5X: ~ i g 7 I I I I I

I

0 10000 20000 30000 40000

Time, sec

O B D t ~ l 100 80

-

60

-

-

s

a

A 40

/

~ 1 ; ~ ~

in9,;

~ Fsz12"; ~ p = 4 7 0 7 0 ~ b f ; IW-GW, Deflection @ D l : Fig 61

16

I

I 20

0

0 10000 20000 30000 40000

Time, sec

OBO-LSX

i

- .. .. .

i -

(32)

/

S1; Fr=70 1 W ; Fs=12"; Fp=470 Ibf; 1WGW; Deflection @ DZ: Fig 61

0 10000 20000 30000 40000

Time, sec

080102

(33)

-- - - -- - -.-

1

S2; Fr-70 I R " ; Fs=12"; Fp=470 Ibt; 2W-GW; Pressure

B

~ref-

10000 20000 30000 40000

Time, sec

w p e r

10000 20000 30000

Time, sec

/

~ 2 ; Fr.70 112"; Fs=12"; Fp=470 IM; 2 W d W ; Pressure 8 PI: Fig 71

120 90

-

I

I 90 90 1 5

I

75

I

1

79

(34)

LSZ

Fr.70 112"; Fs=12"; F p 4 7 0 Ibf; 2W-GW; Load @ ~ 4 2 ~ E g g 0 10000 20000 30000 40000

Time, sec

-Lb2 0 10000 20000 30000 40000

Time, sec

-

Page 32 of 71 500 52; Fr=70 112"; Fs=12"; F p 4 7 0 lbt; 2 W d W ; Load @ LSZ: Fig 7

1

I

(35)

k r = 7 0 I n " ; ~ ~ 1 2 " ; Fp1470 IM; 2W-GW; Load 8 L5X: Fig 7

100

10000 20000 30000 40000

Time, sec

-X

I

52; Fr=70 I @ " ; Fs=12"; Fp.470 Ibf; 2W-GW; Deflection 8 Dl: Fig 71

0 , I I

I I I

0 10000 20000 30000 40000

& - d s l M

Time, sec

O B ~ D ~

(36)

. . . . - . . . . . - . . . .

52: Fr-70 In4'; Fs=12'; Fp=470 Ibf; 2W-GW: Deflection Q D2: Fig 7

.. . . . . . .

10000 20000 30000 40000

Time.

sec DBDIDZ

(37)

;.

52; Fr=70 112 , Fs=12"; Fp=470 Ibt; 2W-CW; Pressure 8 Pref. Fig 7

120

10000 20000 30000 40000

Time, sec

~ n t

152; Fr=70 112"; Fs=12"; Fp=470 lbf; 2W-CW; Pressure 8 PI: Fig

7/

120

I

,

I

10000 20000 30000 40000

(38)

5 2 ; Fr=70 In"; Fs=12"; Fp=470 Ibf; 2W-CW; Load 8 L4Z: Fig 7

/

0 10000 20000 30000 40000

Time, sec

-I.u

1

52; Fr=70 1R"; Fs.12"; Fp=470 Ibf; 2W-CW; Load 8 L5Z: Fig 7

1

500

0 10000 20000 30000 40000

Time, sec

O $ ~ E

(39)

!

52; Fr.70 112"; Fs=12"; Fp.470 Ibf; 2W-CW; Load Q L5X: Fig 71

,

. 10000 20000 30000 40000

Time, sec

~ m a 5 ~ 10000 20000 30000 40000

Time, sec

080301 -

52; Fr.70

In";

Fsn12"; Fp.470 IM; 2W-CW; Deflection 8 Dl: Fig 7

16

I

I

(40)

Page 38 of 71

1

S2; Fr=70 112 8%.

,

Fs.12"; Fp=470 Ibf; 2W-CW; Deflection @ D2: Fig 7

40000 16 12

-

C

-

.-

m C 0

.-

t;

8 -

Time,

sec em^

7.0 ! ! - 0

-

I i 0 10000 20000 30000

(41)

1 ST; Fr=70 1R"; Fs=12"; Fp=470 Ibf; IW-CW; Pressure @ Pref: Fig 61

-

120

10000 20000 30000 40000

Time. sec

O~OIPR~

I0000 20000 30000 40000

Time, sec

W P ~

1

S1; Fr=70 In"; Fs=12"; Fp=470 lbf; 1W-CW; Pressure 8 P I : Fig 6

i 120 90

-

m P 60 m

2

P 30

-

-

-Pt=6Op~f ;

-

-

-I 30

I

~

I

0

.

(42)

--

S1; Fr-70 112''; Fs=12"; Fpd70 lbf; 1 W C W ; Load @ L52: F8g 6

/

ST; ?r=70 112"; Fs=1Zn; Fp.470 Ibf; 1 W-CW; Load 8 L4Z: Fiw.

10000 20000 30000 40000

Time, sec

0BaU_5L

500 400

-

300

s

d

m 0 -I 200 Page 40 of 71 83 0 10000 20000 30000 40000

Time, sec

camcAz

I

I

I - ~. .- ...

1.

144

(43)

100 80

"-

60 Q

-

$

0 -1 40 20 10000 20000 30000 40000

Time, sec

m ~ c . 1

1

S1; Fr=70 1R"; Fs=12"; Fp=470 Ibf; 1W-CW; Deflection @ Dl: Fig 6

S1; Fr=70 ~~ 112"; . Fs=12"; Fp=470 Ibf; 1W-CW; Load @ L5X: Fig 6

j I I I 16 12 C

.-

-

E

'S 8 0 a

c

8

0

-

I 0 10000 20000 30000 10 40000

i

1

I

Time, sec

DBD~LSX 5.5 I -- 4.4 4

-

0

I

(44)

Page 42 of 71 m = 7 0 112"; Fs=12"; Fp=470 Ibf; 1W-CW; Deflection 4202: ~ i g c 16 12 (I:

-

-

" s 0

-

i i 8

al

=

al 0

-

- 5.8 I I ! (

i

I I I 0 10000 20000 30000 40000

Time. sec

cm4m ! 1

(45)

/

S1; Fr=70 I n " ; Fs=12"; F p = 4 T O ~ f ~ i W ~ W ~ P ~ s s ~ ~ B Pref: Fig 61

120

0

0 10000 20000 30000 40000

A m p a t O f s l t e r t

Time, sec

WRd

SI; Fr=70 i n a a ; Fs=12"; Fp=470 IM; IW-GW; Pressure PI: ~ i g 6

. . . . - . . . . - . . . . - - -. . . .. . . - . . . .

0 10000 20000 30000 40000

r\-Ofnm

(46)

I

S

;

'

-500 400

-

300

e

d

8

-I 200 100 0

0

0 10000 20000 30000 40000 A - ~ s z m

Time, sec

m 5 ~

1

S l ; Fr=70 112"; Fs=12"; F p 4 7 0 Ibf; IW-GW; Load 63 L5Z: Fig 6

1

500 400 .+ 300

e

d

8

-I 200 100 0 ,

I

1

1

4

I I I 0 10000 20000 30000 40000

a-tdSj-

Time,

sec DM-

(47)

)

S1; Fr=70 112"; Fs=12"; Fp=470 Ibf; 1W-GW; Load @ L~X- 100

I

I

I I, I

I

0 10000 20000 30000 40000 A ~ ~ ~ $ -

Time, sec

m L 5 x

S1; Fr=70 l a " ; Fs=12"; Fp.470 Ibf; IW-GW; Deflection @ D l : Fig 6

16 12 I c

.-

"

-

i j 8 a, G

p " .

4

-

0 0 10000 20000 30000 40000 ~ - m ~ t e e t

Time, sec

-t -- ! i

j

8.1

(48)

I S1; Fm70

In";

Fs=12"; Fp=470 Ibf; I W-GW; Deflection

B

D2: Fig

6(

0 0 10000 20000 30000 40000 A r n p s t d d t u t

Time. sec

0805D2 Page 46 of 71

(49)

1

52; Fr=70 ID"; Fs=12"; Fp=690 Ibf; 2W-GW; Pressure - O Pref: Fig 71 -.

120

10000 20000 30000 40000

Time,

sec

-

1

52; Fr=70 1R"; Fs=12"; Fp690 Ibf; 2W-GW; Pressure 8 P1-1: Fig 7

120 I

10000 20000 30000 40000

(50)

1

52; Fr=70 112"; Fs=12"; Fp=690 IM; 2W-GW; Pressure @ PI-2: Fig 71

10000 20000 30000 40000

Time, sec

WSPI*

52; Fr=70 112"; Fs=12"; Fp=690 Ibf; 2W-GW; Load @ L4Z: Fig 71

500

10000 20000 30000 40000

Time, sec

~

(51)

10000 20000 30000 40000

Time,

sec

-UX

1

52; Fr=70 1R"; ~ & 1 2 " ; Fp.690 Ibf; 2W-GW; Load Q L4X: Fig 71

100

S2; Fr=70 1R"; Fs=12"; Fp.690 Ibt; 2W-GW; Load @? L5Z: Fig 71

5

m

1

I

10000 20000 30000 40000

Time, sec maELsz

(52)

1

S2; Fr=70 112"; Fs=12"; Fp=690 Ibf; ZW-GW; Load @ L5X: - Fig 7

/

100

1

I

I

I

10000 20000 30000 40000

Time, sec

1

52; Fr-70 112"; Fs.12"; Fp=690 IM, ZW-OW; Deflection @ D l : Fig 71

l6

6

I

I

I

I I I 0 10000 20000 30000 40000

Time, sec

-1 Page 50 of 71

(53)

10000 20000 30000 40000

(54)

. . .. . . . ... . .

S3; Fr=70 I n " ; Fs-12"; Fp.690 Ibf; . . . . - . . . . . . . . . . . . . . - . . . 2W-GW; - . . . Pressure . . . . . - -. . 8 Pref: Fig 8 . . .

1

10000 20000 30000 40000

Time,

sec

w p r e t

/

S3; Fr=70 1R"; Fss12"; Fp=690 Ibf; ZW-GW; Pressure 8 PI-I: Fig 8

10000 20000 30000 40000

Time, sec

~ ~ t - ,

(55)

10000 20000 30000 40000

Time, sec

0 ~ 1 . 2

1

S3: Fr=70 112": Fs=12": Fo=690 Ibf: 2W-GW: Load 8 L3Z: Fia 81

10000 20000 30000 40000

(56)

I

S3; Fr=70 1R"; Fs=12"; Fp=690 Ibf; ~ w - G W R

" I I I I I

0 10000 20000 30000 40000

Time,

sec -a

1

53; Fr.70 IR"; Fs=12"; Fp~690 Ibf; 2W-GW; Load O L3X: Fig 81

100

I

10000 20000 30000 40000

Time, sec

oemw

(57)

i

53; Fr=70 112"; Fs=12"; Fp=690 IM; 2W-GW; Load Q L4X: Fig81 100

i

10000 20000 30000 40000

Time, sec

~X Page 55 of 71

E 7 0I D " ; Fs=12"; Fp=690 Ibf; $-GW; Deflection Q Dl: Fig 81 16 12 s

-

"

s

0

.-

'ii

8 al

=

4 I 0

---

10000 20000 I 30000 I 40000 0

Time, sec

~ m m

(58)

/

53; Fr=70 IR"; Fs=12"; Fp=690 Ibf; 2W-GW; Deflection 63 02: Fig 81 . 16 12 C

.-

rn C 0

.-

Z i 8 a,

=

8

4 0 0 I0000 20000 30000 40000

Time, sec

D B ~ M Page 56 of 71

(59)

54; Fr=70 IW, 32 718"; Fs=12"; ~ & 9 0

IG;

2 ~ - G W ; Pressure @ Pref: Fig 9

1

10000 20000 30000 40000

Time, sec

O B O B ~ ~.~ 54; Fr=70 I n " , 32 718"; Fs=12"; Fp=690 Ibf; zW-GW; Pressure 8 P I - 1 : m I I I I 10000 20000 30000 40000

(60)

S4; Fr=70 l a " , 32 7B"; ~ s = 1 2 " ' ~ ~ = 6 9 0 IM; 2W-GW; Pressure 8 PI-2: Fig

10000 20000 30000 40000

Time, sec

m P ~ a

1

S4; Fr=70 I/2", 32 7m"; Fs=12"; Fp=690 IM; 2W-GW; Load @ L3Z: Fig 9

10000 20000 30000 40000

Time, sec

-L9

(61)

/

54; Fr=70 1/2", 32 718"; Fs=12"; Fp=690 - Ibf; 2W-GW; Load @ L4Z: ~ i g F

10000 20000 30000 40000

Time,

sec mZ

. . - . .- . .- - -

S4; Fr.70 112', 32 7 W ; Fs=12"; Fp-690 Ibf; 2W-GW; Load @ L3X: Fig 9

. . . . .. . . . - - - . . - . . . . - -. . . . .. . . -. . . . - -. . .

10000 20000 30000 4&00

(62)

1

54; Fr-70 I n u u , 32 718"; ~s=12";~p=690 IM; 2W-GW; Load @ L4X: ~ i g 4 ~

100

10000 20000 30000 40000

Time, sec

-UX

1

54; Fr=70

In",

32 718"; Fs=12"; Fp=690 Ibf; 2W-GW; Deflection 8 Dl: Fig 91

16

10000 20000 30000 40000

Time, sec

0108111

(63)

54; Fr=70 IR", 32 - 718"; Fs=12"; Fp=690 IM; 2WGW; kflection @ D Fig 9 1 16 12 E

.-

m

c

0

.-

z 8

a3 E

8

4 0 0 10000 20000 30000 40000

Time,

sec -02

(64)

. . . . S5; ~ r = 7 0 ID", 32 7m"; Fs=12'; Fp=6901bf; IW-GW; Pressure @ Pref: Fig10

.- . . . ...

0 10000 20000 30000 40000

Time, sec

~

/

S5; Fr=70

In",

32 718"; Fs=12"; Fp.6901bf; IW-GW; Pressure B Pl-1: Fig101

10000 20000 30000 40000

Time, sec

0 ~ o ~ p l - t

(65)

155; Fr.70 l R " , . 32 718"; Fs=12"; Fp=6901bf; 1W-GW; Pressure @ P1-2: ~ i ~ l 0 ' 120 10000 20000 30000 40000

Time, sec

B B W ~ ~ . Z 10000 20000 30000 40000

Time, sec

0800w

1

~ 5 ; Fr=70 l a " , 32 718"; Fs=12"; Fp=6901M; 1W-OW; Load @ L3Z:

6%

500 400

-

I

I 315

(66)

1

55; Fr=70 I W , 32 718"; Fs112"; Fp=6901M; 1W-GW; Load 8 L4Z: - Fig - 10j ..

500

o

10000 20000 30000 40000

Time, sec

wuz

/

S5; Fr=70

In",

32 7B"; Fs=12"; Fp=690iW 1W-GW; Load @ L3X: Fig 1 0

100 80

-

60 G

a-

8

A 40 20 0 10000 20000 30000 40000

Time, sec

owux

(67)

0

0 10000 20000 30000 40000

Time, sec

DBWUU

; S5FFi=70-ili1r327/8"; F X 2 ' ; Fp=6901bt; 1 W G W ; D e f l e c t b n ~ @ ~ D E F g i O ~

I

I I

0 10000 20000 30000 40000

(68)

10000 20000 30000 40000

Time, sec

0 8 0 9 ~ ~

(69)

1

S-r=70 IR". 32 718"; Fs.12"; Fp=6901bt; IW-GW; Pressure @ Pret Fig i t i

120

10000 20000 30000 40000

Time, sec

rnl0pnf

I

S5; Fr=70 I R " , 327/8"; Fs=12"; Fp~6901bt; 1W-GW; Pressure B PI-1: Fig 101

120

10000 20000 30000 40000

(70)

! ~ 5 ; Fr=70 ID", ~~ .. 32 7 ~ " ; Fs=12"; Fp=6901bt; IW-GW; pressure 8 PI-2-

120

!

I0000

20000

30000

40000

Time, sec

0B101.2

/

S5; Frs70 112", 32 7B"; Fs=12"; Fp=6901bf; I W G W ; Load 8 L3Z: Fig 10

1

500

1

W O O

20000

30000

40000

Time, see

OBIOLtl

(71)

1

S5; Fr=70 1/2", 32 718; FS=12"; Fp=6901bf; - IW-GW; Load 8 L4Z: Fig 101

10000 20000 30000 40000

Time, sec

-1OLU

I

S5; R=70 112", 32 718"; Fs=12"; Fp=6901bf; 1W-GW; Load 8

L3~rFia

100

I

0 0

0 10000 20000 30000 40000

(72)

. - . . . .. . .

S5; Fr=70 I n " , 32 718"; Fs=12"; Fp~6901bf: 1W-GW; Load 8 L4X: Fig 10

. -. .. . 100

10000 20000 30000 40000

Time, sec

OQIDUX

-p--p ~ p~~~ ~~~~~.~ . .. .. .. ~~ ~ ~~- -~-~ ~p S5; Fr=70 l R " , 32 718; ~ s G 2 " ; Fp.6901M; 1W-GW; Deflection @ Dl: Fig 101 16 10000 20000 30000 40000

Time, sec

W I D 1 Page 70 of 71

(73)

. . . .

S5; . .. Fr=70 112". 32 718"; ~ c i E ~ p = 6 9 0 1 b f ; .. . IW-GW; Deflection B D2: Fig 10

3 .

-10000 20000 30000 40000

Time, sec 081002

Figure

Figure  1: System1  -  One S~de  Weld  with Spot  Fasteners
Figure  3:  System  3  -Double  Side Weld with Polymer Batten Strips
Figure 4 :  System 4  -  System  3  with Full and Half Sheets Layout  Page  6  of 71
Figure 5: System  5  -  System 1 with Full and Half Sheets Layout
+7

Références

Documents relatifs

She argues that the department was often ineffective because &#34;city politicians and staff, particularly urban planners, did not have the implementation tools

The use of the right dot as a long-lived, latched memory register is enabled by isolating it from the right lead, i.e., raising the right tunnel barrier to prevent the direct

Through the use of spatially-resolved demographic and migration data, we explore several hypotheses regarding unknown epidemiological (transmission potential), immunological

Sarah Mekdjian, Cécile Gintrac, Armelle Choplin, Frédéric Dufaux, Anne-Valérie Dulac, Mélina Germes, Myriam Houssay-Holzschuch, Thierry Labica, Julien Rebotier, Max

The combined QTL maps obtained ( Fig 5 for PRA29, S4 Fig for RER16-29, S5 Fig for Compactness29) high- light 10 independent loci, including at least 4 regions with contrasting

Alikhanyan National Science Laboratory (Yerevan Physics In- stitute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy

En temps normal, on ne voit pas la couronne en raison de l’éclat du disque solaire, mais lorsque cette lumière est bloquée par la Lune, on peut voir qu’elle s’étend loin

We try in this paper, precisely in Section 5, to describe a monomial basis in tree version for the free Lie (respectively pre-Lie) algebras using the procedures of Gr¨obner