• Aucun résultat trouvé

6-th order rational solutions to the KPI equation depending on 10 parameters

N/A
N/A
Protected

Academic year: 2021

Partager "6-th order rational solutions to the KPI equation depending on 10 parameters"

Copied!
51
0
0

Texte intégral

(1)

HAL Id: hal-01648248

https://hal.archives-ouvertes.fr/hal-01648248

Submitted on 25 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

6-th order rational solutions to the KPI equation depending on 10 parameters

Pierre Gaillard

To cite this version:

Pierre Gaillard. 6-th order rational solutions to the KPI equation depending on 10 parameters. Journal of Basic and Applied Research International , International Knowledge Press, 2017, 21 (2), pp.92-98.

�hal-01648248�

(2)

Families of rational solutions of order 6 to the KPI equation depending on 10

parameters.

P. Gaillard, Universit´e de Bourgogne,

Institut de math´ematiques de Bourgogne, 9 avenue Alain Savary BP 47870

21078 Dijon Cedex, France : E-mail : Pierre.Gaillard@u-bourgogne.fr

August 19, 2017

Abstract

Here we constuct rational solutions of order 6 to the Kadomtsev- Petviashvili equation (KPI) as a quotient of 2 polynomials of degree 84 in x,yandtdepending on 10 parameters. We verify that the maximum of modulus of these solutions at order 6 is equal to 2(2N+ 1)2 = 338. We study the patterns of their modulus in the plane (x, y) and their evolution according time and parametersa1,a2,a3,a4,a5,b1,b2,b3,b4,b5. When these parameters grow, triangle and rings structures are obtained.

PACS numbers :

33Q55, 37K10, 47.10A-, 47.35.Fg, 47.54.Bd

1 Introduction

We consider the Kadomtsev-Petviashvili equation (KPI)

(4ut6uux+uxxx)x3uyy = 0, (1) where subscriptsx, yandt denote partial derivatives.

This equation was first proposed by Kadomtsev and Petviashvili [1] in 1970. The first rational solutions were constructed in 1977 by Manakov, Zakharov, Bordag and Matveev [4]. Other more general rational solutions of the KPI equation were found. In particular, in the works of Krichever in 1978 [5, 6], Satsuma and Ablowitz in 1979 [7], Matveev in 1979 [8], Freeman and Nimmo in 1983 [9, 10], Pelinovsky and Stepanyants in 1993 [11], Pelinovsky in 1994 [12], Ablowitz and

(3)

Villarroel [13, 14] in 1997-1999, Biondini and Kodama [15, 16, 17] in 2003-2007.

We construct rational solutions of order N depending on 2N 2 parameters which can be written as a ratio of two polynomials of x, y and t of degree 2N(N+ 1).

The maximum of the modulus of these solutions at orderN is equal to 2(2N+ 1)2. This method gives an infinite hierarchy of rational solutions of order N depending on 2N2 real parameters. Here we construct the explicit rational solutions of order 6, depending on 10 real parameters, and the representations of their modulus in the plane of the coordinates (x, y) according to the real parametersa1,b1,a2,b2,a3,b3,a4,b4,a5,b5and timet. When the parameters grow, we obtainN(N+ 1) peaks in particular structures, such as triangles, ring, or concentric rings.

2 Rational solutions to KPI equation of order N depending on 2N −2 parameters

One defines real numbersλj such that −1< λν <1,ν = 1, . . . ,2N depending on a parameterǫwhich will be intended to tend towards 0; they can be written as

λj= 12j2, λN+j=−λj, 1jN, (2) The terms κν, δν, γν, τν and xr,ν are functions of λν,1 ν 2N; they are defined by the formulas :

κj= 2q

1λ2j, δj =κjλj, γj=q1

λj

1+λj,;

xr,j= (r1) lnγγji

j+i, r= 1,3, τj=−12iλ2jq

1λ2j4i(1λ2j)q 1λ2j, κN+j=κj, δN+j=−δj, γN+j =γj1,

xr,N+j =−xr,j, , τN+j =τj j= 1, . . . , N.

(3)

eν 1ν 2N are defined in the following way : ej = 2i

P1/2M1

k=1 ak(je)2k1iP1/2M1

k=1 bK(je)2k1 , eN+j= 2i

P1/2M1

k=1 ak(je)2k1+iP1/2M1

k=1 bk(je)2k1

, 1jN, ak, bk R, 1kN1.

(4)

ǫν, 1ν2N are real numbers defined by :

ej= 1, eN+j= 0 1jN. (5)

The following notations are used : Xν =κνx

2 +νyix3,ν

2 iτν

2tieν

2 , Yν =κνx

2 +νyix1,ν

2 iτν

2tieν

2,

(4)

for 1ν 2N, withκν,δν, xr,ν defined in (3) and parameters eν defined by (4).

We define the following functions :

ϕ4j+1,k=γk4j1sinXk, ϕ4j+2,k=γk4jcosXk,

ϕ4j+3,k=−γ4j+1k sinXk, ϕ4j+4,k=−γk4j+2cosXk, (6) for 1kN, and

ϕ4j+1,N+k=γk2N4j2cosXN+k, ϕ4j+2,N+k=−γ2Nk 4j3sinXN+k, ϕ4j+3,N+k=−γ2Nk 4j4cosXN+k, ϕ4j+4,N+k=γ2Nk 4j5sinXN+k, (7) for 1kN.

We define the functionsψj,k for 1j 2N, 1k2N in the same way, the termXk is only replaced byYk.

ψ4j+1,k=γ4jk 1sinYk, ψ4j+2,k=γk4jcosYk,

ψ4j+3,k=−γk4j+1sinYk, ψ4j+4,k=−γk4j+2cosYk, (8) for 1kN, and

ψ4j+1,N+k=γ2Nk −4j−2cosYN+k, ψ4j+2,N+k=−γ2Nk −4j−3sinYN+k, ψ4j+3,N+k=−γk2N4j4cosYN+k, ψ4j+4,N+k=γ2Nk 4j5sinYN+k, (9) for 1kN.

The rational solutions are obtained by a passage to the limit when the parameter ǫ tends towards 0. For this we make a limited expansion inǫ of all functions ϕand ψ previously defined. The arguments of the determinants thus contain only the principal parts of the limited expansions which are written as partial derivatives of these functions with respect to the parameterǫ in 01.

Then we get the following result as a consequence of the expression of the solutions to the KPI equation expressed in terms of Fredholm determinants and Wronskians given and proved by the author in [49]:

Theorem 2.1 The functionv defined by

v(x, y, t) =−2|det((njk)j,k∈[1,2N])|2

det((djk)j,k∈[1,2N])2 (10) is a rational solution of the KPI equation (1), where

nj1=ϕj,1(x, y, t,0),1j2N njk=2k−2∂ǫ2k−2ϕj,1(x, y, t,0),

njN+1=ϕj,N+1(x, y, t,0),1j2N njN+k= 2k∂ǫ−22k−2ϕj,N+1(x, y, t,0), dj1=ψj,1(x, y, t,0),1j 2N djk =2k−2∂ǫ2k−2ψj,1(x, y, t,0),

djN+1=ψj,N+1(x, y, t,0),1j2N djN+k =2k−2∂ǫ2k−2ψj,N+1(x, y, t,0), 2kN,1j2N

(11)

The functionsϕandψ are defined in (6),(7), (8), (9).

1This will be completely explained in a forthcoming article which is currently submitted to a review.

(5)

3 Explicit expression of rational solutions of or- der 6 depending on 10 parameters

In the the following, we explicitly construct rational solutions to the KPI equa- tion of order 6 depending on 10 parameters.

Because of the length of the expression, we cannot give it in this text.

We give patterns of the modulus of the solutions in the plane (x, y) of coordinates in functions of parametersa1,a2,a3,a4,a5, b1,b2,b3,b4, b5 and time t.

When at least, one parameter is not equal to 0, we observe the presence of 21 peak. The maximum of modulus of theses solutions is checked equal in this case N= 6 to 2(2N+ 1)2= 2×132= 338.

Figure 1. Solution of order 6 to KPI, on the left fort= 0; in the center for t= 0,01; on the right fort= 0,1; all parameters equal to 0.

Figure 2. Solution of order 6 to KPI, on the left fort= 0,2; in the center for t= 3; on the right fort= 10; all parameters equal to 0.

(6)

Figure 3. Solution of order 6 to KPI, on the left fora1= 103; in the center forb1= 103; on the right forb1= 106; all parameters equal to 0 and t= 0.

Figure 4. Solution of order 6 to KPI, on the left fora2= 106, sight on top; in the center forb2= 106; on the right forb2= 106, sight on top; all parameters

equal to 0 and t= 0.

Figure 5. Solution of order 6 to KPI, on the left fora3= 108; in the center fora3= 107; on the right fora3= 109; all parameters equal to 0 andt= 0.

(7)

Figure 6. Solution of order 6 to KPI, on the left forb4= 109; in the center fora5= 109; on the right forb5= 109; all parameters equal to 0 andt= 0.

4 Conclusion

We constructN-th order rational solutions to the KPI equation depending on 2N2 real parameters in the caseN = 6. These solutions can be expressed in terms of a ratio of two polynomials of degree 2N(N+ 1) = 84 inx,yandt. The maximum of the modulus of these solutions is equal to 2(2N + 1)2= 338; it is important to stress that this solution which can be called lumpL6is obtained when all parameters are equal to 0 at the instantt = 0. Here we have given a complete description of rational solutions of order 6 with 10 parameters by giving explicit expressions of polynomials of these solutions.

We construct the modulus of solutions in the (x, y) plane of coordinates; differ- ent structures appear. For a givent, when one parameter grows and the other ones are equal to 0 we obtain triangular, rings or concentric rings. There are five types of patterns. Fora16= 0 orb16= 0, and other parameters equal to zero, we obtain a triangle with 21 peaks. Fora26= 0 orb26= 0, and other parameters equal to zero, we obtain three concentric rings of 5, 10, 5 peaks respectively. For a36= 0 orb36= 0, and other parameters equal to zero, we obtain three concentric rings of 7 peaks on each of them. In the case wherea46= 0 orb46= 0, and other parameters equal to zero, we obtain two rings with 9 peaks with the lumpL4in the center. In the last case wherea56= 0 or b56= 0, and other parameters equal to zero, we obtain one ring with 11 peaks with the lumpL4 in the center.

References

[1] B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., V. 15, N. 6, 539-541, 1970

(8)

[2] M.J. Ablowitz, H. Segur On the evolution of packets of water waves, J.

Fluid Mech., V. 92, 691-715, 1979

[3] D.E. Pelinovsky, Y.A. Stepanyants, Y.A. Kivshar, Self-focusing of plane dark solitons in nonlinear defocusing media, Phys. Rev. E, V. 51, 5016- 5026, 1995

[4] S.V. Manakov, V.E. Zakharov, L.A. Bordag, V.B. Matveev, Two- dimensional solitons of the Kadomtsev-Petviashvili equation and their in- teraction, Phys. Letters, V. 63A, N. 3, 205-206, 1977

[5] I. Krichever, Rational solutions of the Kadomtcev-Petviashvili equation and integrable systems of n particules on a line, Funct. Anal. and Appl., V. 12, N. 1 : 76-78, 1978

[6] I. Krichever, S.P. Novikov Holomorphic bundles over Riemann surfaces and the KPI equation, Funkt. Ana. E Pril., V. 12, 41-52, 1979

[7] J. Satsuma, M.J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., V. 20, 1496-1503, 1979

[8] V.B. Matveev, Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation depending on functional parameters, Letters in Mathematical Physics, V. 3, 213-216, 1979

[9] N. C Freeman, J.J.C. Nimmo Rational solutions of the KdV equation in wronskian form, Phys. Letters, V. 96 A, N. 9, 443-446, 1983

[10] N. C Freeman, J.J.C. Nimmo The use of B¨acklund transformations in obtaining N-soliton solutions in wronskian form, J. Phys. A : Math. Gen., V. 17 A, 1415-1424, 1984

[11] D.E. Pelinovsky, Y.A. Stepanyants , New multisolitons of the Kadomtsev- Petviashvili equation, Phys. JETP Lett., V. 57, 24-28, 1993

[12] D.E. Pelinovsky, Rational solutions of the Kadomtsev-Petviashvili hier- archy and the dynamics of their poles. I. New form of a general rational solution, J.Math.Phys., V. 35, 5820-5830, 1994

[13] M.J Ablowitz, J. Villarroel, Solutions to the time dependent schr¨odinger and the Kadomtsev-Petviashvili equations, Phys. Rev. Lett., V. 78, 570 , 1997

[14] J. Villarroel, M.J Ablowitz, On the discrete spectrum of the nonstationary Schrdinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation, Commun. Math. Phys., V. 207, 1-42, 1999

[15] G. Biondini, Y. Kodama, On a family of solutions of the KadomtsevPetvi- ashvili equation which also satisfy the Toda lattice hierarchy, J. Phys. A:

Math. Gen., V. 36, 1051910536, 2003

(9)

[16] Y. Kodama, Young diagrams and N solitons solutions to the KP equation, J. Phys. A: Math. Gen., V. 37, 1116911190, 2004

[17] G. Biondini, Line Soliton Interactions of the Kadomtsev-Petviashvili Equa- tion, PRL, V. 99, 064103-1-4, 2007

[18] P. Gaillard, V.B. Matveev, Wronskian addition formula and its applica- tions, Max-Planck-Institut f¨ur Mathematik, MPI 02-31, V.161, 2002 [19] P. Gaillard, A new family of deformations of Darboux-P¨oschl-Teller poten-

tials, Lett. Math. Phys., V.68, 77-90, 2004

[20] P. Gaillard, V.B. Matveev, New formulas for the eigenfunctions of the two-particle Calogero-Moser system, Lett. Math. Phys., V.89, 1-12, 2009 [21] P. Gaillard, V.B. Matveev, Wronskian and Casorai determinant representa- tions for Darboux-P¨oschl-Teller potentials and their difference extensions, RIMS Kyoto, N. 1653, 1-19, 2009

[22] P. Gaillard, V.B. Matveev, Wronskian and Casorai determinant representa- tions for Darboux-P¨oschl-Teller potentials and their difference extensions, J. Phys A : Math. Theor., V.42, 1-16, 2009

[23] P. Gaillard, From finite-gap solutions of KdV in terms of theta functions to solitons and positons, halshs-00466159, 2010

[24] P. Gaillard, Families of quasi-rational solutions of the NLS equation and multi-rogue waves, J. Phys. A : Meth. Theor., V.44, 1-15, 2011

[25] P. Gaillard, Wronskian representation of solutions of the NLS equation and higher Peregrine breathers, J. Math. Sciences : Adv. Appl., V. 13, N. 2, 71-153, 2012

[26] P. Gaillard, Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves, J. Math.

Phys., V. 54, 013504-1-32, 2013

[27] P. Gaillard, Wronskian representation of solutions of NLS equation and seventh order rogue waves, J. Mod. Phys., V.4, N. 4, 246-266, 2013 [28] P. Gaillard, V.B. Matveev, Wronskian addition formula and Darboux-

P¨oschl-Teller potentials, J. Math., V.2013, ID 645752, 1-10, 2013 [29] P. Gaillard, Two parameters deformations of ninth Peregrine breather

solution of the NLS equation and multi rogue waves, J. Math., V. 2013, 1-111, 2013

[30] P. Gaillard, Two-parameters determinant representation of seventh order rogue waves solutions of the NLS equation, J. Theor. Appl. Phys., V.7, N. 45, 1-6, 2013

(10)

[31] P. Gaillard, Six-parameters deformations of fourth order Peregrine breather solutions of the NLS equation, J. Math. Phys., V.54, 073519-1-22, 2013 [32] P. Gaillard, Deformations of third order Peregrine breather solutions of

the NLS equation with four parameters, Phys. Rev. E, V.88, 042903-1-9, 2013

[33] P. Gaillard, Ten parameters deformations of the sixth order Peregrine breather solutions of the NLS equation, Phys. Scripta, V.89, 015004-1-7, 2014

[34] P. Gaillard, The fifth order Peregrine breather and its eight-parameters deformations solutions of the NLS equation, Commun. Theor. Phys., V.

61, 365-369, 2014

[35] P. Gaillard, Higher order Peregrine breathers, their deformations and multi- rogue waves, J. Of Phys. : Conf. Ser., V. 482, 012016-1-7, 2014

[36] P. Gaillard, M. Gastineau, Eighteen parameter deformations of the Pere- grine breather of order ten solutions of the NLS equation, Int. J. Mod.

Phys. C, V. 26, N. 2, 1550016-1-14, 2014

[37] P. Gaillard, Two parameters wronskian representation of solutions of nonlinear Schr¨odinger equation, eight Peregrine breather and multi-rogue waves, J. Math. Phys., V.5, 093506-1-12, 2014

[38] P. Gaillard, Hierarchy of solutions to the NLS equation and multi-rogue waves, J. Phys. : Conf. Ser., V.574, 012031-1-5, 2015

[39] P. Gaillard, Tenth Peregrine breather solution of the NLS, Ann. Phys., V. 355, 293-298, 2015

[40] P. Gaillard, M. Gastineau, The Peregrine breather of order nine and its deformations with sixteen parameters solutions of the NLS equation, Phys.

Lett. A., V.379, 13091313, 2015

[41] P. Gaillard, Other 2N-2 parameters solutions to the NLS equation and 2N+1 highest amplitude of the modulus of the N-th order AP breather, J.

Phys. A: Math. Theor., V. 48, 145203-1-23, 2015

[42] P. Gaillard, Multi-parametric deformations of the Peregrine breather of order N solutions to the NLS equation and multi-rogue waves, Adv. Res., V. 4, 346-364, 2015

[43] P. Gaillard, Higher order Peregrine breathers solutions to the NLS equa- tion, Jour. Phys. : Conf. Ser., V. 633, 012106-1-6, 2016

[44] P. Gaillard, M. Gastineau Patterns of deformations of Peregrine breather of order 3 and 4, solutions to the NLS equation with multi-parameters, Journal of Theoretical and Applied Physics, V. 10,1-7, 2016

(11)

[45] P. Gaillard, M. Gastineau Twenty parameters families of solutions to the NLS equation and the eleventh Peregrine breather, Commun. Theor. Phys, V. 65, 136-144, 2016

[46] P. Gaillard, Rational solutions to the KPI equation and multi rogue waves, Annals Of Physics, V. 367, 1-5, 2016

[47] P. Gaillard, M. Gastineau Twenty two parameters deformations of the twelfth Peregrine breather solutions to the NLS equation, Adv. Res., V. , 1-11, 2016

[48] P. Gaillard, Towards a classification of the quasi rational solutions to the NLS equation, Theor. And Math. Phys., V. 189, 1440-1449, 2016 [49] P. Gaillard, Fredholm and Wronskian representations of solutions to the

KPI equation and multi-rogue waves, Jour. of Math. Phys., V. 57, 063505- 1-13, doi: 10.1063/1.4953383, 2016

(12)

Appendix : Because of the length of the complete expression, we only give in this appendix the explicit expression of the rational solution of order 6 to KPI equation without parameters. They can be written as

v(x, y, t) =−2|n(x, y, t)|2 (d(x, y, t))2 withX= 2x,Y = 2y,T = 4t,

d(2x,4y,4t) =X42 + 146368466364027986997712983000T28163785212871891660328043019543750T18

1743258987219416166292162033125000T14 +25162642040415238402427879381250T24−17796475908040409761437226372500T22 2259558449088511852089565548750T26−14382518238064346771583T40−16261155226563941719711350T36 +109418989131512359209T42 + 687164760263074345753410T381464804007245369414761534775T32 + 12196285846533687111121049400T30

709906882928454149923781466862500T20 +628004925677254432643853460453125T10+98684940687917333013467983828125T8 5261801662602586032097211718750T6171395180519593084257508593750T4 + 9886311444358219573828125T2

1196227258580599721074391193843750T16 +2832136699793899349608144455375000T12 +28006548001014786328125+

206270951783460976572676425T34 + (77071629600T+ 2101471192800T3 + 39070080iY9T+ 15471751680iY7T3 + 1462080533760iY5T5 +46368839784960iY3T7 +452096187903360iY T9−2969326080iY7T−735315356160iY5T3 37911491735040iY3T5−480771654612480iY T7 +23638728960iY5T+2402127705600iY3T3 +44760184761600iY T5 2895782400iY3T2549863411200iY T3110611267200iY T2055567326400T3Y469519364326720T5Y2 + 450848160T Y8 +146778065280T3Y6 +10972016637120T5Y4 +259299433008000T7Y2−1953504T Y10−966984480T3Y8 121840044480T5Y65796104973120T7Y4113024046975840T9Y234682709600T Y2 + 14663073600T Y4 + 842761584000T3Y211713947840T Y6758288606074272T11 + 1695360704637600T9549756022052160T7 + 37592494632000T5 )X31 + 189T2Y40 + 17010T4Y38 + 969570T6Y36 + 39267585T8Y34 + 1201588101T10Y32 +

28838114424T12Y30 +556163635320T14Y28 +8759577256290T16Y26+113874504331770T18Y24+1229844646783116T20Y22 + 11068601821048044T22Y20 +83014513657860330T24Y18 +517244277406668210T26Y16 +2660113426662865080T28Y14 + 11172476391984033336T30Y12 +37707107822946112509T32Y10 +99812932472504415465T34Y8 +199625864945008830930T36Y6 + 283678860711328338690T38Y4 +255310974640195504821T40Y2 +(21Y2 +7749T2−84iY−63)X40+(−2520T Y2

309960T3 + 10080iY T + 10920T)X39 + (210Y4 + 147420T2Y2 + 9066330T41680iY3589680iY T2 6300Y2−835380T2 +5040iY−3150)X38 +(−18158175 + 774396043785T8−646379353620T6 +36433633950T4 1003760100T2−90493200iY5T2−10044745200iY3T4−235047037680iY T6 +1927346400iY3T2 +72427899600iY T4 + 315932400iY T2 +2273840100T2Y2−626705100T2Y4−48241210500T4Y2 +7541100T2Y6 +1255593150T4Y4 + 58761759420T6Y2 + 6747300Y2 + 9591750Y4873180Y6 + 5985Y895760iY7 + 4127760iY5−4762800iY3 + 17463600iY)X34 + (1601293050T+ 38091551400T3 + 9767520iY7T+ 3076768800iY5T3 + 204912802080iY3T5 + 3424971120480iY T7−435425760iY5T−70279876800iY3T3−1693226838240iY T5 +782157600iY3T+17327066400iY T3 1565373600iY T+21901735800T3Y4 +1038045115800T5Y2−610470T Y8−256397400T3Y6−25614100260T5Y4 856242780120T7Y2−462785400T Y2−1078906500T Y4−98578053000T3Y2 +90263880T Y6−8776488496230T9 +

10560327621480T7−1225262448900T5 )X33 +(−973099575+86887236112677T10−144812060187795T8 +29491102213650T6 1293181762950T4−71229162375T2−483492240iY7T2−76150027800iY5T4−3381061234320iY3T6−42384017615940iY T8 + 22266090000iY5T2 +1856991906000iY3T4 +31497254656560iY T6−55723172400iY3T2−1294550472600iY T4 +

73809111600iY T2 +30218265T2Y8 +6345835650T4Y6 +422632654290T6Y4 +10596004403985T8Y2 +2985084900T2Y2 + 58675116150T2Y4 + 3008928072150T4Y24527438300T2Y6556763580450T4Y418017497367100T6Y2 + 410493825Y2−79975350Y4 +117892530Y6−4674915Y8 +20349Y10−406980iY9 +30587760iY7−222105240iY5 26989200iY3 + 1234755900iY)X32 + (−335047977180000T4517956882908000T3 + 291903248448000iY7T3 + 18234200825406720iY5T5 + 409672089133171200iY3T7 + 3180008423953468800iY T95690110809600iY7T

799634391897600iY5T3−36780862302374400iY3T5−581370415836940800iY T7−3975413904000iY5T−899021428704000iY3T3 53455634170243200iY T5 +7497409248000iY3T−5863712837472000iY T3 +9149719824000iY T+273490560iY13T+

142762072320iY11T3 +19915309088640iY9T5 +1126637485585920iY7T7 +29574233996630400iY5T9 +358117088031924480iY3T11 + 1611526896143660160iY T13−40620545280iY11T−15816534854400iY9T3−1580646637140480iY7T5−60186160414195200iY5T7 949488565154976000iY3T9−5220970178149635840iY T11+1148833929600iY9T−666376699716000T3Y4−30176848381125600T5Y2 + 3311476408800T Y8 +629100322704000T3Y6 +30679542269812800T5Y4 +583271002222876800T7Y2−263148933600T Y10 84973067172000T3Y86900719571426240T5Y6208327851817243200T7Y42522759986844143200T9Y2 227201705892000T Y2−25335095436000T Y4−3367217584584000T3Y2 +4240303200T Y12 +1940437114560T3Y10 + 234004881791520T5Y8 + 11241667893456000T7Y6 + 244765699787901600T9Y4 + 2379593808633182400T11Y2 9767520T Y145948419680T3Y12995765454432T5Y1070414842849120T7Y82464519499719200T9Y6

44764636003990560T11Y4−402881724035915040T13Y2−4564569088800T Y6−1415841487326215712T15 +8191928388730272480T13 10134021639130048800T11 + 3495718712931429600T923370616707228000T7 + 22246386401181600T5 )X27 +

(−23940T Y45601960T3Y2206712324T5 + 191520iY3T+ 22407840iY T3 + 768600T Y2 + 39213720T3 776160iY T+ 207900T)X37 + (1330Y6 + 1328670T2Y4 + 155454390T4Y2 + 3824177994T610629360iY3T2 621817560iY T4 + 290640iY3104370Y445454500T2Y21295453250T4 + 239400iY+ 54265680iY T2 + 207270Y2 + 1006110T215960iY5242550)X36 + (−143640T Y647832120T3Y43357814824T5Y2 59001603336T7−17871840iY T−2356361280iY T3−34050240iY3T+11604600T Y4 +1737061200T3Y2 +32458876632T5 + 13431259296iY T5 +382656960iY3T3−32364360T Y2−637330680T3 +1723680iY5T+21205800T)X35 +(−668625678000T+

75632740092000T3 +5390377625001600iY3T9 +34400409934101120iY T11−13067913600iY9T−4234004006400iY7T3 326813475098880iY5T5−8454892927219200iY3T7−67237868269756800iY T9 +224067513600iY7T+40639181587200iY5T3 + 1617271075526400iY3T5 +18816481780588800iY T7−303066489600iY5T−38043214272000iY3T3−1744242598828800iY T5 345398256000iY3T148529442096000iY T35163827760000iY T+ 117210240iY11T+ 54502761600iY9T3 +

6474928078080iY7T5 +291371763513600iY5T7 +47164516056000T3Y4 +1549655337585600T5Y2−69123877200T Y8 17546517172800T3Y6−1020946616172000T5Y4−19027342925236800T7Y2 +1597246560T Y10 +634670316000T3Y8 + 63016953531840T5Y6 +2299025449828800T7Y4 +32980599942444000T9Y2−2845249092000T Y2−241450146000T Y4 48685674996000T3Y24883760T Y122725138080T3Y10404683004880T5Y824280980292800T7Y6 673797203125200T9Y4−8600102483525280T11Y2 +400564180800T Y6−40685100210523440T13 +151935143875613280T11 104011093436619600T9 +17136483510484800T7 +651266000708400T5 )X29 +(252828837022538520T14 +1106824045923703800T10

Références

Documents relatifs

Gaillard, Two parameters wronskian representation of solutions of nonlinear Schr¨odinger equation, eight Peregrine breather and multi-rogue waves, J.. Gaillard, Hierarchy of

Gaillard, Two parameters wronskian representation of solutions of nonlinear Schr¨odinger equation, eight Peregrine breather and multi-rogue waves, J.. Gaillard, Hierarchy of

In this paper, we use the representation of the solutions of the focusing nonlinear Schr¨ odinger equation we have constructed recently, in terms of wronskians; when we perform

Gaillard, Two parameters wronskian representation of solutions of nonlinear Schr¨odinger equation, eight Peregrine breather and multi-rogue waves, J.. Gaillard, Hierarchy of

Gaillard, Two parameters wronskian representation of solutions of nonlinear Schr¨odinger equation, eight Peregrine breather and multi-rogue waves, J.. Gaillard, Hierarchy of

Gaillard, Two parameters wronskian representation of solutions of nonlinear Schr¨odinger equation, eight Peregrine breather and multi-rogue waves,

We obtained new patterns in the (x; t) plane, by different choices of these parameters; we recognized rings configurations as already observed in the case of deformations depending

With this method, we construct the analytical expressions of deformations of the Pere- grine breather of order 4 with 6 real parameters and plot different types of rogue waves..