• Aucun résultat trouvé

Likelihood Ratio Test process for Quantitative Trait Loci detection.

N/A
N/A
Protected

Academic year: 2021

Partager "Likelihood Ratio Test process for Quantitative Trait Loci detection."

Copied!
32
0
0

Texte intégral

(1)

HAL Id: hal-00421215

https://hal.archives-ouvertes.fr/hal-00421215

Preprint submitted on 1 Oct 2009

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Likelihood Ratio Test process for Quantitative Trait Loci detection.

Charles-Elie Rabier, Jean-Marc Azaïs, Céline Delmas

To cite this version:

Charles-Elie Rabier, Jean-Marc Azaïs, Céline Delmas. Likelihood Ratio Test process for Quantitative

Trait Loci detection.. 2009. �hal-00421215�

(2)

Likelihood Ratio Test process

for Quantitative Trait Loci detection

Charles-Elie Rabier

Institut de Mathématiques de Toulouse, Toulouse, France.

INRA UR631, Auzeville, France.

Jean-Marc Azaïs

Institut de Mathématiques de Toulouse, Toulouse, France.

Céline Delmas

INRA UR631, Auzeville, France.

Summary. We consider the likelihood ratio test (LRT) process related to the test of the ab- sence of QTL on the interval[0, T]representing a chromosome (a QTL denotes a quantitative trait locus, i.e. a gene with quantitative effect on a trait). We give the asymptotic distribution of this LRT process under the null hypothesis that there is no QTL on[0, T]and under the general alternative that there existmQTL on[0, T]. We propose to estimate the number of QTL, their positions and their effects by penalized likelihood. Our results are extended to the case where individuals are structured into families.

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance parameters present only under the alternative, QTL detection,χ2process.

1. Introduction

n

Yj, j= 1, ..., n

! "

# $ (A×B) AB % &

'!(!(

[0, T] [0, T])

$ t=t Y

* $ +

p(t)f(µ+q,σ)(.) +{1−p(t)}f(µ−q,σ)(.) !

f(µ,σ)(.) , µ σ2 (µ, q, σ)

$ - t [0, T] $

. “q = 0” ! n Y1, ..., Yn

(3)

Λn(t)

/ 0 pj(t) p(t) 1

{Λn(t), t[0, T]} 2$ 3 $

* .

*

4 5 !

6 !(7( . [0, T]

8&$ 9

!((7 6 * % 8

&$ -%:9 - "55"-%:

"55( / .

.: !((;

<!(==<!(7= *

>,

4

4 ) ? .

[0, T] [0, T]q= 0

t [0, T]

* !t=t

.

*m [0, T]t1,· · · , tm q1,· · · , qm

* M = 2m + M

α=1

pαf(mα,σ)(.)

pαmα$ $ µmt1tm q1qm &.

, $

$ % $

6 . 2

3 .

*

# $ .

.:!((;.:!((@ 2

3 % ?

*

. .

9 "55( 8 $

*7@

?

.: *

% $

$

AA!((7 4

(4)

2. Model

[0, T] K $

* t1 = 0 < t2 < ... < tK =T $

2 3t X(t) '!(!(

+ N(t) B X(t) 121+δ1)

X(t) = (1)N(t)X(t1) '!(!(C r: [0, T]2−→

0, 12

+

r(t, t) =P(X(t)X(t) =1) =P(|N(t)−N(t)| ) = 1

2 (1−e2|t−t|)

¯

r(t, t) 1−r(t, t)

Y X(t)t [t1, tK]

D+

Yj =µ + X(t)q + σε

ε, q

6 2 3 $

t1, t2, ..., tK Xj(t) X(t) 1

/ (Yj, Xj(t1), ..., Xj(tK))

% t $ 3. Only 2 genetic markers

$(K= 2) 0T + 0 =t1<

t2=T -* $ t [t1, t2]

t [t1, t2] 4 p(t) Dp(t) =P

X(t) = 1X(t1), X(t2)

9 *X(t1) =X(t2) = 16+

P

X(t) = 1X(t1) = 1, X(t2) = 1

= (1/2)P{N(t)−N(t1)}P{N(t2)−N(t)} (1/2)P{N(t2)−N(t1)}

/ ∀t∈]t1, t2[+

p(t) =Q1t,11X(t1)=11X(t2)=1 + Q1t,−11X(t1)=11X(t2)=1

+Qt1,11X(t1)=11X(t2)=1 + Qt1,−11X(t1)=11X(t2)=1 "

+

Q1t,1= ¯r(t1, t) ¯r(t, t2)

¯

r(t1, t2) , Q1t,−1= r(t¯ 1, t)r(t, t2) r(t1, t2) Qt1,1= r(t1, t) ¯r(t, t2)

r(t1, t2) , Qt1,−1= r(t1, t)r(t, t2)

¯ r(t1, t2)

$+

Qt1,−1= 1−Q1t,1 Qt1,1= 1−Q1t,−1

(5)

6 p(t1) = 1X(t1)=1 p(t2) = 1X(t2)=1 / p(t) t1

t2

θ= (q, µ, σ) tD*θ0= (0, µ, σ)

H0 $ (Y, X(t1), X(t2))

λ⊗N ⊗N λ N N

∀t∈[t1, t2]+

L(θ, t) =

p(t)f(µ+q,σ)(y) +{1−p(t)}f(µ−q,σ)(y)

g(t) 0

g(t) =1 2

r(t¯ 1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=1

+1 2

r(t1, t2) 1X(t1)=11X(t2)=1 + ¯r(t1, t2) 1X(t1)=11X(t2)=1

$ Ln(θ, t) n n

θˆ= (ˆq, µ,ˆ σ)ˆ *$ )E θ

&H0 [t1, t2] 6 H1

tt[t1, t2]

D H1 / +

Hat :2 t q=a/√

na∈R 3

q q=a/√

n 9!(7FC

3.1. Results

Sn(.)⇒Z(.) Λn(.)F.d.→ {Z(.)}2

H0 Hat

Sn(.) n

• ⇒ F.d.

Z(.) (t, t)[t1, t2]2

Γ(t, t) = 4E{p(t)p(t)} −1

E

{2p(t)1}2 E

{2p(t)1}2

(t, t)[t1, t2]2

H0m(t) = 0

Hat

mt(t) = aE[X(t){2p(t)1}] σ

E

{2p(t)1}2

(6)

Z(.)Z(.)

∀t∈[t1, t2]

Z(t) ={α(t)Z(t1) + β(t)Z(t2)}/

E

{2p(t)1}2

∀t∈]t1, t2[ α(t) =Q1t,1+Q1t,−11 β(t) =Q1t,1−Q1t,−1α(t1) = 1β(t1) = 0 α(t2) = 0β(t2) = 1{Z(t1), Z(t2)}=e2t2

! (t, t)[t1, t2]2

mt(t) ={α(t)mt(t1) + β(t)mt(t2)}/

E

{2p(t)1}2

"# E

{2p(t)1}2 $%&'(

) % E{p(t)p(t)} * % E[X(t){2p(t)1}] $%+'

( ) %

D

% "55=

?! Γ(t, t) mt(t) T

0.2) $

9 -%:"55F-%:"55( t Γ(t, t)

Y 2 3 X(t1) X(t2) -

) 9

Fig. 1.Mean function and Covariance function (a= 4,σ= 1,T= 0.2M)

$ .

∀t∈[t1, t2]+

Λn(t) ={Wn(t)}2+oPθ

0(1) ={Sn(t)}2+oPθ

0(1)

(7)

Wn(t)Sn(t) n

/ =! oPθ

0(1)

% H0

- ( / =!+

Wn(t) = nqˆ

E

{2p(t)1}2 /σ , Sn(t) =n

j=1

(yj−µ) (2pj(t)1)

√n σ

E

{2p(t)1}2

;

# σ σˆ /$C

µ µˆ B σ

ˆσ /$C # $

D ;

! ' !

!

- $ +

Sn(t) ={α(t)Sn(t1) + β(t)Sn(t2)}/

E

{2p(t)1}2 @

9

Sn0(t1), Sn0(t2)

=e2t2 Sn0(.) H0

4 +

Λn(t) ={α(t)Sn(t1) + β(t)Sn(t2)}2/E

{2p(t)1}2 + oPθ

0(1)

={α(t)Wn(t1) + β(t)Wn(t2)}2/E

{2p(t)1}2 + oPθ

0(1)

6 !/ =!oPθ

0(1)

% Hat . t

$

$

# $

Λn(.)

E) )EC

$

3.2. Remarks

* Sn(.)Λn(.) Vn(.)

Sn(.)+

%

(8)

) +

Vn(t) =

t2−t

t2 Sn(t1) + t

t2 Sn(t2)

/

τ(t) F

τ(t) =V t2−t

t2 Sn0(t1) + t

t2 Sn0(t2)

=

t2−t t2

2

+ 2 t(t2−t)

(t2)2 e2t2 + t

t2

2

4 τ(t)= 0 ∀t [t1, t2] Vn(.) ,

H0 9

Sn0(t1), Sn0(t2)

=e2t2

/ Vn(.)+

- !! / =!

Vn2(.) $

* +

p(t) = 1X(t1)=11X(t2)=1 + t2−t

t2 1X(t1)=11X(t2)=1 + t

t2 1X(t1)=11X(t2)=1 =

$ * D

" /

* $

Vn2(.) % H0 .: !((@+

*

n¯r(t1, t2)/2 nr(t1, t2)/2 nr(t1, t2)/2 n¯r(t1, t2)/2 n

j=11Xj(t1)=11Xj(t2)=1n

j=11Xj(t1)=11Xj(t2)=1n

j=11Xj(t1)=11Xj(t2)=1 n

j=11Xj(t1)=11Xj(t2)=1

6 ! / =! Hat Vn(.)

H0 m˜t(t)

m˜t(t) +

˜ mt(t) =

t2−t

t2 mt(t1) + t

t2 mt(t2)

/ τ(t)

Vn(.) D 9

Sn0(t1), Sn0(t2)

=e2t2 4

S0n(t1)Sn0(t2)τ(.) 4

Vn2(.)% .:

!((@ Sn0(t1)Sn0(t2) E

{2p(t)1}2 = 0

p(t)D =

4. Several markers : the “Interval Mapping‘’ of Lander and Botstein (1989)

4 K $0 = t1 < t2 < ... < tK =T

t t t $

$ ? t [t1, tK]\Tk

Tk={t1, ..., tK}Dt tr+

t=sup{tk Tk:tk< t} , tr=inf{tkTk :t < tk}

(9)

4 t 2)$3(t, tr)

%

E

{2p(t)1}2 , E{p(t)p(t)} , E[X(t){2p(t)1}] , α(t) , β(t)

,Z(.) Z(t) =

α(t)Z(t) + β(t)Z(tr) /

E

{2p(t)1}2

∀k∀k{Z(tk), Z(tk)}=e2|tk−tk|

! mt(t) mt(t) =

α(t)mt(t) + β(t)mt(tr) /

E

{2p(t)1}2

* -

# ∀k ∀kΓ(tk, tk) =e2|tk−tk| 4 8&$

6 !(7(9 !((7

6 / 0!+

∀k Wn(tk) =

nq/σˆ , Sn(tk) = n j=1

(yj−µ) (2 1Xj(tk)=11) σ

n

Λn(t) =

α(t)Sn(t) + β(t)Sn(tr)2

/E

{2p(t)1}2 + oPθ

0(1) 7

=

α(t)Wn(t) + β(t)Wn(tr)2

/E

{2p(t)1}2 + oPθ

0(1)

# ∀k∀k9

Sn0(tk), Sn0(tk)

=e2|tk−tk|

6 *7"oPθ

0(1) %

Hat

4.1. Remarks

Vn(.)/ 0"%

$ % H0

.:!((; * 70

8

* X(t) $

/

8&$ $

$ Mn(.) -

Références

Documents relatifs

The main contribution of this paper is the proposal of a similarity measure based on likelihood ratio test computed from a Gaussian model distribution in the context of

Précisons cependant que, même si les fréquences de clones sont parfois très différentes d’une variété-paysan à l’autre, les clones présents dans ces variétés-

According to the results, a percentage point increase in foreign aid provided to conflict-affected countries increases the tax to GDP ratio by 0.04; this impact increases when we

Title Page Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close. Full Screen

Bayes factor / Quantitative Trait Loci / hypothesis testing / Markov Chain Monte

in the number of markers, and in the proportion of the additive genetic variance explained jointly by two linked QTLs. Overall, the QTL parameters were

While haplotype methods are generally considered to be more accurate than composite likelihood ones, we considered it important to evaluate the exact difference between them, as well

Percentage of additive QTL truly identified (additive QTL found) and number of additive QTL found (nb of additive QTL found) as a function of the interactions considered and