• Aucun résultat trouvé

MATERIAL DEPOSITION AND REMOVAL USING LASER-INITIATED CHEMISTRY

N/A
N/A
Protected

Academic year: 2021

Partager "MATERIAL DEPOSITION AND REMOVAL USING LASER-INITIATED CHEMISTRY"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00223103

https://hal.archives-ouvertes.fr/jpa-00223103

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MATERIAL DEPOSITION AND REMOVAL USING LASER-INITIATED CHEMISTRY

R. Osgood, Jr

To cite this version:

R. Osgood, Jr. MATERIAL DEPOSITION AND REMOVAL USING LASER-INITIATED CHEM- ISTRY. Journal de Physique Colloques, 1983, 44 (C5), pp.C5-133-C5-138. �10.1051/jphyscol:1983522�.

�jpa-00223103�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, supplement au nD1O, Tome 44, octobre 1983 page C5-133

M A T E R I A L D E P O S I T I O N A N D R E M O V A L U S I N G L A S E R - I N I T I A T E D C H E M I S T R Y

R.M. Osgood, Jr.

Departments o f EZectricaZ Engineering and Applied Physics, CoZwnbia University, NY, NY 10027, U.S.A.

~ 6 s u m ; - L ' u t i l i s a t i o n du r a y o n l a s e r pour c o n t r a l e r d e s r 6 a c t i o n s chimiques 5 g r a n d e e t p e t i t e 6 c h e l l e e s t d i s c u t k e . T r o i s a p p l i c a t i o n s s p d c i f i q u e s s o n t donne'es comme exemple.

A b s t r a c t - The u s e of l a s e r l i g h t t o c o n t r o l l a r g e and s m a l l s c a l e c h e m i c a l r e a c t i o n s i s d i s c u s s e d . T h r e e s p e c i f i c a p p l i c a t i o n s a r e g i v e n a s examples.

I

-

INTRODUCTION

I n t h e l a s t few y e a r s , i t h a s become i n c r e a s i n g l y a p p a r e n t t h a t r a p i d h e a t i n g w i t h l a s e r l i g h t i s a powerful t e c h n i q u e f o r forming new and unexpected m a t e r i a l s o r m a t e r i a l s p r o p e r t i e s . L a s e r t r a n s i e n t a n n e a l i n g h a s been u s e d t o produce

s e m i c o n d u c t o r s w i t h doping l e v e l s e x c e e d i n g t h e s o l i d s o l u b i l i t i e s a t t h e a n n e a l i n g t e m p e r a t u r e / I / . New m e t a l - g l a s s e s have been formed by t r a n s i e n t h e a t i n g of mixed f i l m s of m e t a l and s e m i c o n d u c t o r s . P i c o s e c o n d l a s e r p u l s e s have been u s e d t o s w i t c h a semiconductor r e p e a t e d l y between i t s amorphous and c r y s t a l l i n e s t a t e s . The r e s u l t s have g i v e n new i n s i g h t i n t o m a t e r i a l s p r o p e r t i e s and s u g g e s t e d a h o s t of new p r o c e s s i n g o p t i o n s f o r p r e p a r i n g e l e c t r o n i c m a t e r i a l s and components. L a s e r a n n e a l i n g h a s a c h i e v e d t h e s e r e s u l t s by c o n t r o l l i n g o n l y one p a r a m e t e r of m a t e r i a l s p r e p a r a t i o n , namely, t h e r a t e of energy i n p u t o r o u t p u t . However, i t i s a l s o p o s s i b l e t o c o n t r o l t h e f l o w of m a t e r i a l s t o and from a s u r f a c e by u s i n g l a s e r r a d i a t i o n t o i n i t i a t e and d r i v e a s p e c i f i c c h e m i c a l r e a c t i o n 121.

L a s e r c h e m i s t r y i s a r e s e a r c h f i e l d which a n t e d a t e s any e x t e n s i v e r e s e a r c h i n l a s e r a n n e a l i n g ; however, it i s o n l y r e c e n t l y t h a t l a s e r s have been used t o c o n t r o l i n t e r f a c e r e a c t i o n s and a c h i e v e r e s u l t s a n a l o g o u s t o l a s e r a n n e a l i n g . L a s e r c h e m i s t r y c a n b e used t o d e m o n s t r a t e a much w i d e r r a n g e of p r o c e s s i n g o p t i o n s t h a n s i m p l e h e a t i n g / 2 , 3 , 4 / ; m a t e r i a l s c a n n o t o n l y b e m o d i f i e d , b u t m e t a l s , i n s u l a t o r s , and s e m i c o n d u c t o r s c a n b e d e p o s i t e d o r removed ( e t c h e d ) . Small amounts of atoms can b e i n c o r p o r a t e d i n t o a s o l i d s u r f a c e by s i n g l e - s t e p photochemical doping. L a s e r c h e m i s t r y can b e b a s e d on r e s o n a n t o r non-thermal phenomena and i n t h e s e c a s e s , t h e p r o c e s s i n g h a s t h e a d v a n t a g e of k e e p i n g t h e s u b s t r a t e a t room t e m p e r a t u r e . Because t h e e x t e n t of t h e r e a c t i o n zone c a n b e v a r i e d by changing t h e s i z e o f t h e laser-beam, b o t h l o c a l and l a r g e - a r e a r e a c t i o n s c a n b e o b t a i n e d . S i n c e t h e mecha- nisms of l a s e r i n t e r f a c e r e a c t i o n s c a n b e c o n s i d e r a b l y d i f f e r e n t from t h e u s u a l homogeneous o r inhomogeneous r e a c t i o n s , new "nonequilibrium" m a t e r i a l s c a n b e grown.

L a s e r chemical p r o c e s s i n g c a n b e s u b d i v i d e d a c c o r d i n g t o t h e p h a s e of t h e medium b e i n g c h e m i c a l l y a c t i v a t e d . T a b l e I shows t h i s d i v i s i o n . N o t i c e t h a t l a s e r photochemical r e a c t i o n s have been d e m o n s t r a t e d i n v i r t u a l l y a l l forms of c h e m i c a l l y a c t i v e medium. Each m a t e r i a l p h a s e h a s i t s p a r t i c u l a r a d v a n t a g e s . A g a s e o u s medium i s d r y and c a n b e flowed s i m p l y o v e r t h e s u b s t r a t e . Thus, many of t h e c a p a b i l i t i e s of g a s p r o c e s s i n g a r e s i m i l a r t o t h o s e f o r CVD o r plasma p r o c e s s i n g . A l i q u i d medium i s u s e f u l b e c a u s e i o n - c h e m i s t r y p r o v i d e s a p a r t i c u l a r l y powerful approach t o producing s e l e c t i v e d i s s o l u t i o n e f f e c t s f o r e t c h i n g o r c a r r y i n g n o b l e m e t a l s s u c h a s g o l d and p l a t i n u m . Molecular s u r f a c e l a y e r s p r o v i d e a

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983522

(3)

C5-134 JOURNAL DE PHYSIQUE

h i g h - d e n s i t y chemical medium s u c h a s a l i q u i d o r s o l i d , b u t may b e r e a d i l y formed u s i n g a g a s ambient.

TABLE I CHEMICAL MEDIUM FOR LASER CHEMICAL PROCESSING

PHASE

-

Gas

Liquid

EXAMPLES

Thermochemical deposition of silicona Etching of silicon by clZb and sioZd Deposition

Photoetching of 111-lve compounds Deposition of Au f

Solid ~tching of polymersg

Adsorbed Layers Surface Nucleation of Cd Atoms h Photodeposition of A1 i

a) ALLEN S.D., BASS

M.,

Appl. Phys. Lett. 76 (1981) 431.

E W I C H D.J., OSGOOD R.M., DEUTSCH T.F., Appl. Phys. Lett. 39 (1981) 957;

BAUERLE P., Appl. Phys. 28 (1982) 267.

b)

EHRLICH D.J., OSGOOD R . M ~ DEUTSCH T .F., Appl. Phys . Lett. 2 1018 (1982) c) CHUANG T.J.,

3.

Vac. Sci. Technol. 21 (1982) 800.

d) SOLANK1 R., BOYES P.V., COLLINS C.J., Appl. Phys. Lett. K(1982) 1048.

e) See, for example, OSGOOD R.M., SANCHEZ A., EHRLICH D.J., and DANEU V., Appl. Phys. Lett. 40 (1982) 391 and references cited therein.

f) VON GUTFELD R.J., ACOSTA

R . E . ,

ROMANKIN L.T., IBM 3. Res Develop. 26 (1982) 136.

g) SHRINAVASON

R.

and WAYNE-BANTOR V., Appl. Phys. Lett. 61 (1982) 576.

h) EHRLIGH D.J., OSGOOD R.M., DEUTSCH T.F., Appl. Phys. Lett. 2 (1981) 946.

i) D.J. Ehrlich, R.M. Osgood, T.F. Deutsch, J. Vac. Sci. Technol. 2, (1982)

23.

L a s e r c h e m i c a l p r o c e s s i n g may a l s o be c l a s s i f i e d a c c o r d i n g t o t h e s i z e of t h e r e a c t i o n zone. F o r example, excimer l a s e r s / 5 / have r e c e n t l y been used t o d e p o s i t i n s u l a t o r s o r t o e t c h GaAs and s i l i c o n o v e r a n a r e a comparable t o t h a t of a

semiconductor w a f e r . T h i s t y p e of l a s e r c h e m i s t r y p r o v i d e s t e c h n i q u e s which become a n a l t e r n a t i v e t o t h e u s u a l p l a n a r p r o c e s s i n g t e c h n i q u e s f o r semiconductor f a b r i c a - t i o n ; e . g . , vacuum d e p o s i t i o n and plasma e t c h i n g . The r e l a t i v e l y h i g h a v e r a g e power a v a i l a b l e from excimer l a s e r s i s s u f f i c i e n t t o p r o c e s s a n e n t i r e w a f e r . I n g e n e r a l , t h i s t y p e of p r o c e s s i n g r e q u i r e s a mask f o r p a t t e r n d e l i n e a t i o n . On t h e o t h e r hand, by u s i n g a f o c u s s e d , cw l a s e r i t is p o s s i b l e t o form submicrometer r e a c t i o n zones, and t h e r e b y produce a h i g h l y l o c a l , l a s e r c h e m i s t r y . T h i s t y p e of l a s e r p r o c e s s i n g h a s been c a l l e d d i r e c t w r i t i n g / 3 , 6 / , s i n c e d e p o s i t e d o r e t c h e d

(4)

s t r u c t u r e s can be produced without a mask and, i n most c a s e s , i n a s i n g l e s t e p . The a p p l i c a t i o n s f o r d i r e c t w r i t i n g a r e g e n e r a l l y t h o s e which r e q u i r e a d i s c r e - t i o n a r y o r custom type of s e r i a l p r o c e s s i n g over a s e l e c t e d r e g i o n of a s u r f a c e ; e.g. mask-metallization r e p a i r o r d i s c r e t i o n a r y i n t e r c o n n e c t i o n s . F i n a l l y , l a s e r chemical p r o c e s s i n g can a l s o accomplish m a t e r i a l growth and e t c h i n g i n ways which a r e unique t o a c o h e r e n t o p t i c a l s o u r c e . Recently u l t r a h i g h - r e s o l u t i o n GaAs g r a t i n g s have been made v i a a maskless technique which r e l i e s on t h e i n t e r f e r e n c e of two l a s e r beams i n a chemical medium. S i m i l a r l y , a s e r i e s of experiments h a s shown t h a t m a t e r i a l s grown w i t h p o l a r i z e d l i g h t have a c o h e r e n t l y arranged m i c r o s t r u c t u r e . The former technique h a s d i r e c t a p p l i c a t i o n s t o f a b r i c a t i n g v a r i o u s e l e c t r o o p t i c a l components. The l a t t e r o f f e r s t h e e v e n t u a l promise of producing m a t e r i a l s whose e l e c t r i c a l and s t r u c t u r a l p r o p e r t i e s a r e c o n t r o l l e d by l a s e r l i g h t .

I n t h e remainder of t h i s review, I would l i k e t o d e s c r i b e b r i e f l y t h r e e examples of l a s e r chemical p r o c e s s i n g . The examples a r e chosen s o t h a t they each i l l u s t r a t e one of t h e g e n e r i c approaches t o l a s e r p r o c e s s i n g given i n Table 11. More ex- t e n s i v e reviews of l a s e r chemical e f f e c t s have been given i n t h e reviews l i s t e d i n t h e r e f e r e n c e s / 2 , 3 , 4 , 5 , 7 / .

TABLE I1

GENERIC APPLICATIONS OF LASER CHEMICAL PROCESSING

TYPE

- CHARACTERISTICS EXAMPLES

P l a n a r P r o c e s s i n g Large-area, i . e . -10cm 2 D e p o s i t i o n of i n s u l a t o r s

Requires masking o r and m e t a l s

p a t t e r n e d l a s e r beam

High a v e r a g e power l a s e r Etching of GaAs and S i Etching of Polymers

S e r i a l o r D i r e c t - Processing of a Writing of conducting

Write P r o c e s s micrometer-scale p i x e l l i n k s

Low-average-power l a s e r

Maskless Etching of v i a s i n

One-s t e p S i l i c o n and GaAs wafers

Modulated doping Coherent P r o c e s s i n g R e l i e s on t h e coherence Etching of high

of l a s e r l i g h t r e s o l u t i o n g r a t i n g s i n GaAs

I1 - PHOTON-ASSISTED PLANAR PROCESSING-ETCHING OF GaAs

Dry-etching i s a g e n e r a l term f o r f a b r i c a t i o n of h i g h - r e s o l u t i o n s t r u c t u r e s without using aqueous s o l u t i o n s . Dry-etching i s now done by u s i n g charged p a r t i c l e s from a gas d i s c h a r g e o r an i o n s o u r c e . I n t h e c a s e of t h e compound semiconductors, t h i s form of e t c h i n g i s sometimes u n s a t i s f a c t o r y because of s u r f a c e damage due t o c h a r g e - p a r t i c l e i n c o r p o r a t i o n . We have r e c e n t l y developed an approach t o dry-etching G a A s which u s e s p h o t o d i s s o c i a t i o n of CH3Br, CF3Br, e t c . , t o produce f r e e r a d i c a l s which remove t h e s u r f a c e m e t a l l o i d s 181.

The approach used i s t o p l a c e t h e GaAs i n a sample c e l l c o n t a i n i n g t h e u n d i s s o c i a t e d e t c h i n g gas. The gas i s t h e n i r r a d i a t e d w i t h t h e pulsed output from an ArF

excimer l a s e r . The e t c h i n g parameters and t h e e t c h i n g r a t e s a r e summarized i n

(5)

C5-136 JOURNAL DE PHYSIQUE

F i g . 1. To o b t a i n t h e r a p i d e t c h i n g rates shown i n t h e f i g u r e , i t i s n e c e s s a r y a l s o t o i l l u m i n a t e t h e s u r f a c e w i t h l a s e r r a d i a t i o n . We b e l i e v e t h a t t h i s s u r f a c e e x p o s u r e removes t h e r e a c t i o n p r o d u c t s , such a s Ga(CF3)3, which form a condensed f i l m on t h e semiconductor s u r f a c e . The removal mechanism i s a t t r i b u t a b l e t o a combination of t h e r m a l and photochemical d e s o r p t i o n .

EXPOSURE TIME Imbn.1

F i g . 1

-

E t c h d e p t h i n GaAs a s a f u n c t i o n of e x p o s u r e t i m e .

The r e a c t i o n r a t e may b e monitored by p h y s i c a l l y measuring t h e e t c h d e p t h v i a a m e c h a n i c a l s t y l u s . An a d d i t i o n a l approach r e l i e s on t h e f a c t t h a t t h e uv l i g h t p h o t o d i s s o c i a t e s t h e Ga m o l e c u l a r p r o d u c t s and t h e r e b y produces e x c i t e d Ga atoms;

t h e s e atoms t h e n e m i t a t t h e g r e e n g a l l i u m r e s o n a n c e l i n e . Thus, one c a n probe t h e e t c h i n g by simply o b s e r v i n g t h e f l u o r e s c i n g g a l l i u m atoms.

We a r e c u r r e n t l y comparing t h e e t c h i n g r a t e u s i n g v a r i o u s , s t a n d a r d and p e r f l u o r i n a t e d m e t h y l - h a l i d e s .

III

-

DIRECT WRITING - LASER WRITING OF CONDUCTING LINES

I n many a r e a s of I . C . f a b r i c a t i o n , i t would b e d e s i r a b l e t o w r i t e , o n a d i s c r r t i o n a r y b a s i s , m i c r o m e t e r - s c a l e c o n d u c t i n g l i n e s . During t h e l a s t few y e a r s . we have shown t h a t m e t a l l i n e s c a n b e w r i t t e n by u s i n g u l t r a v i o l e t p h o t o d i s s o c i a t i o n of m e t a l - a l k y l v a p o r . Thus f a r , most of t h i s work h a s been d i r e c t e d toward u n d e r s t a n d i n g t h e l i m i t s on t h e r e s o l u t i o n of t h e p r o c e s s . I n t h i s c o n n e c t i o n , t h e a u t h o r and D. E h r l i c h / 9 / have r e c e n t l y shown t h a t l i n e s a s narrow a s 0.5 pm can b e produced by u s i n g a 257-nm l a s e r beam f o c u s e d w i t h a l e n s w i t h a n u m e r i c a l a p e r t u r e of 0.5.

A n i m p o r t a n t c r i t e r i a f o r d i r e c t w r i t i n g t o b e p r a c t i c a l i s t h a t t h e w r i t i n g r a t e must b e s u f f i c i e n t l y f a s t t h a t u s e f u l l y l a r g e l i n e a r d i s t a n c e s c a n b e w r i t t e n . We have r e c e n t l y begun a s y s t e m a t i c measurement of t h e s e r a t e s a t s u f f i c i e n t l y h i g h g a s p r e s s u r e s t h a t r a p i d growth r a t e s c a n b e e x p e c t e d . These measurements show t h a t f o r even v e r y low l a s e r powers, e.g. -100 ~ I W , -400-600-nm/sec r a t e s c a n be o b t a i n e d . Use of h i g h e r l a s e r powers s h o u l d produce r a t e s s e v e r a l o r d e r s of magnitude f a s t e r .

Andther i m p o r t a n t r e c e n t r e s u l t h a s been t o a c h i e v e s u f f i c i e n t c o n t r o l of l a s e r p r o c e s s i n g t h a t s e v e r a l t y p e s of l a s e r w r i t i n g c a n b e u s e d t o f a b r i c a t e more complex s t r u c t u r e s t h a n a s i n g l e c o n d u c t i n g l i n e . F i g . 2 shows a m i c r o s t r u c t u r e c o n s i s t i n g of a n S i 0 2 l i n e w r i t t e n on a n S i - s u b s t r a t e / 9 / ; t h e l i n e i s t h e n c r o s s e d by a m e t a l l i n e (Cd). The SiO2 l i n e i s w r i t t e n u s i n g a spin-on s i l i c a t e p a t e r i a l o b t a i n e d from A l l i e d C o r p o r a t i o n . The unexposed s i l i c a t e i s removed u s i n g a n a l c o h o l r i n s e b e f o r e t h e m e t a l d e p o s i t i o n . The t h r e e m a t e r i a l s shown i n F i g . 2 a l l o w

(6)

one t o w r i t e MOS s t r u c t u r e w i t h a l a s e r , a r e s u l t r e c e n t l y r e p o r t e d by McWilliams, e t a l .

/ l o / .

- -

F i g . 2 - Cd l i n e d i r e c t l y w r i t t e n o v e r S i 0 2 p a t t e r n on a s i l i c o n w a f e r .

I V

-

COHERENT PROCESSING

-

LASER INTERFERROMETRIC PRODUCTION OF DIFFRACTION GRATINGS

V i s i b l e l i g h t can b e u s e d t o enhance t h e d i s s o l u t i o n r a t e of s e m i c o n d u c t o r s immersed i n c e r t a i n aquaeous m i x t u r e s , c o n t a i n i n g , t y p i c a l l y , a g e n t s f o r o x i d a t i o n and o x i d e d i s s o l u t i o n . T h i s t e c h n i q u e , which i s a form of a n o d i c o x i d a t i o n , h a s r e c e n t l y been u s e d i n c o n j u n c t i o n w i t h l a s e r r a d i a t i o n t o produce h i g h l y

l o c a l i z e d e t c h i n g of a semiconductor s u r f a c e . I n a n e f f o r t t o d e t e r m i n e t h e u l t i m a t e l i m i t a t i o n s i n t h e p r o c e s s r e s o l u t i o n , we h a v e i n v e s t i g a t e d t h e e t c h i n g of very-small-period g r a t i n g s

I l l / .

These g r a t i n g s a r e made by i n t e r f e r i n g two c o l l i m a t e d l a s e r beams i n a n e t c h i n g s o l u t i o n . By p a y i n g c a r e f u l a t t e n t i o n t o t h e e t c h i n g s o l u t i o n c h e m i s t r y and t o t h e s t a b i l i t y of t h e o p t i c a l t r a i n , we have produced g r a t i n g s w i t h 130-nm p e r i o d s on n-Type GaAs. We b e l i e v e t h a t 100-nm g r a t i n g s h a v e been produced; however, d e t e c t i o n of t h i s f i n e a g r a t i n g p e r i o d i s e x t r e m e l y d i f f i c u l t .

A wide v a r i e t y of u n u s u a l g r a t i n g p r o f i l e s c a n b e o b t a i n e d u s i n g t h i s t e c h n i q u e . For a s h a l l o w b u t f u l l y developed g r a t i n g , t h e p r o f i l e i s s c a l l o p e d ; a n example i s shown i n F i g . 3 f o r t h e c a s e of a 200-nm g r a t i n g . With o t h e r s o l u t i o n s t h e g r a t i n g p r o f i l e r e s e m b l e s a s e r i e s of narrow p e a k s ; a t i l t e d s u b s t r a t e w i l l y i e l d a g r a t i n g w i t h a b l a z e d p r o f i l e .

F i g . 3 - P r o f i l e of GaAs g r a t i n g produced by i n t e r f e r i n g two v i s i b l e l a s e r beams.

V

-

CONCLUSION

The above p r e s e n t s a b r i e f i n t r o d u c t i o n t o t h e u s e of l a s e r i n t e r f a c e c h e m i s t r y f o r m a t e r i a l s p r o c e s s i n g . U n l i k e t h e c a s e of l a s e r a n n e a l i n g , l a s e r c h e m i s t r y

(7)

JOURNAL DE PHYSIQUE

c a n n o t o n l y change t h e c o m p o s i t i o n of a s o l i d s u r f a c e , b u t i t can a l s o c a u s e

a d d i t i o n and d e l e t i o n of m a t e r i a l t o t h e s u b s t r a t e . L a s e r p r o c e s s i n g i s i n t e r e s t i n g n o t o n l y f o r i t s immediate a p p l i c a t i o n such a s p h o t o l i t h o g r a p h i c mask r e p a i r , b u t a l s o f o r i t s l o n g t e r m impact on s u r f a c e s c i e n c e and t h e p r e p a r a t i o n of n o v e l m a t e r i a l s .

V I - ACKNOWLEDGMENT

I would l i k e t o acknowledge members of t h e Columbia M i c r o e l e c t r o n i c s S c i e n c e L a b o r a t o r y f o r t h e i r c o n t r i b u t i o n t o and s u p p o r t of t h i s work. I n a d d i t i o n , s p e c i a l t h a n k s go t o my former c o l l e a g u e s , Tom Deutsch, Dan E h r l i c h , and Don S i l v e r s m i t h a t L i n c o l n L a b o r a t o r y f o r t h e i r c o l l a b o r a t i o n o v e r t h e p r e v i o u s s e v e r a l y e a r s .

REFERENCES

(1) See, f o r example, APPLETON B.R. and CELLER G.K. ( e d s . ) L a s e r and E l e c t r o n - Beam I n t e r a c t i o n s w i t h S o l i d s , North H o l l a n d : New York (1982).

(2) OSGOOD R.M., J r . i n Ann. Rev. Phys. Chem. (1983) i n P r e s s .

(3) EHRLICH D . J . , OSGOOD R.M., DEUTSCH T.F., J . Quantum E l e c t r o n . QE-16 (1980) 1233.

( 4 ) OSGOOD R.M., J r . , BRUECK S.R.J., and SCHLOSSBERG H . , Ed. L a s e r D i a g n o s t i c s and Photochemical P r o c e s s i n g f o r Semiconductor E l e c t r o n i c s . North Holland:

New York (1983).

(5) For a b r i e f r e v i e w s e e OSGOOD R.M., J r . i n P r o c e e d i n g s of Excimer L a s e r Meeting, Lake Tahoe (1983) AIP P r e s s .

(6) OSGOOD R.M., J r . , EHRLICH D . J . , DEUTSCH T.F., SILVERSMITH D . , and SANCHEZ A., "Direct-Write L a s e r F a b r i c a t i o n C u s t o m i z a t i o n , C o r r e c t i o n and R e p a i r " , t o b e p u b l i s h e d i n P r o c e e d i n g s of Les Deux A l p e s Meeting on M i c r o e l e c t r o n i c s (1983).

( 7 ) CHUANG T . J . , J . Vac. S c i . Technol.

21

(1982) 800.

(8) BREWER P . , HALLE S., OSGOOD R.M., J r . P a p e r p r e s e n t e d a t North-East R e g i o n a l Chemical S o c i e t y , H a r t f o r d ( J u n e 1 9 8 3 ) .

(9) EHRLICH D.J., OSGOOD R.M., and DEUTSCH T.F., J. Vac. S c i . Technol.

z,

(1982) 23.

(10) MCWILLIAMS B . , HERMAN I . P . , MITLITZKY F . , and WOOD L. p a p e r p r e s e n t e d a t CLEO '83, B a l t i m o r e , Md (1983).

(11) PODLESNIK D . , GILGEN H.H., OSGOOD R.M., J r . t o b e p u b l i s h e d . See a l s o r e l a t e d a r t i c l e i n Ref. 4.

Références

Documents relatifs

We previously defined the original cytotoxic mechanism of anticancerous N-phenyl-N’-(2-chloroethyl)ureas (CEUs) that involves their reactivity towards cellular proteins

Semiconducting SWCNT extraction efficiency plotted as a function of temperature for Pluronic F108 dispersed laser ablation, plasma torch, and arc discharge SWCNTs separated by DGU..

The results of our studies indicate that four factors must be considered when optimizing dye selection and loading to max- imize luminosity of a hybrid SNP dye : molecular

The following discussion will focus on the short to medium term impacts that could be realized within three areas of focus “ feedstock optimization, utilization of microorganisms

(a) Demand-driven (the default model in OpenMusic): The user requests the value of node C. This evaluation requires upstream nodes of the graph to evaluate in order to provide C

The current densities obtained here in the “physicochemical” synthetic seawater show the interest of going ahead with the design of a “biological” synthetic seawater, which would

The political and economic interconnections between the choice elements in long term planning are illustrated by the relations between the choice of