• Aucun résultat trouvé

CHALCOGENIDE AND OXYCHALCOGENIDE GLASSES : EVOLUTION OF THE GALLIUM SURROUNDING WITH THE OXYGEN CONTENT

N/A
N/A
Protected

Academic year: 2021

Partager "CHALCOGENIDE AND OXYCHALCOGENIDE GLASSES : EVOLUTION OF THE GALLIUM SURROUNDING WITH THE OXYGEN CONTENT"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00226206

https://hal.archives-ouvertes.fr/jpa-00226206

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CHALCOGENIDE AND OXYCHALCOGENIDE GLASSES : EVOLUTION OF THE GALLIUM SURROUNDING WITH THE OXYGEN CONTENT

S. Benazeth, M. Tuilier, H. Dexpert, M. Guittard, D. Carre

To cite this version:

S. Benazeth, M. Tuilier, H. Dexpert, M. Guittard, D. Carre. CHALCOGENIDE AND OXYCHALCOGENIDE GLASSES : EVOLUTION OF THE GALLIUM SURROUNDING WITH THE OXYGEN CONTENT. Journal de Physique Colloques, 1986, 47 (C8), pp.C8-419-C8-422.

�10.1051/jphyscol:1986884�. �jpa-00226206�

(2)

JOURNAL DE PHYSIQUE

Colloque C8, suppl6ment au n o 12, Tome 47, dbcembre 1986

CHALCOGENIDE AND OXYCHALCOGENIDE GLASSES : EVOLUTION OF THE GALLIUM SURROUNDING WITH THE OXYGEN CONTENT

S. BENAZETH, M.H. TUILIER*, H. DEXPERT*, M. GUITTARD and D. CARRE

Laboratoire d e Chimie Minerale Structurale (U.A. ZOO), Faculte des Sciences Pharmaceutiques et Biologiques de Paris V ,

4, Avenue de llObservatoire , F-75270 Paris Cedex 0 6 , France 'LURE (CNRS, MEN, CEA), Url.iversite Paris-Sud, F-91405 Orsay Cedex , France

R"esum6

L'analvse structurale des verres de sulfure de terre rare par EXAFS met en dvidence un environnement sulfur6 tgtragdrique pour le gallium. Lorsqu'on opere une substitution partielle du soufre par l'oxygene, cet environnement kvolue

:

le gal- lium se place dans des sites octa6driques distordus. De plus, nous avons pu pr6pa- rer un materiau existant 5 la msme composition dans les deux dtats, vitreux et cris- tallin

;

l'analyse a alors r6vgl6 un polyedre de coordination plus r6gulier dans 1'6tat vitreux.

Abstract

Structural analysis of rare earth sulfide glasses shows a sulfur tetrahedral surrounding for the gallium atomwhen sulfur is svbstituted by oxygen this surroun- ding changes

:

gallium occupies excentred position in octahedral sites. Moreover, we could prepare a material within the two states (glassy and crystalline) for an identical composition

:

analysis revealed a more regular coordination polyhedron for the glass.

Introduction

We synthetised glasses by addition of gallium sulfide to rare earth sulfi- des (1). More extended glass forming regions occur by substituting sulfur atoms by oxygen atoms

(2);

The glasses may then be obtained after slow cooling (5'/min) with

(v*) or without (V1) thermic effect by D.T.A. in increasing temperature (Fig. 1).

From the vibration spectra (11, different structural informations have been already given and present some discrepancies. EXAFS studies have been undertaken at K edge gallium and LIII edge lanthanum to better describe local order around these atoms. This paper just describes gallium surrounding.

Experimental

Powder samples were sifted (diametral granulations < 25 pm) both for glassy and crystalline types and then disposed between two pieces of adhesive tape. The four gLassy samples studied have a constant metallic composition (n

=

Ga/(Ga + La)

=

0.64) and various ones for the oxygen and sulfur atoms (0,< m

=

0/(0 + S) < , 0.45).

The m

=

0.14 compound (melilite type) exists both within glassy and crystalline states. In order to ensure model for Ga-S surrounding, we used of a crystalline corn;

pound La6Ga3.33S,, where gallium is shared between tetrahedral and octahedral sites.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986884

(3)

JOURNAL DE PHYSIQUE

Figure 1 - Phase diagram of the system La2S3-La203-Ga 2 3 0 -Ga 2 3

S

and glass forming region

Spectra were registered in transmission mode, at room temperature, using synchrotron radiation, emitted by the DCI storage ring at LURE. EXAFS spectra origin (see for instance, figure 8) was-chosen at maximum K edge gallium and measurements stretched over

500

ev. The data, after clasgical treatment, were Fourier transfor- med using k3 weighting and an identical Haning window (22, 33, 460,

500

eV) for all studied samples (Figures 2 to 7). The peaks situated on the graphs at Rapp

1.30

A

are attributed to oxygen neighbours and the higher other ones at Rapp

E

1.85 to sulfur neighbours. Their relative intensities depend on

m

values. By using least- square procedures fitting we adjusted a structural calculated EXAFS model to the one-shell filtered experimental EXAFS (see for instance figures 9 -

10).

Amplitude and phase shifts for the Ga-S pair are extracted, following the same EXAFS analysis, from a crystalline reference compound. We were governed in the choice of that refe- rence by existence of a quasi-regular Ga-S tetrahedral coordination. Among numerous crystalline compounds synthetised in the laboratory, La6GapMnnS1k (4) was the best, in that point of view the simple binary com~ound Ga2S3 was thus excluded ( 5 ) . For the Ga-0 pair, GanOs was notbnvenient because in the more stable phasis, gallium occupies both tetrahedral and octahedral sites and this behaviour is frequent for oxygen surrounded gallium. ?or this reason we used of theoretical parameters for that pair.

Discussion

The main results for evolution of sulfur and oxygen number neighbours N(O + S) are presented in table I.

\hen m

= 0

we found that gallium is fourfold coordinated. For increasing m values,

N ( S )

decreases. In order to interpret that behaviour we studied La6Ga3.33S1,:

in that crystalline compound gallium occupies a such distorted octahedron that it is

better described by a triangular coordination. We applied that model, which agrees

with a lower sulfur coordination, to the glassy samples. Therefore, for the highest

m values, gallium shows both tetrahedral and octahedral coordinations for oxygen and

sulfur atoms, and competition sites phenomena explain glass stability in that

region (Figure 1).

(4)

Table

I1

presents comparative results for melilite type compounds. We observe that the oxygen and sulfur neighbourhood contributions are better resolved in the glassy state. The local surrounding remains the same and is consistent with diffrac- tion X structural analysis results (6). Nevertheless the isotropy of the coordina- tion polyhedra increases in the glass. as evidenced by the smaller disorders, 1 aa1 ,com- pared to the crystal.

Table I - Procedure fitting results for various m

Table I1 - Procedure fitting results for m

=

0.14 (crystal - glass)

Np'5 - 0.5

4.0

4.0

3.9

3.6

2.9

1

References

1)

J. Flahaut, M. Guittard, A.M. Loireau-Lozac'h Glass Technology, 6, 149-156 (1983) .

2 )

M. Guittard, S. Jaulmes,

A.M.

Loireau-Lozac'h, A. Mazurier, F. Berguer

et J. Flahaut

1 0 1

6)

0.07

0.08

0.07 I b o l ( i \ )

-

0

0.04

0.04

0.06

0.04 Compound

0

a - z

0 Ln6CoZYn2Sl4 Ref conlt,uut~d

0

0.14

J.

Sol. State Chem., 58 276-289 (1985

3) G. Collin, J. ~tienne;-3. Flahaut, M. kittard, P. Laruelle

E o ( e v )

:

t ev

10380

10380

10383 10382

10185 10383

10388 10385

Rev. Chim. Min., 10, 225-238

( 1 9 7 3 ) .

4) N. Rodier,

M.

GuiFfard, J. Flahaut C.R. Acad. Sc. Paris, 296, 65-70 (1983).

5) G. Collin, J. F l a h a u t , X Guittard,

A.M.

Loireau-Lozac'h Mat. Res. Bull. fi, 285-292 (1976).

6)

A .

Mazurier, M. Guittard, S. Jaulmes Act. Cryst. G, 379-382 (1982).

N

4.0

4.0

0.1 3 . 2

0.75

2 . 2 9 N e ~ p . h b a u r

S

S

0 S

2.8

0.9 2 .O

R ( A )

.

2 0.02 A

2.27

2.27

1.86 2.28

(5)

C8-422 JOURNAL DE PHYSIQUE

PSEUDO RADIAL DISTRIBUTION FUNCTIONS

Fig. 2

m = 0

crystal Fig. 3 rn

= 0

glass Fig.

8

EXAFS

(m = 0 . 1 4 )

glass

Fig.

4 m = 0 . 1 4

crystal Fig. 5

rn = 0 . 1 4

glass Fig.

9

Ga-S pair FIT

(m = 0 . 1 4 )

glass

F i g . 6 m = 0 . 4 0

crystal

F i g . 7 rn = 0.45

glass

F i g . 1 0 C ; i - D p a i r F I T (rn = 0.14)

glass

Références

Documents relatifs

Mineralogical Society of America, Geochemical Society 32, 190-246.. Non-Newtonian rheology of igneous melts at high stresses and strain rates: Experimental results for

The well known nucleating effects of erbium ions for the crystallization of cubic lead fluoride sbased on x-ray diffraction measurementsd and the fact that the rare earth ions

for the algebraic 5d orbital (multi-dzeta Slater orbitals and Thomas-Fermi potential) and a numerical method for the numerical representation of the same

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The only observed changes in the clean surface diffraction pattern resulting from oxygen exposures at pressures between l O W 4 and 2 torr was a uniform decrease

Conclusion.- In terms of the above investigations, it is possible to draw a conclusion that in chalcogenide glasses as well as in organic polymers the features of polymer

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des