• Aucun résultat trouvé

Local polar invariants and the Poincaré problem in the dicritical case

N/A
N/A
Protected

Academic year: 2021

Partager "Local polar invariants and the Poincaré problem in the dicritical case"

Copied!
33
0
0

Texte intégral

(1)

HAL Id: hal-01934813

https://hal.archives-ouvertes.fr/hal-01934813

Submitted on 26 Nov 2018

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Local polar invariants and the Poincaré problem in the dicritical case

Yohann Genzmer, Rogério Mol

To cite this version:

Yohann Genzmer, Rogério Mol. Local polar invariants and the Poincaré problem in the dicritical case.

Journal of the Mathematical Society of Japan, Maruzen Company Ltd, 2018, 70 (4), pp.1419 - 1451.

�10.2969/jmsj/76227622�. �hal-01934813�

(2)

IN THE DICRITICAL CASE

YOHANNGENZMER&ROGÉRIOMOL

Abstrat. Wedevelopastudyon loalpolarinvariantsofplanar omplex

analyti foliationsat (C2,0), whih leads to the haraterization of seond typefoliationsand ofgeneralizedurvefoliations,as wellasadesription of

the GSV-index. Weapplyit tothe Poinaré problem forfoliations on the

omplexprojetive planeP2C, establishing,in the diritialase, onditions fortheexisteneofaboundforthe degreeofaninvariantalgebraiurveS

intermsofthe degreeofthe foliationF. Weharaterize theexisteneofa

solutionforthePoinaréproblemintermsofthestrutureofthesetofloal

separatriesofF over theurveS. Ourmethod,inpartiular,reovers the

knownsolutionforthenon-diritialase,deg(S)deg(F) + 2.

Contents

1. Introdution 1

2. Basinotionsandnotations 4

3. Balanedequationofseparatries 6

4. Polarintersetionandpolarexess 11

5. PolarexessandtheGSV-index 15

6. ThePoinaréproblemfordiritialsingularities 18

7. Topologiallyboundedinvariantsofasingularity 21

8. Topologialinvarianeofthealgebraimultipliity 28

Referenes 30

1. Introdution

Let F be a singular holomorphi foliation on P2C. The number of points of

tangeny, withmultipliities ounted,betweenF andanon-invariantline L⊂P2C

isthedegreeofthefoliationandisdenotedbydeg(F). In[27℄,H.Poinaréproposed

theproblemofboundingthedegreeofanalgebraiurveSinvariantbyF interms

ofdeg(F)asastepin ndingarationalrstintegralforapolynomialdierential

equation in two omplex variables. Known in Foliation Theory as the Poinaré

problem,alongthepastfewdeadesthisproblemhasgainedsomepartialanswers.

In1991, D. Cerveauand A. LinsNeto provedin [13℄ that ifS hasat mostnodal

1

2010MathematisSubjetClassiation: 32S65.

2

Keywords. Holomorphifoliation,invarianturves,Poinaréproblem,GSV-index.

3

Work supported by MATH-AmSud Projet CNRS/CAPES/Conyte. First author sup-

ported by a grant ANR-13-JS01-0002-0. Seond author supported by Pronex/FAPERJ and

Universal/CNPq.

(3)

singularitiesthendeg(S)≤deg(F) + 2,thisboundbeingreahedifandonlyifF is

alogarithmifoliationoneinduedbyalosedmeromorphi1-formwithsimple

poles. Later, in 1994, M.Carnier obtainedin [10℄ thesame inequality whenthe

singularities of F overS are all non-diritial, meaningthat thenumber of loal separatries loalirreduibleinvarianturvesisnite. In1997,in theworks

[3℄and[4℄,M.BrunellaformulatedthePoinaréproblemintermsofGSV-indies,

denedbyX.Gómez-MontJ.SeadeandA.Verjovskyin[19℄asakindofPoinaré-

Hopfindex of therestritionto an invarianturveof avetoreld tangent to F.

Towit, Brunellashowsthatthebound deg(S)≤deg(F) + 2 ourswheneverthe

sum over S of the GSV-indies of F with respet to the loal branhes of S is

non-negative[4, p. 533℄. It is well known that, in general,the Poinaré problem

hasanegativeanswerinthediritialase(see6.1and6.2below). Someadvanes

in the understanding of the diritial ase have been made in the past years, as

shownin theworks[7,8,16,12,17℄.

Thestudy of globalinvariant urvesleadsus to theuniverse of loal foliations

on (C2,0), in whih we distinguish two families with relevant properties. First, generalized urve foliations, dened in [5℄ by C. Camaho, A. Lins Neto and P.

Sad, whih are foliations without saddle-nodes in their desingularization. They

havea propertyof minimizationof Milnornumbersand are haraterized, in the

non-diritialase,bythevanishingoftheGSV-index [4,11℄. Theseondfamily,

whihontainstherstone,isformedbyseondtypefoliations,introduedbyJ.-F.

MatteiandE. Salemin [22℄, whihmayadmitsaddles-nodeswhen desingularized

providedthattheyarenon-tangentsaddles-nodes,meaningthatnoweakseparatrix

isontainedinthedesingularizationdivisor. Theyareharaterizedbythefatthat

theirdesingularizationsoinidewiththeredutionofthesetofformalseparatries.

These foliations satisfy a property of minimization of the algebrai multipliity

[22,18℄.

Inareentwork[9℄,F.Cano,N.Corralandtheseondauthordevelopedastudy

ofloal polarinvariantsobtaining,in thenon-diritialase, aharaterizationof

generalizedurvesand offoliationsof seond typeaswell asanexpression ofthe

GSV-indexintermsoftheseinvariants. Essentially,thetehniquethereinonsists on alulating the intersetion number between a generi polar urve of a loal

foliationF and aurveof formal separatries C. The samenumber is produed

fortheformalreferenefoliationhavingtheloalequationofCasarstintegral.

Thediereneofthese twonumbersis theGSV-index ofF with respettoC. In

thisway,theknownanswerstothePoinaréproblemjustmentionedareobtained.

Inthispaperweextendthisapproahtodiritial foliationsthosewithinn-

itelymanyseparatries. Thediultynowliesinhoosinganitesetofseparatries

in order to produesuh areferenefoliation. Thesolutionis to useabalaned

equation of separatries, a onept introdued by the rst author in [18℄ for the

study of the realization problem the existene of foliations with presribed

redutionof singularities and projetiveholonomyrepresentations. Givena loal

foliationFbat(C2,0)withminimalredutionofsingularitiesE: (M,D)→(C2,0),

an irreduible omponent D ⊂ D is said to benon-diritial respetively di- ritial ifitisinvariantrespetivelynon-invariantbythestrittransform

foliation EFb. The valene of D ⊂ D is the number v(D) of other omponents

(4)

ofDintersetingD. Abalaned equationofseparatriesturnsoutto beaformal meromorphifuntionthatenompassestheequationsofallisolatedseparatries theonesrossingnon-diritialomponentsofDalongwiththeequationsof 2−v(D)separatriesassoiatedto eahdiritialomponentD⊂ D. Thisanbe

a negative number, so diritial separatries mayengender poles in the balaned

equation. We anadditionally adjust this denition when a loal set of separa-

tries C for Fb isxed in orderto get abalaned equation adapted to C. This is

ahievedby rebalaning the numberof diritial separatriesofin suh a way

thatC⊂( ˆF)0. Wedeveloptheseoneptsin setion3.

In setion 4, our starting point is the extension of the denition of the polar

intersetion number introduedin [9℄toaformalmeromorphi1−form,whihwill

normally be d, whereis a balaned equation of separatries of the foliation

Fb. ForaxedsetofseparatriesC ofFb,theomparisonofthepolarintersetion numbersof Fb and d, whereis a balaned equation of separatries suh that

C ⊂ ( ˆF)0, gives rise to the polar exess index, denoted byp(F, Cb ). This non-

negative invariant works as a measure of the existene of saddles-nodes in the

desingularizationofthefoliation:p(F,b (F)0) = 0ifandonlyifFb isageneralized urve. This isthe ontentof TheoremA, whihextends to thediritial asethe

haraterization ofgeneralizedurvefoliationprovided, in thenon-diritialase,

bythevanishingoftheGSV-indexwithrespettotheompletesetofseparatries.

Atually, insetion 5,TheoremBestablishes alink betweenthepolarexessand

theGSV-index foraonvergentsetofseparatries:

GSVp(F, C) = ∆b p(F, Cb ) + (C,( ˆF)0\C)p−(C,( ˆF))p,

whereisabalanedequationofseparatriessuhthatC⊂( ˆF)0. Here,(S1, S2)p

standsfor theintersetion numberoftwogermsat pof urvesS1 and S2 dened

by

(S1, S2)p= dimC

Op

(f1, f2)

where f1 and f2 arereduedloal equationof S1 and S2. Notiethat, whenFb is

non-diritialand C is the omplete set ofseparatries, this givesGSVp(Fb, C) =

p(F, Cb ).

This formulation of the GSV-index enables us in Theorem C in setion 6 to

proposeaboundtothePoinaréproblemin termsofloalbalanedsetsofsepara-

tries. ForafoliationFonP2ChavinganinvariantalgebraiurveS,ifd= deg(F)

andd0= deg(S),itholds d0≤d+ 2 + 1

d0

X

p∈Sing(F)∩S

h

(S,( ˆFp))p−(S,( ˆFp)0\S)p

i ,

wherep is a balaned equation adapted to the loal branhes of S. Besides,

equalityholdsifallsingularitiesof F overS are generalizedurves. Inpartiular, thisinequalityreoversthebound d0≤d+ 2fortheasestreatedin [13℄and[10℄.

Intherightsideofthepreviousformula,theterms(S,( ˆFp))p areobstrutions totheexisteneofauniversalbound forthePoinaréproblem. This ispreisely

what happens in two lassialounterexamplesto bedisussed in setion 6: the

(5)

foliationsofdegree1onP2Cgivenbyω=d(xpzq−p/yq),withp < q,andthepenil

ofLinsNeto[20℄,afamilyoffoliationsofdegree4admittingrationalrstintegrals

withunboundeddegrees. Intherstase,thetypialberhasaloalbranhat a

diritial singularityrossingadiritial omponentofvalenetwo. Intheseond

family,thegeneriberrepeatedlyrossesradialsingularitiesatanumberoftimes

whihisunboundedwithin thefamily.

Insetion7westudytopologiallyboundedinvariantsofloalfoliationsthose

boundedbyafuntion oftheMilnornumber. Theentralresultofthissetion

Theorem D statesthat aloal urveof separatriesthat ontains,besidesthe

isolatedseparatries,oneseparatrixattahedtoeahdiritialomponentofvalene

oneandaxednumberofseparatriesattahedtodiritialomponentsofvalene

three or higher separatries rossing omponents of valene twoare forbidden

hasaredutionproesswhose lengthistopologiallybounded, thesamebeing

truefor thealgebraimultipliity. This resultis sharp, asshown by theexample

pxdy−qydx = 0 with p, q ∈ Z+ o-prime. Here, the Milnor numberis one and

urvesofseparatrieswithasinglebranhpassingbyaomponentofvalenetwo,

whenq > p >1,orwithtwobranhespassingbyadiritialomponentofvalene

one,when q > p= 1 maybeobtainedwithredutiontreesof arbitrarilylarge length. Returningto thePoinaré problem, in Theorem E we use the inequality

ofTheoremCinordertoprovetheexisteneofaboundforthePoinaréproblem

whenevertheloalbranhesofthealgebraiurveS aresubjetto theonditions

of topologial boundedness of Theorem C. This result espeially indiates that

the two lassial ounterexamples for the Poinaré problem just mentioned oer

essentially the two waysto violate the existeneof abound: either by means of

highly degenerated separatries rossing diritial omponents of valenes one or

two, or through a multiple branhed urve of separatries attahed to diritial

omponentsofothervalenes.

We lose this artile with setion 8, where we apply loal polar invariants on

a result on the topologial invariane of the algebrai multipliity of a foliation.

InTheoremFweprovethat,forloalfoliationsat(C2,0) havingonlyonvergent

separatries,the propertyof beingseond lass andthe algebraimultipliity are

topologial invariants. This extends similar results in [5℄, for generalized urve

foliations,and in[22℄,fornon-diritialseondlassfoliations.

2. Basinotionsand notations

A germ of formal foliation Fb in C2 is theobjetdened by agermof formal 1−format 0∈C2

ˆ

ω= ˆa(x, y)dx+ ˆb(x, y)dy,

wherea,ˆ ˆb∈C[[x, y]]. A separatrix forFb isagermofformalirreduibleinvariant

urve. If S is dened by a formal equation, then the invariane ondition is

expressedalgebraiallyas

dividesωˆ∧dinC[[x, y]].

A formalfoliationissaidto be non-diritial when ithasnitely manyseparatri-

es. From now on, E : (M,D) → (C2,0) stands for the proess of redution of

(6)

singularities ordesingularization of Fb (see [29℄ andalso [5℄), obtainedby anite

sequene of puntual blowing-ups having D= E−1(0) asthe exeptionaldivisor,

formedbyaniteunionofprojetivelineswithnormalrossings. Inthis proess,

all separatriesof Fb beome smooth, disjoint and transverse to D, none of them

passingthoughaorner. Besides,thesingularitiesalongDofthepull-bakfoliation EFb beomeredued orsimple,whihmeansthat,undersomeloalformalhange

ofoordinates,theirlinearpartsbelongtothefollowinglist:

(i) ydx−λxdy, λ6∈Q+;

(ii) xdy.

Intherstasewhihisreferredtoasnon-degenerate,therearetwoformal

separatriestangentto theaxes{x= 0} and{y= 0}. Intheonvergentategory,

bothseparatriesonverge. Intheseondase,thesingularityissaidtobeasaddle-

node. Theformalnormalformforsuhasingularityisgivenin[22℄: uptoaformal

hangeof oordinates,thesingularityisgivenbya1-form ofthetype

(2.1) ζxk−k

ydx+xk+1dy, k∈N, ζ ∈C.

The invariant urve {x = 0} is alled strong invariant urve while {y = 0} is

theweak one. Inthe onvergentategory, thestrong separatrixalwaysonverges

whereas theweak separatrixmay bepurely formal, as in the famous example of

Euler

(x−y)dx+x2dy,

wherey(x) =P

n≥1(n−1)!xn istheTaylorexpansionoftheweakinvarianturve.

Theintegerk+ 1>1 willbealledweak index ofthesaddle-node.

If, in theredution proess, the germof thedivisor D happens to ontainthe

weak invariant urve of some saddle-node, then the singularity is said to be a

tangent saddle-node. A non-tangent saddle-node is also said to be well-oriented

withrespetto D. Wewill denote byT(Fb)theset of alltangentsaddle-nodesof

Fb. Following[22℄,wesaythatthefoliationFbisin theseondlass orisofseond

type whennoneofthesingularities ofEFb overDaretangentsaddle-nodes.

LetFb beagermoffoliationhaving(S, p)asagermofformalsmoothinvariant

urve. Take loal oordinates (x, y) in whih S is the urve {y = 0} and p the

point(0,0). Letω= ˆa(x, y)dx+ ˆb(x, y)dy beadening1-formforFb. Theinteger

ord0ˆb(x,0)isalledthetangenyindex ofFbatpwithrespettoSandisdenotedby

Ind(F, S, p)b . ThisisaninvariantassoiatedtoFbandS,independentofthehoies made. IfSisweakseparatrixofasaddle-node,thenInd(Fb, S, p)>1ispreiselythe

weakindex. Ontheotherhand,ifSiseitherthestrongseparatrixofasaddle-node oraseparatrixofanon-degeneratereduedsingularity,thenInd(F, S, p) = 1b .

In theexeptionaldivisor D, we denote byDi(F)b the set of diritial ompo-

nents, omprisingallprojetivelines generiallytransverseto EFb. A separatrix S of Fb is saidto beisolated ifitsstrit transformES doesnotmeet adiritial

omponent. This onept is well dened as long as we x a minimal redution

of singularities for Fb see that, in the denition of redution of singularities, therearealsoonditionsonthedesingularizationoftheseparatries. Wedenoteby

I(F)b thesetofisolatedseparatries. Ontheotherhand,aseparatrixwhosestrit

(7)

assoiated to D ∈ Di(F)b is denoted by Curv(D). Finally, v(D) stands for the

valene ofD∈Di(F)b ,denedasthenumberofomponentsofDintersetingD.

Remark2.1. Theabovedenitionsanbeformulatedintheonvergentategory

andit mayseemsomewhatstrangetointroduethem in theformalategory. In-

deed,foronvergentfoliations,thenaturalandgeometrinotionofleavesdoesexist

whereasonlythenotionofseparatrixmakessensein theformalsetting. However,

the interestand the need to work with formal objetswill beevident assoon as

theoneptofbalanedequation isdened.

3. Balaned equationof separatries

With aslighthangeinthedenition,wefollow[18℄intheoneptbelow.

Denition3.1. Abalanedequation ofseparatries foragermofformalsingular

foliationin (C2,0)isaformalmeromorphifuntionwhosedivisorhastheform ( ˆF)0−( ˆF) = X

C∈I(F)b

(C) + X

D∈Di(F)b

X

C∈Curv(D)

aD,C(C),

where,foreverydiritialomponentD⊂ D,theoeientsaD,C ∈ {−1,0,1}are

zeroexeptfornitely manyC∈Curv(D)andsatisfythefollowingequality:

(3.1)

X

C∈Curv(D)

aD,C = 2−v(D).

Thebalanedequationofseparatriesissaidtobeadapted toaurveofsepara-

triesC ifC⊂( ˆF)0.

Sine aD,C belongs to {−1,0,1}, the funtionhas redued zeros and poles

withoutmultipliities. Forinstane,theradialfoliationgivenbyxdy−ydxhasonly

onediritialomponentwhosevaleneis0.ThusF =xyisabalanedequationof

separatries. However,F =xy(x−y)/(x+y)isalsoabalanedequation,adapted

to theurveC={x−y = 0}. If Fb is non-diritial,then abalanedequation is nothingbutanyequationoftheniteset ofseparatries.

Wereallsomebasifats aboutbalanedequationsof separatriesestablished

in[18℄. Firstadenition:

Denition 3.2. LetFb beaformal foliationat(C2,0) andE : (M,D)→(C2,0)

beaminimalproessofredutionofsingularities. Thetangenyexess ofFbalong Disthenumber

(3.2) τ(F) =b X

q∈T(EF)b

X

D∈V(q)

ρ(D)(Ind(EF, D, q)b −1),

whereqrunsoverallthetangentsaddle-nodesofEFbandV(q)standsfortheset

of irreduible omponents of Dontaining thepointq. Thenumberρ(D)stands

forthemultipliity ofD,whihoinideswiththealgebraimultipliityofaurve

γ at(C2,0)suhthatEγistransversalto DoutsideaornerofD.

Références

Documents relatifs

Nevertheless, when a graph G has more than one maximal sequence corresponding to partitions of its vertex set into cliques, the optimal solution for the cluster deletion problem of

Knowing an algorithm for edges coloring of a 3-regular graph called cubic, without isthmus, we know how to find the chromatic number of any graph.. Indeed, we explain how

On the contrary, the sea-to-air efflux is reduced slihjtly by the storms in late summer, because the primary production is enhanced by the storm-induced nutrient injections into

In this chapter, we will study the isomorphism classes of principally polarized simple CM abelian threefolds with field of moduli Q.. In Section 4.3, we will determine the sextic

Injectivity plays a key role as modular mappings represent a time-space transformation from an index domain (computation points) to a target domain: clearly, the number of

Xieshu WANG, CEPN, UMR-CNRS 7234, Université Paris 13, Sorbonne Paris Cité xieshu.wang@gmail.com.. Joel RUET, CEPN, UMR-CNRS 7234, Université Paris 13, Sorbonne Paris

This note describes a one dimensional problem that is related to the study of the symmetry properties of minimisers for the best constant in the trace inequality in a ball..

Using physical reasoning based on Maxwell’s equations, he predicted that the interface separating the normal from the superconducting regions should evolve according to a