• Aucun résultat trouvé

The project ChArMEx - Chemistry Aerosol Mediterranean Experiment.

N/A
N/A
Protected

Academic year: 2021

Partager "The project ChArMEx - Chemistry Aerosol Mediterranean Experiment."

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-00337152

https://hal.archives-ouvertes.fr/hal-00337152

Submitted on 7 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The project ChArMEx - Chemistry Aerosol Mediterranean Experiment.

François Dulac, Marc Mallet, J-L. Attié, G. Athier, Gilles Bergametti, Agnès Borbon, Jean-Pierre Cammas, L. Coppola, Oleg Dubovik, Pierre Durand, et

al.

To cite this version:

François Dulac, Marc Mallet, J-L. Attié, G. Athier, Gilles Bergametti, et al.. The project ChArMEx - Chemistry Aerosol Mediterranean Experiment.. IGAC 2008 : 10ème conférence internationale sur la chimie de l’atmosphère, Sep 2008, Annecy, France. �hal-00337152�

(2)

0 0,1 0,2 0,3 0,4 0,5 0,6

09/06/2008 16/06/2008

23/06/2008 30/06/2008

07/07/2008 14/07/2008

21/07/2008 28/07/2008

04/08/2008 11/08/2008

18/08/2008 25/08/2008

01/09/2008 AOD_Coarse AOD_Fine

1. Abstract. .

ChArMEx is a new regional project on tropospheric chemistry and aerosols in the Mediterranean proposed by the French community, calling for international cooperation. ChArMEx proposes an integrated modelling and observational approach to study budgets of species, chemical and dynamical processes, intense events, trends, and impacts. The objectives include an assessment of the recent past, present and future states of the atmospheric chemistry and of related impacts on air quality, regional climate and marine biogeochemistry.

The experimental strategy includes long-term monitoring, 2 years of enhanced surface observations, and summer intensive campaigns with research aircrafts and drifting balloons to study the aging of continental air masses over the basin when pollutants and desert dusts are at their maximum and likely impact the regional climate. Focus is presently put on the western basin. Synergies are built with other Mediterranean projects on the hydrological cycle (HyMEx) and marine ecosystems (MERMEX).

Instrumented high-perf. Ultra Light Aircraft

Forward/nadir pointing back- scattering lidar (355 nm), PTU, scatterometer (880 nm), GPS, artificial horizon

(Chazette et al., ES&T, 2007)

G. In the period of surface water stratification, atmospheric deposition explains the dissolved iron (DFe) enrichment above the thermocline. This likely favours diazotrophic populations such as cyanobacteria

(Bonnet and Guieu, JGR, 2006)

The project ChArMEx - Chemistry Aerosol Mediterranean Experiment

F. Dulac

1,2

, M. Mallet

3

, J-L. Attié

3

, G. Athier

3

, G. Bergametti

2

, A. Borbon

2

, J.-P. Cammas

3

, L. Coppola

4

, O. Dubovik

5

, P. Durand

3

, C. Flamant

6

, F. Gheusi

3

, C. Guieu

4

, D. Lambert

3

, C. Liousse

3

, N. Marchand

7

, C. Mari

3

, V.-H. Peuch

8

, F. Pin

9

, F. Ravetta

6

, K. Sartelet

10

, J.-L. Savelli

9

, J. Sciare

1

, D. Tanré

5

, C. Textor

1

, and S. Turquéty

6

(1) Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CEA-CNRS-UVSQ, Gif-Sur-Yvette, FR (6) Service d’Aéronomie (SA, CNRS-UPMC, Paris, FR

(2) Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UP12-CNRS-UP7, Créteil, FR (7) Laboratoire Chimie Provence (LCP), Univ. Aix Marseille-CNRS, Marseille, FR FR

(3) Laboratoire d’Aérologie (LA), CNRS-UPS, Toulouse, FR (8) (CNRM-GAME), Météo France-CNRS, Toulouse, FR

(4) Laboratoire d’Océanologie de Villefranche, (LOV), CNRS-UPMC, Villefranche-Sur-Mer, FR (9) Qualitair Corse, Corte, FR

(5) Laboratoire d’Optique Atmosphérique (LOA), CNRS-USTL, Villeneuve d’Ascq, FR (10) Centre d’Enseignement et de Recherche en Environnement Atmosphérique (CEREA), ENPC-EDF, Marne-La-Vallée, FR

IGAC 10th International Symposium, Annecy, France, 7-12 September 2008

E. In summer, in addition to dust transport, forest fires contribute to the maximum load of absorbing aerosols ( ω

o

down to 0.8,

Meloni et al., ACP, 2005

) which decrease surface evaporation and modify the thermal vertical gradients

0 Polder Aerosol Index (March 1997) 0.5 POLDER data: CNES & NASDA Processing: LOA & LSCE

Due to the variability of aerosol properties, aerosol-climate interactions are addressed through extensive regional programs and campaigns The western Mediterranean is still missing a large scale experiment!

ACEACE--22 1997 1997

ACE ACE--11

19951995 ACE ACE--33 2001 2001--0303 INDOEX

INDOEX 1998-1998-9999 SCAR

SCAR--BB 19951995 TARFOX TARFOX 1996 1996 SCAR-SCAR-CC

1994 1994

SCARSCAR--AA 1993 1993

SAFARI SAFARI 20002000 SHADE

SHADE 2000 2000

AMMAAMMA 2006 2006--0707 PRIDE

PRIDE 20002000

ABCABC 2005 2005--0808 MINOS

MINOS 20012001

Marine mixed layer depth (m)

Mixed layer depth Anthropogenic aerosols Saharan sources

Atmospheric deposition of DFein the ML (nM) Cumulated deposition of DFe

from anthropogenic aerosols from Saharan aerosols Delta DFe (above-below thermocline)

Dissolved iron DFe(nM)

May June July August Sept. Oct.

2. Some facts

Minima Ùrains

PeaksÙAfrican dust

Dry season: high background

Wet season: low background

Daily atmospheric concentrations in particulate Si at a rural coastal site in Corsica (Bergametti et al., Kluwer, 1989)

B. Strong seasonal maxima in aerosol and gaseous pollutants are found in the Mediterranean in summer

Direct effect -10 to -15 W m-2

gradient <0 : stratification

Evaporation of low clouds

(Ackerman et al., 2000)

Modification of the latent heat flux gradient >0 : convection

-30 to -45 W m-2 1.5 <heating<2.5 K j-1

0.5 <heating<1.5 K j-1

Semi-direct effect

Impact of absorbing aerosols: the INDOEX case

(Léon et al., JGR, 2002)

20-30 W m-2

3. ChArMEx proposed work packages

Air quality and dynamic processes: import-export budgets

Chemical processes: secondary matter formation

Lagrangian experiments

Seasonal and long-term trends

Radiative budget and Impacts

Deposition: Fe, P, Hg inputs

Emission inventories and source inversion

Model intercomparison and future scenarii

PLASMA Vaisala sunphotometer dropsonde system

La Tapoa Niamey

Dust aerosol from Sahara desert Biomass burning from Benin-Nigeria

Mixed aerosol from lack Tchad area

AMMA SOP-0, Niamey airport

Updated aerosol-climate and -transport models

Direct atmospheric radiative forcing by Improved parameterization of the anthropogenic aerosols (BC, POM, SO4), aerosol size distribution for both

averaged from nine global models deposition and optical depth (Schulz et al., ACP, 2007; (Foret et al., JGR, 2006) http://nansen.ipsl.jussieu.fr/AEROCOM)

Particle diameter (µm) Dry depositionvelocity(cm s-1)

reference (1000 bins) classical isolog scheme new isogradient scheme 6 size bin

case

Annual average (yr 2000) aerosol mass load and optical depth at 550 nm from AEROCOM models (after Textor et al., ACP, 2006)

Load

0 20 40 60 80 100 120 140 160 180 200

Mediterranean Baltic Sea North Sea Europe EuropeLand World

mg/m2

SS DUST SO4 POM BC

Mass load Optical Depth

0,00 0,05 0,10 0,15 0,20 0,25 0,30

Mediterranean Baltic Sea North Sea Europe EuropeLand World SS DUST SO4 POM BC

Optical depth at 550 nm

SS DUST SO4 POM BC

A. All types of continental (soil dust, soot, anthropogenic and biogenic organics, pollution sulfate/nitrate) and marine particles (seasalts, biogenic sulfates) are present at high concentrations. Trends are uncertain

.

D. African dust significantly impacts air quality in rural and even urban

sites of southern Europe

(e.g. Léon et al., Appl. Opt., 1999; Moreno et al. Atmos. Env., 2005)

. F. Aerosol radiative forcing is strong

A variety of CNES drifting balloons

with GPS, ozone, aerosol, radiative or flux measurements

Pressurized balloons (up to <3 km)

Aeroclipper (surface) Boundary layer

balloons (~800m)

Summer (JJA) 2007 aerosol optical depth at 865 nm from PARASOL (thanks to J.-L. Deuzé and F. Ducos)

C. Strong gradients in aerosol load

Summer (JJA) 2000 tropospheric ozone from GOME (in DU)

(see Poster by B. Sauvage et al.)

Contact:

francois.dulac@cea.fr

5. Examples of new tools available in the French community

Research aircraft and airborne payloads Isokinetic probes for in situ aerosol sampling and measurements

of submicron and dust particles, and cloud interstitial particles

AVIRAD (3-λnephelometer, 7-λaethalometer, CVI and Community Inlet (Lyman-α, CN & CCN optical counter/sizer, impactor + 2 filters) counters, PSAP, DMSP, V-DMSP, OPC, AMS)

SA/CNRS - ULB

Quasi-real time spaceborne monitoring and model transport forecasting of aerosol for intensive field observations on alerts

CHIMERE-DUST LMDZ-INCA: aerosol and reactive gases GIRAFFE: smoke plumes from active fires MSG/SEVIRI hourly quicklooks and products (http://euler.lmd.polytechnique.fr/menut/chimeredust/index.html) (http://www-lsceinca.cea.fr/welcome_real_time.html) (http://aoc.amma-international.org/archive/ (http://www.icare.univ-lille1.fr/

)

researchProduct/aerosol-chemistry/girafe/)

(day+1)

(day+3)

(day+2.5)

IASI: tropospheric CO column

4. Proposed strategy

A 4-yr large scale integrated programme in the western basin (2010-2013) with a multistage experimental strategy:

LOP from 2009 on: set-up of a long-term monitoring observatory in Corsica and collaboration with Mediterranean countries for establishing a network of stations covering N-S and E-W gradients with standardized automated low frequency routine measurements (e.g. sunphotometer, lidar, deposition, PM, O

3

, …).

Main objectives: satellite and model validation, inter-annual variability and trends.

2-yr EOP from mid 2010 to mid 2012: enhanced observation period with high temporal resolution optical and chemical measurements (e.g. COVs, size distributed aerosol composition, …) at selected stations throughout the basin.

Main objectives: seasonal variability and budgets.

IOPs in summer 2011 and summer 2012: intensive observation periods in 2011 and 2012 with aircrafts, balloons and additional surface measurements, based on real time spaceborne observations and model forecasts. Main objectives:

aging of continental plumes, column closure and radiative impacts of ozone and aerosols, chemical and dynamical processes.

In regards to the aerosol observations from satellite sensors (PARASOL, MODIS), a strategy of 3 main super sites and 10-15 deposition stations is proposed during ChArMeX to cover the S-N and E-W transects. It will complete existing stations (EARLINET, AERONET, background air quality and research stations, …).

r < 0.70 µm 0.70 < r < 1.10 µm 1.10 < r < 1.75 µm

Seasonal (JJA 2007) aerosol effective radius frequency from PARASOL (thanks to J.-L. Deuzé and F. Ducos)

Medenine Cap-Ferrat

Cap Bear

Lampedusa Porquerolles Isl.

Balearics Islands ?

Oran Nador Tanger

Eastern Spain?

Carloforte?

Frioul Isl. Cap Corse La Seyne-Sur-Mer

Nador

Bonifacio

Lecce?

Super sites Deposition network

Alger

Southern Sicily?

Tunis

-30 -25 -20 -15 -10 -5 0 5 10 15 20

Daily direct radiative forcing (JJA) in W/m2

Mean direct radiative forcing (clear sky) for JJA 2008

(see Poster by B. Sauvage et al.)

Marine Nationale

Marine Nationale SemaphoreSemaphore at

atErsaErsa, Cap Corse, Cap Corse

Aerosol optical depth at 440 nm at Ersa in

summer 2008 Surface ozone ( ppb)

at Ersa from 30 June to 7 July 2008

Ozone forecast 1 July 2008

(http://www.prevair.org)

Pollution episode early July

2008

Références

Documents relatifs

1 we evaluate the impact of the data assimilation on the modelled fields (the 1 h assimilation forecast for the each 1 h assimilation cycle and the corresponding assimila-

Yu (2009), Aerosol complexity in megacities: From size-resolved chemical composition to optical properties of the Beijing atmospheric particles,

Les rues entourant le Quartier Général de l'exécutif hongkongais (Central Government Complex) sont les premières à être investies par les manifestants et les dernières

The most significant findings are (1) large increases in the ozone column density at high latitudes during late winter-early spring of each hemisphere that totally disappear

Si isotope fractionation occurs only in the high-Al concentration experiments, characterized by an enrichment of the light Si isotopes in the solids formed early5. With ongoing

1 suggests that a phase shift between the substrate vibrations and the drop deformations is required to produce an averaged asymmetry, it has been shown that very viscous

Image cubes from December 2014 in eight spectral channels, with spectral resolutions of R ∼20 0 0 −12 , 0 0 0 and spatial resolutions of 2–4 ° latitude, are inverted to generate

Les mesures (figure 28) montrent que, même pendant le minimum de Maunder, le cycle d’activité solaire de 11 ans n’a pas cessé ; néanmoins, on constate que la