• Aucun résultat trouvé

Molecularly imprinted polymers for the removal of Iprodione from wine : experimental design and synthesis optimization

N/A
N/A
Protected

Academic year: 2021

Partager "Molecularly imprinted polymers for the removal of Iprodione from wine : experimental design and synthesis optimization"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02529027

https://hal-agrosup-dijon.archives-ouvertes.fr/hal-02529027

Submitted on 2 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Molecularly imprinted polymers for the removal of Iprodione from wine : experimental design and synthesis

optimization

Manal Bitar, Elias Bou-Maroun, Philippe Cayot

To cite this version:

Manal Bitar, Elias Bou-Maroun, Philippe Cayot. Molecularly imprinted polymers for the removal of Iprodione from wine : experimental design and synthesis optimization. MIP (Molecularly Imprinted Polymers) 2012, 2012, Paris, France. �10.13140/RG.2.2.19190.45124�. �hal-02529027�

(2)

-5 -4 -3 -2 -1 0 1 2 3 4 5

PM MF C

K

1- Synthesis

Substantial evidence demonstrates the potential for transfer of fungicides during the winemaking process. In order to remove these fungicides from wine samples, molecularly imprinted polymers (MIP) have been prepared and tested in a hydro‐alcoholic solution containing Iprodione. Iprodione was chosen as fungicide because it was detected in more than 90 % of the French wine according to a survey done by the French ministry of agriculture [1].

Materials and methods

4- Binding experiments

Introduction

Molecularly imprinted polymers for the removal of Iprodione from wine:

experimental design and synthesis optimization

M. Bitar

,

E. Bou-Maroun

,

P. Cayot

e.bou-maroun@agrosupdijon.fr

Unité Procédés Alimentaires et Microbiologiques UMR A02.102, Agrosup Dijon/Université de Bourgogne, 1 Esplanade Erasme F-21000, Dijon, France

2- Template removal

Factor 1 Functional Monomer (FM)

Factor 2

Crosslinker (C)

Factor 3

Polymerization method (PM)

• -1 Methacrylamide

• +1 Methacrylamide + styrene

• -1 Trimethylolpropane trimethacrylate (TRIM)

• +1 Ethylene glycol trimethacrylate (EGDMA)

• -1 Monolith

• +1 Precipitation

• 20 mL ethanol/water

• 10-5 M < C(iprodione) < 10-3 M

• 10 mg polymer

• 25 0C

Iprodione solutions

• Batch extraction

• Magnetic stirring

Extraction

Freundlich isotherms -10000

0 10000 20000 30000 40000 50000 60000 70000

Intensity

Time (min) ---MIP ---NIP

---Iprodione solution before extraction (C = 50 µM)

Template

iprodione

Porogen solvent

2,2-dimethoxy-2-phenyl acetophenone (DMPAP)

Under UV radiation

Initiator

toluene

23 factorial experimental design

8 iprodione- MIPs

Iprodione-MIPs’ non-covalent synthesis

8 NIPs were synthesized in a similar manner without template

HPLC

C18 stationary phase

Acetonitrile/water (60/40) Mobile phase

UV detection

2h Fig. 1 : iprodione chromatograms supperpostition before and after extraction by MIP5 and NIP5

(methacrylamide, TRIM, precipitation).

Fig. 2 : Freundlich isotherm exemple MIP5 and NIP5.

B = a F m

B : binded iprodione F : free iprodione

a, m : Freundlich parameters

5- Response variables 3- NIPs synthesis

acetic acid/ethanol + ultrasonication

Results

Fig. 3 : Factors significant influence on the apparent affinity.

*6 repetitions for MIP5 =>Degree of freedom = 5; 95% confidence interval Table 1 : full experimental design

MIP PM FM C K N K(MIP)/K(NIP)

1 - - - 8.78 702 1.76

2 - - + 5.32 538 1.39

3 - + - 8.81 667 1.60

4 - + + 10.27 726 4.50

5 + - - 3.38 1093 6.46

6 + - + 19.36 1172 1.17

7 + + - 7.36 623 1.01

8 + + + 7.49 685 1.01

The precipitation polymerization

increases the apparent affinity and the sites

number.

Fig. 5 : Factors significant influence on the sites number.

K : apparent weighted average affinity

N : apparent number of sites

K(MIP)/K(NIP)

Fig. 4 : Factors significant influence on the ratio K(MIP)/K(NIP).

The addition of styrene decreases the apparent affinity and the sites

number.

The use of TRIM

increases the apparent affinity and

K(MIP)/K(NIP).

N N

Cl

Cl

O

O

O NH

CH3

CH3

CH3 O

O O

CH3

CH3

C H3

CH2 O

NH2

C H3

CH2 O

NH2

CH2

O

O O O

O O

CH3

C H2

O O

O O

CH2

CH3

-0.4 -0.2 0 0.2 0.4

PM FM C

K(MIP)/K(NIP)

0.4

0.2

- 0.4 - 0.2

-150 -100 -50 0 50 100 150

PM MF C

N

0 2 4 6 8 10 12 14 16

0 5 10 15 20 25

TRIM EGDMA

K

K(MIP)/K(NIP)

Effect of crosslinker on the apparent affinity and the ratio K(MIP)/K(NIP)

K K(MIP)/K(NIP)

0 5 10 15 20 25

0 400 800 1200 1600 2000

metacrylamide metacrylamide + Styrene

KN

Effect of functional monomer on the sites number and the apparent affinity

N K

0 5 10 15 20 25

0 200 400 600 800 1000 1200 1400

monolith precipitation

K

N

Effect of the polymerization on the apparent affinity and the sites number

N K

Conclusion

1.96 σ *

References

[1]Cugier, J.‐P., & Bruchet, S.. Plan de surveillance résidus en Viticulture. Campagnes viticoles 1990‐2003. Direction Générale de l’Alimentation. Sous Direction de la Qualité et de la Protection des Végétaux, 2005.

P A M

UMR PAM (AgroSup, uB) 1 Esplanade Erasme

21000 Dijon, France

http://www.umr-pam.fr/

y = 2549.5x0,428.

y = 1588x0.4068

0 500 1000 1500 2000 2500

0 0.2 0.4 0.6 0.8

B (µmol/g)

F (mM)

Freundlich isotherm : MIP5 and NIP5

MIP5 NIP5

0.2 0.4 0.6 0.8

The optimal MIP : MIP5

F1 : precipitation

F2 : TRIM

F3 : methacrylamide

+

C H3

CH2 O

NH2

C H3

CH2 O

NH2

CH2

+

O

O O O

O O

CH3

C H2

O O

O O

CH2

CH3

View publication stats View publication stats

Références

Documents relatifs

Therefore, in this paper we show that the combination of the amperometric biosensor and extraction step using molecularly imprinted polymer allows the selective detection

The analysis of the chromatographic behaviour, the comparison with NIPs and the selectivity for carbenda- zim showed that these polymers could be useful applied as stationary phase

When a 830 nm laser was used to produce Raman scattering of the MIPs based on different functional monomers, the Raman spectra showed to be seriously distorted by fluorescence

As well as the concentration parameter, the incubation time of glass beads in glutaraldehyde solution is a major parameter affecting the HRP immobilization in

General Conclusions and Perspectives .... Principle of molecular imprinting via covalent interactions, as shown by Wulff and Sarhan, 1972. Reproduced from Andersson

Except the leak of the template molecule (NOR) from the MIP (3 ng) observed in the elution fraction, no targeted compounds were detected in non-spiked Evian water. The

The polymerization route specificities for the production of miniaturized molecularly imprinted polymers in capillaries or chip channels such as open tubular, packed

recoveries of 100% with a SD of 8% on the MIP and of 64% with a SD of 11% on the NIP. To