• Aucun résultat trouvé

THERMAL CONDUCTION AND ION TEMPERATURES IN THE IONOSPHERE

N/A
N/A
Protected

Academic year: 2021

Partager "THERMAL CONDUCTION AND ION TEMPERATURES IN THE IONOSPHERE"

Copied!
6
0
0

Texte intégral

(1)

EARTH AND PLANETARY SCIENCE LETTERS 1 (1966) 270-275. NORTH-HOLLAND PUB. COMP., AMSTERDAM

T H E R M A L C O N D U C T I O N A N D I O N T E M P E R A T U R E S I N T H E I O N O S P H E R E

P e t e r M. BANKS

Institut d 'A~ronomie Spatiale de Belgique, B r u x e l l e s 18, Belgium Received 5 August 1966

An analysis is made of the ion energy balance equation for the ionosphere including the effects of O +, He +, and H + ions, thermal conduction, and the cooling by atomic hydrogen and lium. It is shown that thermal conduction strongly affects the ion temperature profile for conditions of moderate and low elec- tron densities and that the high altitude ion temperature can be significantly less than the electron tem- perature. In addition, H + in concentrations as low as 10~o of the total ion density is found to be a major recipient of heat from the ionospheric electron gas and has an important influence upon the total ion en- ergy budget.

1. I N T R O D U C T I O N

T h r o u g h n u m e r o u s e x p e r i m e n t s it has b e e n d e t e r m i n e d that the e l e c t r o n t e m p e r a t u r e above 150 km i s c o n s i s t e n t l y h i g h e r than the t e m p e r a - t u r e of the n e u t r a l a t m o s p h e r e . To explain t h i s s t a t e of t h e r m a l n o n e q u i l i b r i u m , a n u m b e r of t h e o r e t i c a l s t u d i e s h a v e b e e n m a d e of the e l e c - t r o n heat budget e q u a t i o n u s i n g p h o t o i o n i z a t i o n as the p r i n c i p a l e l e c t r o n gas e n e r g y s o u r c e [1-5].

T h e m o s t r e c e n t of t h e s e a n a l y s e s [5] g i v e s r e - s u l t s in g e n e r a l a g r e e m e n t with c u r r e n t m e a s - u r e m e n t s but, b e c a u s e the e l e c t r o n t e m p e r a t u r e i s v e r y s e n s i t i v e to m i n o r c h a n g e s in the s o l a r EUV flux, the e l e c t r o n d e n s i t y , and the m a g n i - tude of the a s s u m e d m e c h a n i s m s of e l e c t r o n e n - e r g y l o s s , a high d e g r e e of c o r r e s p o n d e n c e c a n - not be e x p e c t e d at the p r e s e n t t i m e .

The p r i m a r y s o u r c e of e l e c t r o n e n e r g y l o s s a b o v e 300 k m a l t i t u d e o c c u r s by m e a n s of e l a s - tic c o l l i s i o n s b e t w e e n e l e c t r o n s and the a m b i e n t ions. T h e ions, in turn, t r a n s f e r t h i s e x c e s s t h e r m a l e n e r g y to the n e u t r a l g a s e s of the a t m o - s p h e r e . Hanson [3] w a s the f i r s t to point out that, b e c a u s e the d e n s i t y of the n e u t r a l a t m o s p h e r e d e c r e a s e s m u c h m o r e r a p i d l y than that of the e l e c t r o n gas, the ion t e m p e r a t u r e should have a p r o n o u n c e d a l t i t u d e d e p e n d e n c e in r e s p o n s e to the e l e c t r o n heating, i n c r e a s i n g g r a d u a l l y f r o m the n e u t r a l gas t e m p e r a t u r e n e a r 300 km to the e l e c t r o n t e m p e r a t u r e above 800 kin.

E x p e r i m e n t a l s u p p o r t f o r the t r a n s i t i o n b e - h a v i o u r of the ion t e m p e r a t u r e can be i n f e r r e d f r o m s a t e l l i t e m e a s u r e m e n t s [6] and i n c o h e r e n t

r a d i o b a c k s c ~ t t e r data [7, 8]. It i s n e c e s s a r y to point out, h o w e v e r , ~hat although the r e s u l t s of Hanson [3] i n d i c a t e that the e l e c t r o n and ion t e m - p e r a t u r e s should be a p p r o x i m a t e l y e q u a l at high a l t i t u d e s , in fact, in the a v a i l a b l e e x p e r i m e n t a l data [6-9] t h e r e a p p e a r to be s i g n i f i c a n t d e v i a - t i o n s of the ion t e m p e r a t u r e t o w a r d s v a l u e s which a r e c o n s i s t e n t l y l o w e r than the e l e c t r o n t e m p e r a t u r e , even in the a t m o s p h e r i c r e g i o n s w h e r e the i o n - n e u t r a l e n e r g y l o s s e s a r e not e f - f e c t i v e in c o o l i n g the 1on gas. F u r t h e r , in the r e g i o n s 4ud-600 km it i s d i f f i c u l t to m a t c h the c a l c u l a t e d v a l u e s of ion t e m p e r a t u r e with t h o s e a c t u a l l y m e a s u r e d u n d e r c o n d i t i o n s of low e l e c - t r o n density.

T o r e c o n c i l e the d i f f e r e n c e s b e t w e e n t h e o r y and e x p e r i m e n t , a r e a n a l y s i s h a s b e e n m a d e of the ion e n e r g y b a l a n c e e q u a t i o n s to i n c l u d e the p r e v i o u s l y n e g l e c t e d e f f e c t s of ion t h e r m a l c o n - duction, the p r e s e n c e of He + and H + ions, and the c o o l i n g by a t o m i c h y d r o g e n and h e l i u m . T h e r e s u l t s , p r e s e n t e d in t h i s p a p e r , i n d i c a t e that ion h e a t conduction can p l a y an i m p o r t a n t p a r t in d e t e r m i n i n g the p r o f i l e s of ion t e m p e r a t u r e , l e a d i n g to v a l u e s which a r e c o n s i d e r a b l y below the e l e c t r o n t e m p e r a t u r e . It i s a l s o shown that H + i o n s a r e i m p o r t a n t in the o v e r - a l l ion e n e r g y b a l a n c e , e v e n in c o n c e n t r a t i o n s l e s s than 10% of the t o t a l ion density.

2. ION E N E R G Y B A L A N C E

T h e t i m e - d e p e n d e n t e n e r g y b a l a n c e equation

(2)

for the ion g a s e s of the i o n o s p h e r e is:

avi

at - P i " Li " V ' ¢ i ' (1) w h e r e U i = ~ n i k T i 3 i s the ion t h e r m a l e n e r g y p e r u n i t v o l u m e , n i = n ( O + ) + n ( H e + ) + n ( H +) is the total ion n u m b e r d e n s i t y , k i s B o l t z m a n n ' s c o n - stant, T i i s the ion t e m p e r a t u r e (for a d i s c u s s i o n of ion t e m p e r a t u r e coupling, s e e [10]), P i is the r a t e of ion gas e n e r g y p r o d u c t i o n , L i i s the r a t e of e n e r g y l o s s to the n e u t r a l a t m o s p h e r e , and FTi i s the ion heat flux a r i s i n g f r o m conduction and diffusion effects.

U n d e r the i n f l u e n c e of t h e r m a l conduction and the n o n - l o c a l h e a t i n g effects of p h o t o e l e c t r o n s , it i s found [5,7] that the e l e c t r o n t e m p e r a t u r e above 300 k m i s s i g n i f i c a n t l y g r e a t e r than the t e m p e r a t u r e of the n e u t r a l a t m o s p h e r e , thus p r o v i d i n g a heat s o u r c e for the ion gases. By m e a n s of e l e c t r o n - i o n c o l l i s i o n s , the e l e c t r o n gas of t e m p e r a t u r e T e and d e n s i t y n e t r a n s f e r s e n e r g y to the i o n s at the r a t e s :

Pi(O +) = 4 . 8 x 10 - T n e n ( O +) [T e - T i ] T e - 4 , (2a) P i ( H e +) = 1.9 × 10 -6 hen(He+ ) [T e - Ti] T e - ~ , (2b) Pi(H +) = 7.7 × 10 -6 hen(H+)

3

× [ T e - T i ] T e - ~ eV c m - 3 sec -1 , (2c) which a r e in the r a t i o s 1:4:16. Thus, the h e a t i n g r a t e s for He + and H + a r e equal to the O + r a t e when n ( H e + ) / n ( O +) = 0.25 and n(H+)/n(O +) = 0.063, r e s p e c t i v e l y , i m p l y i n g the e l e c t r o n e n e r - gy t r a n s f e r to the He + and H + ions p l a y s an i m - p o r t a n t p a r t i n the o v e r a l l ion e n e r g y b a l a n c e .

The r a t e s of ion e n e r g y l o s s to n e u t r a l g a s e s by m e a n s of e l a s t i c c o l l i s i o n s have b e e n d i s - c u s s e d r e c e n t l y [10, 12] and these r e s u l t s a r e adopted for this study. B r i e f l y , for ions i n p a r - ent g a s e s the p r o c e s s of r e s o n a n c e c h a r g e ex- change i s d o m i n a n t , while for ions in u n l i k e g a s - es the p o l a r i z a t i o n i n t e r a c t i o n alone is a s s u m e d to be acting. F o r H + and O + in a t o m i c oxygen and hydrogen, the effects of a c c i d e n t a l l y r e s o n a n t c h a r g e exchange have b e e n included.

The heat flux, qi, can be e v a l u a t e d for a m a g n e t i c f i e l d - f r e e m e d i u m as, n e g l e c t i n g t h e r m a l diffusion [13],

qi = - K i V T i + ~ n i k T i C i , (3) w h e r e K i i s the ion t h e r m a l conductivity and Ci i s the ion diffusion v e l o c i t y r e l a t i v e to the m a s s velocity of the c o m b i n e d ion gas and the n e u t r a l a t m o s p h e r e . T h e e v a l u a t i o n of the two t e r m s in

(3) shows that heat conduction i s g e n e r a l l y d o m i - nant, but that t h e r e a r e s o m e c i r c u m s t a n c e s , e s p e c i a l l y for low t e m p e r a t u r e s and l a r g e ion d e n s i t i e s , when the diffusion c o n t r i b u t i o n r e s u l t - i n g f r o m a downward flux of ions cannot be n e - glected. However, b e c a u s e the c a l c u l a t i o n of C i r e q u i r e s the s o l u t i o n of the coupled ion t e m p e r a - t u r e and d e n s i t y equations for c o n d i t i o n s of c h e m i c a l and diffusive e q u i l i b r i u m , it is difficult to adopt r e l i a b l e v a l u e s . Hence, in this a n a l y s i s we take C i = 0 and deal only with the heat flux a r i s i n g f r o m ion t e m p e r a t u r e g r a d i e n t s in an e q u i l i b r i u m d i s t r i b u t i o n of ion gases.

T h e c a l c u l a t i o n of K i for a s i n g l e ion gas fol- lows f r o m the work of C h a p m a n [14] as:

5 1

K i = 4 . 6 x 1 0 4 T i i / A i ~ e V c m - l s e c - l O K -1 , (4) w h e r e A i i s the ion m a s s in a t o m i c u n i t s . Unlike the e l e c t r o n t h e r m a l conductivity, it is not n e c - e s s a r y to i n c l u d e a t h e r m o e l e c t r i c r e d u c t i o n f a c t o r or, for a l t i t u d e s above 300 km, to c o n - s i d e r the effects of i o n - n e u t r a l c o l l i s i o n s [16].

F o r the ion gas of the i o n o s p h e r e , an e x t e n - sion of (4) m u s t be made to i n c l u d e the effects of d i f f e r i n g c o n d u c t i v i t i e s for each i o n s p e c i e s . An exact e x p r e s s i o n i s difficult to obtain and f o r the p r e s e n t a n a l y s i s an a p p r o x i m a t e , d e n s i t y w e i g h t - ed, c o n d u c t i v i t y has b e e n u s e d in the f o r m g i = 1.15 x 104 Ti~[n(O+)+ 2n(Se+)+4n(H+)]/n e

X eV c m -1 sec -1 OK-1 . (5) When the effect of the e a r t h ' s m a g n e t i c field is c o n s i d e r e d it i s found [13] that t h e r e i s heat flow only along the l i n e s of g e o m a g n e t i c force.

To i n c l u d e the i n f l u e n c e of the i n c l i n a t i o n of the field l i n e s upon v e r t i c a l p r o f i l e s of ion t e m p e r a - t u r e , we i n t r o d u c e the m a g n e t i c dip angle, I, and r e w r i t e (1) as

aUi - ~ [ K dTi] (6)

at = P i - Li + s i n 2 I i d z J ' w h e r e z i s a v e r t i c a l c o o r d i n a t e .

The solution of (6) for the ion t e m p e r a t u r e p r o f i l e r e q u i r e s a knowledge of the e l e c t r o n and ion d e n s i t i e s i n the u p p e r i o n o s p h e r e . F o l l o w i n g r e c e n t work [10, 17], we adopt a state of O + dif- f u s i v e e q u i l i b r i u m above 340 k m while t a k i n g H + and He + to be in c h e m i c a l e q u i l i b r i u m with N2, O2, and O t o an altitude of 500 km, above which a condition of t e r n a r y ion diffusive e q u i l i b r i u m i s applied [17].

T h e n u m e r i c a l solution of (6) r e q u i r e s a choice of ion t e m p e r a t u r e b o u n d a r y c o n d i t i o n s which r e l a t e to the i n f l u e n c e s of ion e n e r g y p r o - duction outside the r e g i o n of a n a l y s i s . F o r the

(3)

272 P . M . BANKS l o w e r b o u n d a r y c o n d i t i o n i t i s a s s u m e d t h a t c o n -

d u c t i o n i s i n e f f e c t i v e a t 300 k m a n d t h e i o n t e m - p e r a t u r e i s t a k e n a s t h e s o l u t i o n t o (6) w i t h K i = 0. A t t h e u p p e r l i m i t (z = 1500 k m ) i t i s c o n v e - n i e n t to t a k e d T i / d z = 0 a n d n e g l e c t t h e h e a t c o n - d u c t e d d o w n w a r d s f r o m h i g h e r r e g i o n s .

3. B E S U L T S

T h e i o n e n e r g y b a l a n c e h a s b e e n s o l v e d n u - m e r i c a l l y f o r s t e a d y - s t a t e c o n d i t i o n s ( a U i / a t = 0) u s i n g t h r e e a t m o p s h e r i c m o d e l s of N i c o - l e t [18] t o r e p r e s e n t t h e e f f e c t s of c h a n g i n g a e r o - n o m i c c o n d i t i o n s . T h r o U g h o u t a l l c a l c u l a t i o n s t h e e l e c t r o n t e m p e r a t u r e h a s b e e n t r e a t e d a s a p a r a m e t e r w h i c h h a s t h e s a m e v a l u e f o r a l l a l t i - t u d e s .

S e v e r a l p o i n t s of i n t e r e s t h a v e b e e n f o u n d . F i r s t , i t a p p e a r s t h a t t h e i o n t h e r m a l c o n d u c t i o n c a n p l a y a n i m p o r t a n t p a r t i n d e t e r m i n i n g t h e

:I :11

T Ti 1 Ti T e

O* O* H* O*

He, H He, H no He, H

-- goc /

--

2 / /

Ti . /

70~ I . O , no conduction

/ - ' ' J r T = IO00eK

SO0 / . " / Te = 2500°K

/ , ' / ' / n = 2 x IOScm "3 at 360 kn'

,~

I : go °

3o~ I I

lOgO 1500 2000

TEMPERATURE (OK)

Fig. 1. Ion t e m p e r a t u r e s with an e l e c t r o n t e m p e r a t u r e of 2500OK and n e u t r a l gas t e m p e r a t u r e of 1000OK, for a m a g n e t i c dip angle of 90o with an e l e c t r o n density of 2 x 105 c m - 3 at 340 km. Curve 1 includes O + ions and t h e r m a l conduction but n e g l e c t s cooling by He and H.

In c u r v e 2 the s a m e conditions a r e u s e d with no t h e r - m a l conduction. Curve 3 includes O + ions, t h e r m a l conduction, He and H. Curve 4 r e p r e s e n t s the final r e -

sult with O +, H +, He, H and t h e r m a l conduction.

s h a p e of t h e i o n t e m p e r a t u r e p r o f i l e a t h i g h a l t i - t u d e s , y i e l d i n g , f o r a c o n s t a n t Te, i s o t h e r m a l v a l u e s w h i c h a r e s i g n i f i c a n t l y l e s s t h a n t h e e l e c - t r o n t e m p e r a t u r e . T h i s e f f e c t i s s h o w n i n c u r v e 1 of fig. 1 w h e r e a 1000OK n e u t r a l a t m o s p h e r e h a s b e e n u s e d w i t h o n l y O + i o n s p r e s e n t . T h e e l e c - t r o n t e m p e r a t u r e w a s t a k e n a s 2500OK, 1= 9 0 °, a n d t h e e l e c t r o n d e n s i t y d e t e r m i n e d f r o m t h e b o u n d a r y c o n d i t i o n n e = 2 × 105 c m - 3 a t 340 k i n . F o r c u r v e 1 t h e c o o l i n g e f f e c t s of a t o m i c h y d r o - g e n a n d h e l i u m h a v e n o t b e e n i n c l u d e d . T o s h o w t h e i m p o r t a n c e of t h e r m a l c o n d u c t i o n , c u r v e 2 ( b r o k e n l i n e ) h a s b e e n c a l c u l a t e d w i t h K i = 0.

S i n c e t h i s c h o i c e f o r K i i s e q u i v a l e n t t o t h e c o n - d i t i o n s f o u n d a t t h e g e o m a g n e t i c e q u a t o r , i t i s s e e n t h a t f o r i d e n t i c a l a e r o n o m i c p a r a m e t e r s t h e i o n a n d e l e c t r o n t e m p e r a t u r e s e p a r a t i o n w o u l d h a v e a r a n g e of 350OK b e t w e e n t h e g e o m a g n e t i c e q u a t o r a n d p o l e s .

A s e c o n d e f f e c t o c c u r s w h e n a t o m i c h y d r o g e n a n d h e l i u m a r e i n c l u d e d i n t h e O + e n e r g y l o s s . C u r v e 3 of fig. 1 s h o w s t h a t , f o r t h e m o d e l c h o s e n h e r e , t h e h i g h a l t i t u d e c o o l i n g , a l o n g w i t h t h e r m a l c o n d u c t i o n , r e d u c e s t h e i s o t h e r m a l v a l u e of t h e i o n t e m p e r a t u r e t o 1550OK. T h e i n -

150~

gO0

700

T : IO00°K Te = 2500°K I : 90 °

t ~ 2S~

/

2x105 / /

5x105 lx|O~

/ ,

TEMPERATURE (°K)

Fig. 2. Effects of changing e l e c t r o n density boundary conditions upon ion t e m p e r a t u r e s with the e l e c t r o n

density v a r y i n g f r o m 105 to 106 c m - 3 .

(4)

t r o d u c t i o n of H + as p a r t of the ionic c o m p o s i t i o n r e v e r s e s t h i s s i t u a t i o n , h o w e v e r , by p r o v i d i n g an i m p o r t a n t s o u r c e of ion h e a t i n g at high a l t i - tudes. A s shown by c u r v e 4 of fig. 1, t h i s r e - s u l t s in an i n c r e a s e of 450OK in the i s o t h e r m a l ion t e m p e r a t u r e . In fact, the p r o f i l e obtained f o r the ion t e m p e r a t u r e o m i t t i n g the e f f e c t s of H + i s v e r y s i m i l a r to the p r o f i l e found when H +, He, and H a r e included. T h e b a s i s f o r this n e a r e q u a l i t y l i e s in the c o u n t e r b a l a n c i n g of the s u p e - r i o r h e a t i n g r a t e of H + by the l a r g e H + c h a r g e e x c h a n g e e n e r g y l o s s r a t e to a t o m i c h y d r o g e n and an i m p r o v e d ion t h e r m a l conductivity. The i m p o r t a n t point to note i s that f o r the adopted model, the ion t e m p e r a t u r e is c a l c u l a t e d to be about 500OK l e s s than the e l e c t r o n t e m p e r a t u r e . T h e e f f e c t s of He + , which a r e not shown h e r e , do not a p p e a r to be l a r g e and can be n e g l e c t e d in a f i r s t a n a l y s i s .

T h e v a l u e of the e l e c t r o n d e n s i t y is i m p o r t a n t in d e t e r m i n i n g the ion t e m p e r a t u r e p r o f i l e . At high a l t i t u d e s , w h e r e ion c o o l i n g by the n e u t r a l g a s e s i s i n e f f e c t i v e , conduction m u s t c a r r y away

the heat obtained f r o m the e l e c t r o n gas. T h e c h a n g e s b r o u g h t about by v a r y i n g the e l e c t r o n d e n s i t y boundary condition at 340 km a r e shown in fig. 2 f o r n e = 1 × 105 , 2 × 105 , 5 × 105 , a n d l

× 106 c m -3 with T--- 1000OK, T e = 2500OK, and both O + and H + i o n s b e i n g included. It is s e e n that ion h e a t conduction is g e n e r a l l y i m p o r t a n t d u r i n g c o n d i t i o n s of low e l e c t r o n d e n s i t y or, m o r e e x a c t l y , when the high a l t i t u d e e n e r g y p r o - duction r a t e i s s m a l l . F o r e n h a n c e d e l e c t r o n d e n s i t i e s at high a l t i t u d e s , the ion c o n d u c t i v i t y is not l a r g e enough to t r a n s p o r t downwards the e n - e r g y p r o d u c e d in the ion gas following m o d e r a t e s e p a r a t i o n s b e t w e e n the ion and e l e c t r o n t e m - p e r a t u r e s .

Changes in the n e u t r a l a t m o s p h e r e a f f e c t the ion t e m p e r a t u r e p r o f i l e s by shifting the r e g i o n of i o n - n e u t r a l t e m p e r a t u r e d e c o u p l i n g with r e - s p e c t to the e l e c t r o n d e n s i t y p r o f i l e . T h i s e f f e c t is shown in fig. 3 w h e r e m o d e l a t m o s p h e r e s c o r - r e s p o n d i n g to n e u t r a l t h e r m o s p h e r i c t e m p e r a - t u r e s of 800 o, 1000 o, and 1394OK h a v e b e e n u s e d with T e = 2500OK and n e = 2 × 105 c m -3. T h e r e -

1,o~

A 2[

v

<

700

3o0

ne : Z xl0Scm "3 at 340 km T : 1394°K MODEL J1.55D

1000°K MODEL J 1.53 O 800°K MODEL J 1.53 D (NICOLET, [IS] )

T = I ~ * K

ION TEMPERATURE (OK)

"re

2500

Fig. 3. Effects of different models of the neutral at- mosphere upon ion temperatures. The chosen models have thermospheric temperatures of 8000, 1000o, and

1394OK.

g ~ I I I

I

i / Data from EVANS [7]

,m for 1200 EST, Sept. 1963 / rt e = 3AxlOScm J at 300 km

T = lO00°K Te = 2600°K

3o~ I I I

to0o 1soo 2ooo 2SOO

ION TEMPERATURE (°K)

Fig. 4. Comparison of calculated and measured ion temperatures. The solid curve was calculated using a 1000OK model neutral atmosphere and the experimen- tal parameters of Evans [7]. The squares indicate the

measured values.

(5)

274 P.M. BANKS sult, which i s due to a c o m b i n a t i o n of t h e r m a l

c o n d u c t i o n and change in the ion h e a t i n g r a t e , i s that f o r g i v e n v a l u e s of e l e c t r o n t e m p e r a t u r e and d e n s i t y , the high a l t i t u d e ion t e m p e r a t u r e d e - c r e a s e s s l i g h t l y with i n c r e a s i n g n e u t r a l g a s t e m - p e r a t u r e s .

A s a f i n a l point, a c o m p a r i s o n has b e e n m a d e b e t w e e n the t h e o r e t i c a l c a l c u l a t i o n s b a s e d upon (6) with O + and H + ions, and the r a d a r o b s e r v a - t i o n s of E v a n s [7]. By c h o o s i n g n e = 3 . 4 x 105 c m -3 at 300 km, T e = 2600OK, and T = 1000OK to m a t c h the o b s e r v e d p a r a m e t e r s f o r 1200 EST, S e p t e m b e r , ]963, the r e s u l t s shown in fig. 4 h a v e b e e n obtained. T h e s q u a r e s r e p r e s e n t the e x p e r i m e n t a l data, w h i l e the s o l i d c u r v e r e p r e - s e n t s the t h e o r e t i c a l r e s u l t .

T o e v a l u a t e the i n f l u e n c e of diffusion (see d i s c u s s i o n f o l l o w i n g (3)), which has not b e e n i n - cluded h e r e , the d i v e r g e n c e of the s e c o n d t e r m in (4) has b e e n c o m p u t e d u s i n g the final r e s u l t s of the ion t e m p e r a t u r e and e l e c t r o n d e n s i t y p r o - f i l e s . F o r the diffusion e f f e c t to h a v e an i m p o r - t a n c e equal to that of t h e r m a l conduction, it is found that the ion diffusion v e l o c i t y , Ci, would h a v e to be about 7 x 103 c m s e c -1 which, f o r the c o n d i t i o n s i n d i c a t e d by E v a n s ' data, a p p e a r s to be too l a r g e to r e p r e s e n t the t r u e p h y s i c a l s i t u a - tion.

A s a t e s t f o r the e x i s t e n c e of l a r g e ion diffu- s i o n v e l o c i t i e s which could a l t e r the ion t e m p e r - a t u r e p r o f i l e , it is noted that a net m o t i o n of 7 x x 103 c m s e c -1 would y i e l d a d o p p l e r shift of n e a r l y 200 c / s at a r a d a r f r e q u e n c y of 430 M c / s . H e n c e , a l o n g with an a s y m m e t r y in the c h a r a c - t e r i s t i c e l e c t r o n t e m p e r a t u r e p e a k s t h e r e should o c c u r a d e t e c t a b l e shift in the r a d a r s p e c t r a half p o w e r points.

4. CONCLUSIONS

F r o m the p r e s e n t a n a l y s i s it i s c o n c l u d e d that t h e r m a l c o n d u c t i o n within the ion g a s e s of the i o n o s p h e r e can be i m p o r t a n t in m a i n t a i n i n g the high a l t i t u d e ion t e m p e r a t u r e at v a l u e s l e s s than the e l e c t r o n t e m p e r a t u r e . F u r t h e r , an ion e n e r g y budget which d o e s not i n c l u d e both H + (and p e r h a p s He + ) and the p r e s e n c e of a t o m i c h y d r o g e n and h e l i u m cannot be e x p e c t e d to y i e l d t e m p e r a t u r e p r o f i l e s which a g r e e with e x p e r i - m e n t a l data. T h e e f f e c t of ion c o o l i n g at high a l - t i t u d e s by m e a n s of d o w n w a r d s diffusion, a l - though not i n c l u d e d h e r e , m a y a l s o be i m p o r t a n t u n d e r p a r t i c u l a r c o n d i t i o n s in f u r t h e r i n c r e a s i n g the s e p a r a t i o n b e t w e e n the ion and e l e c t r o n t e m - p e r a t u r e s .

C h a n g e s in the p a r a m e t e r s of the c h a r g e d and n e u t r a l a t m o s p h e r e s a f f e c t the i m p o r t a n c e of t h e r m a l conduction in the ion e n e r g y b a l a n c e . In- c r e a s e s in the a t m o s p h e r i c t e m p e r a t u r e lead, f o r i d e n t i c a l e l e c t r o n t e m p e r a t u r e s and c h a r g e d p a r t i c l e d e n s i t i e s , to a d e c r e a s e in the high a l t i - tude ion t e m p e r a t u r e . L i k e w i s e , i n c r e a s e s in the o v e r - a l l e l e c t r o n d e n s i t y can be e x p e c t e d to i n c r e a s e the ion t e m p e r a t u r e and d e c r e a s e the ion and e l e c t r o n t e m p e r a t u r e s e p a r a t i o n .

S i n c e the e f f e c t i v e n e s s of the ion h e a t c o n d u c - tion t e r m d e p e n d s upon the dip a n g l e of the e a r t h ' s m a g n e t i c field, the s e p a r a t i o n of t e m p e r - a t u r e s at high a l t i t u d e s should be l a r g e r f o r h i g h e r g e o m a g n e t i c l a t i t u d e s . T h u s , when the d a t a of F a r l e y [8], taken at the g e o m a g n e t i c e q u a t o r , is c o m p a r e d with the r e s u l t s of E v a n s [7], and D o u p n i k and N i s b e t [9], t h e r e i s s o m e i n d i c a t i o n that t h e r e a r e i n c r e a s e s in the t e m p e r a t u r e s e p a r a t i o n s f o r the h i g h e r l a t i t u d e s i t e s .

A C K N O W L E D G E M E N T S

T h i s w o r k was s u p p o r t e d u n d e r g r a n t ONR(G)- 00009-66 f r o m the Office of N a v a l R e s e a r c h , Washington, D.C.

R E F E R E N C E S

[1] G. Drukarev, On the mean energy of electrons r e - leased in the ionization of gas, J. Phys. (USSR} 10 (1946) 81.

[2] W. B. Hanson and F.S. Johnson, Electron temper- atures in the ionosphere, M~m. Soc. Roy. Sci. Liege, S~ries 5, 4 (1961) 390.

[3] W. B. Hanson, Electron temperatures in the upper atmosphere, in: Space Research III (North-Holland Pub. Co., Amsterdam, 1963) p. 282

[4] A. Dalgarno, M.R.C.McDowell and R . J . Moffett, Electron temperatures in the ionosphere, Planet.

Space Sci. 11 (1963) 463.

[5] J. E. Geisler and S. A. Bowhill, Ionospheric temper- atures at solar minimum, J. Atmos. Terres. Phys.

27 (1965) 119.

[6] R. L. F. Boyd and W.J. Raitt, Positive ion temper- atures above the F-layer maximum, in: Space Re- search V (North-Holland Pub. Co., Amsterdam, 1965) p. 207.

[7] J.V. Evans, Ionospheric backseatter observations at Millstone Hill, Planet. Space Sci. 13 (1965) 1031.

[8] D. T. Farley, Observations of the equatorial iono- sphere using incoherent backscatter, in: Electron density profiles in the ionosphere and exosphere (North-Holland Pub. Co., Amsterdam, 1966} p. 446.

[9] J . R . Doupnik and J.S. Nisbet, Electron tempera- ture and density fluctuations in the daytime iono- sphere, in: Electron density profiles in ionosphere and exosphere (North-Holland Pub. Co., Amster- dam, 1966) p. 493.

(6)

[10] P. M. Banks, Ion t e m p e r a t u r e coupling in the iono- sphere, to be published, Planet. Space Sci. (1966).

[11] J . V . E v a n s , E l e c t r o n t e m p e r a t u r e s at midlati- tudes, J. Geophys. Res. 70 (1965) 4365.

[ 1 2 ] P . M . Banks, Collision frequencies and energy t r a n s f e r : electrons, to be published, Planet. Space Scl. (1966).

[13] S. Chapman and T. G. Cowling, Mathematical theo- ry of nonuniform gases (Cambridge University P r e s s , Cambridge, 1952).

[14] S. Chapman, The viscosity and t h e r m a l conductiv- ity of a completely ionized gas, Astrophys. J., 120 (1954) 151.

[15] L. Spitzer and R. Harm, Transport phenomena in a completely ionized gas, Phys. Rev. 89 (1953) 977.

[16] P . M . Banks, Electron t h e r m a l conductivity in the ionosphere, Earth Planet. Sci. Letters 1 (1966) 151.

[17] S. J. Bauer, Hydrogen and helium ions, Ann. Geo- phys. 22 (1966) 247.

[18] M. Nicolet, Aeronomy, to be published in Hand- buch der Physik (Geophysik)," Band XLIX (1967).

Références

Documents relatifs

This book describes and explores changes in the foci of research of Niels Bohr's Institute for Theoretical Physics in Copenhagen from the mid-1920s to the late 1930s.. The

Pour leur activité immunosuppressive, les corticoïdes sont utilisés pour la prophylaxie ou le traitement d’un éventuel rejet de greffe ou de la réaction du greffon

We also explore the consequences of a cloud feedback, arising from variations in the coverage of thin upper level clouds, in the climate of the Archean using a

To further investigate the possible relationship between altered intratumoral expression of xenobiotic-metabolizing enzymes and both breast tumorigenesis and tamoxifen resistance,

Cardio-Respiratory Events and Inflammatory Response After Primary Immunization in Preterm Infants &lt; 32 Weeks Gestational Age: A Randomized Controlled Study.. Wissal Ben Jmaa, MD 1

These structures were then used to evaluate the impact of the cyclization on the flexibility and on the stability through NMR experiments, molecular dynamics simulations, and

Conversely, in the BRCA1-mutated HCC1937 cell line, which was previously reported to include a TIC population that does not display a CD44 + /CD24 -/low antigenic pheno- type [33],

language value capture lvalue capture nested function gcc’ C no always statement expression gcc’ C no always. blocks objective C default object property gcc’ C