• Aucun résultat trouvé

AUTOIONIZATION ELECTRON SPECTRA RESULTING FROM COLLISIONS BETWEEN Li2 MOLECULES AND CORE PHOTOIONIZED Li+ ATOMIC ION

N/A
N/A
Protected

Academic year: 2021

Partager "AUTOIONIZATION ELECTRON SPECTRA RESULTING FROM COLLISIONS BETWEEN Li2 MOLECULES AND CORE PHOTOIONIZED Li+ ATOMIC ION"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00227231

https://hal.archives-ouvertes.fr/jpa-00227231

Submitted on 1 Jan 1987

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

AUTOIONIZATION ELECTRON SPECTRA RESULTING FROM COLLISIONS BETWEEN Li2

MOLECULES AND CORE PHOTOIONIZED Li+

ATOMIC ION

P. Gerard, D. Cubaynes, J. Bizau, F. Wuilleumier

To cite this version:

P. Gerard, D. Cubaynes, J. Bizau, F. Wuilleumier. AUTOIONIZATION ELECTRON SPEC- TRA RESULTING FROM COLLISIONS BETWEEN Li2 MOLECULES AND CORE PHOTOION- IZED Li+ ATOMIC ION. Journal de Physique Colloques, 1987, 48 (C9), pp.C9-719-C9-724.

�10.1051/jphyscol:19879122�. �jpa-00227231�

(2)

JOURNAL DE PHYSIQUE

Colloque C9, supplement au n012, Tome 48, dkcembre 1987

AUTOIONIZATION ELECTRON SPECTRA RESULTING FROM COLLISIONS BETWEEN Li, MOLECULES AND CORE PHOTOIONIZED Li+ ATOMIC ION

P. GERARD, D. CUBAYNES, J.M. BIZAU and F.J. WUILLEUMIER

Laboratoire de Spectroscopic Atomique et Ionique and LURE, Universite Paris-Sud, Bdt. 350, F-91405 Orsay Cedex, France

RESUME

Les r e s u l t a t s obtenus dans une rscente @tude de l a photoionisation du lithium atomique e t moleculaire sont prssentes. Une nouvelle i n t e r p r e t a t i o n e s t proposse.

ABSTRACT

The r e s u l t s obtained i n a recent photoemission studies of atomic and molecular

?i vapor, using electron spectrometry, a r e summarized. Suggestions for t h e explana- tion of the experimental observations are presented.

I. INTRODUCTION

In e a r l i e r studies of photoionization i n Li vapory1, using electron spectrometry, additional l i n e s t h a t could not be a t t r i b u t e d t o the photoionization of atoms, were observed. The kinettc energy of t h i s group of electrons was found t o be constant v~han the photon energy was varied between 75 eV and 150 eV. These k i n e t i c energies were measured, a t t h a t time, t o be between 48 eV and 50 eV. Their i n t e n s i t i e s were comparable t o the i n t e n s i t y of the atomic photoelectron l i n e s , a s I t can be seen i n figure 1 of reference 1. Two main reasons lead t o t h e conclusion t h a t these additio-

!?a7 lines should be a t t r i b u t e d t o Auger t r a n s i t i o n s i n a lithium molecule: i ) the corlstant value of t h e i r k i n e t i c energy a s a function of photon energy; i i ) t h e f a c t rhat Auger t r a n s i t i o n s are not possible a f t e r ionization of Li-atoms i n the 1s sub- she1 1. In addition, i n the energy range measured f o r these electrons, previous expe-

2 3

riments, involving electron impact o r ion impact ,had not revealed the existence of electron l i n e s a t energies lower than 50 eV. Only electrons emitted i n t h e autoio- nization of molecular excited s t a t e s had been observed ?n these experiments, above 53 eV. The f a c t t h a t no l i n e s had been observed below 50 eV was a t t r i b u t e d t o the low values of ionization crcss section by electron impact.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19879122

(3)

JOURNAL DE PHYSIQUE

However, the a t t r i b u t i o n of these l i n e s t o molecular Auger decay l e f t several questions open: F i r s t , the average f o r the lso- and lso; binding energies i n Liz had

2 9

been estimated t o be between 61.73 eV and 62.5 ev4. None of these values were com- patible w i t h the spectra observed a t t h a t time: assuming a pure Coulombic potential

4 u

curve f o r Liz

,

t h e estimated values f o r the molecular I s binding energies were i n t h e range from 65 eV t o 66.5 eV, i .e. i n the same binding energy region as the IS-electron binding energies i n atomic lithium (64.41 eV f o r the ls2s 3 S ionic s t a t e , 66.31 eV f o r the ls2s S s t a t e , according to Ref.5). These values were f a r from the 1 theoretical estimates. Second, a t the temperature used i n the photoemission experi- ments, t h e contribution of dimers t o the vapor pressure was supposed t o be i n the order of 1 x S 6 The i n t e n s i t y of the observed molecular s t r u c t u r e would have required molecular photoionitation cross sections considerably g r e a t e r than the atomic cross sections. No reason was found f o r a possible concentration of Liz dimer higher i n t h e source volume of the electron analyzer than i n the oven.

I I. EXPERIMENT

Under b e t t e r experimental conditions, we repeated and we extended the photoelec- tron spectrometry experiments on L i , using basically the same experimental s e t up, i .e. a furnace mounted on the axis of a cylindrical mirror electron analyzer (CMA).

However, higher photon flux were available i n these new experiments, because of the routine use of new toroidal grating monochromator. Thus, data could be obtained a t b e t t e r resolution and/or a t lower atomic d e n s i t i e s . In p a r t i c u l a r , we were able t o make study of the i n t e n s i t y variation of the electron l i n e s as a function of several

parameters such as the temperature i n the lithium furnace o r the photon energy near threshold and i n t h e v i c i n i t y of atomic resonance l i n e s .

111. RESULTS

channel number

0

Q) U)

\ 8 0 0 -

-

V) C

0

a

F i g . l - Electron spectrum f o l - lowing ionization of a Li va-

2 por by 91.50 eV. Peak noted

( 1 ) corresponds t o photoioni-

I zation of the 2s-electrons i n

I

L i atoms (Li+ l s 2 IS f i n a l

s t a t e ) . Peaks noted 2,3,4 and 5 corresponds to photoioniza-

1

t i o n of the Is-electrons i n L i

3 A atoms, the ion being l e f t i n

ls2s 3s (peak 2 ) , ls2s ( 3 ) , ls2p 3~ (4) and ls3s and ls3p

0) s t a t e s , respectively. Peaks noted A and a are o f molecular origin. (From Ref. 7)

.

200 400 600

(4)

The r e s u l t s obtained i n t h i s new s e r i e s of experiments a r e summarized i n Figu- r e s 1 t o 4. Fig.1 shows a complete electron spectrum of Li vapor taken a t 91.50 eV photon energy. Peaks noted 1, 2, 3, 4, and 5 are electron l i n e s due to photoioniza- tion of Li atoms i n the outer- and inner-shells, as explained i n the caption. Peaks noted A and a a r e the additional l i n e s previously a t t r i b u t e d t o Auger-decay of core- ionized Li molecules. As i n the previous experiments

,'

the k i n e t i c energy of these l i n e s has been found t o be constant when the photon energy was varied over an even wider energy range, including the Is-atomic ionization thresholds around 64 eV.

However, the absolute values measured f o r t h e k i n e t i c energies of the l i n e s were d i f - ferent.7 The main s t r u c t u r e s i n the electron spectrum were observed a t 51.56 ( 6 ) eV, 52.8(1) and 53.51 eV, about 3 eV higher than i n the e a r l i e r measurements.' A reason for the discrepancy between the two s e t s of values was found i n t h e c a l i b r a t i o n of the absolute k i n e t i c energy scale. Our values a r e i n excellent agreement with t h e energies of the molecular autoionizing electrons observed by electron impact ( 51.5, 51.6, 52.9 and 53.9 eV). 2

Because of the higher photon f l u x available, we were able t o work a t a much b e t t e r resolution of the monochromator (0.3 eV compared to 0.9 eV) and t o scan the photon energy range i n which l i n e s A and a appear. F i g . 2 presents spectra obtained f o r these 1 ines i n t h e i r threshold region, around 64 eV photon energy. Below 64 eV, they could not be detected. When one increases the photon energy by small s t e p s , they appear suddenly with a large i n t e n s i t y , f l ' r s t t h e A1 l i n e s ( 51.56 eV k i n e t i c energy), and second, l i n e A2 (52.8 eV) and a , above 66 eV. The excitation function we obtained f o r t h e i r i n t e n s i t y between 64 eV and 68 eV photon energy i s shown i n Fig.3. The atomic-ionization thresholds a r e marked i n the Figure. The two arrows on the top of the figure indicate the position of some resonant atomic l i n e s involving

KINETIC ENERGY ( e V )

hr

-

61.22 *) nv

-

s.n *r Fig.2- Electron spectra

showing the photon-energy dependence of the A-lines f o r various photon energies i n the region o f the Is- atomic i o n i z a t i o n thres- holds

.

From Ief t t o Eight and from top t o bottom, the photon energies are:

hv

-

66.15 N 64.22eVY 64.33 eV, 66.15

eV and 66.34 eV, respecti?

v e l y

.

(5)

C9-722 JOURNAL DE PHYSIQUE

Fig.3- Excitation function of the A-electron lines as a func- tion of photon energy. See text for detailed comments.

PHOTON ENERGY in e V

2 2 1 2

-two-electron core.-excited s t a t e s : 1s 2s S -+(ls2p P)3s P t r a n s i t i o n a t 65.29 eV,

2 2 1 2

1s 2s S 4 ( l s 2 p P)4s P t r a n s i t i o n a t 66.44 eV. From t h i s f i g u r e , one can d e t e r - mine a t h r e s h o l d energy o f 64.4(2) eV f o r t h e A1 l i n e , which coincides

,

w i t h i n t h e e r r o r bars, w i t h t h e f i r s t 1s-atomic i o n i z a t i o n thresh01 d.

F i n a l l y , i n F i g.4, we. present some qua1 i t a t i v e r e s u l t s , showing t h e temperature dependence o f t h e A - l i n e s . The t h r e e spectra, on t h e r i g h t p a r t , a r e t h e atomic inner-she1 1 p h o t o i o n i z a t i o n 1 ines, measured a t t h r e e d i f f e r e n t temperatures i n t h e oven. T h e i r i n t e n s i t y has been normalized t o t h e same a r b i t r a r y u n i t s . The t h r e e spectra on t h e l e f t p a r t o f t h e f i g u r e a r e t h e A-lines taken a t t h e same temperatu- r e s . The r e l a t i v e v a r i a t i o n o f t h e i n t e n s i t y o f these A - l i n e s d i f f e r s g r e a t l y from t h e i n t e n s i t y of t h e group o f atomic l i n e s , which suggests t h a t t h e i r o r i g i n i s n o t due t o molecular p h o t o i o n i z a t i o n

.

I V

.

INTERPRETATION

The new sets o f r e s u l t s presented above l e a d t o a r e i n t e r p r e t a t i o n o f t h e L i data. A sumnary o f the. experimental observations can be made as follows. The obser- ved l i n e s a r e n o t Auger l i n e s , because t h e i r a c t u a l k i n e t i c energy i s d e f i n i t e l y t o o high, and because no enhancement was found i n t h e molecular p h o t o i o n i z a t i o n cross s e c t i o n r e c e n t l y c a l ~ u l a t e d ~ ' ~ which would have helped t o e x p l a i n t h e i n t e n s i t i e s measured w i t h such a low r e l a t i v e abundance of L i p molecule ( 1 t o 2%). The p o s i t i o n o f t h e l i n e s i s now c o n s i s t e n t w i t h them being assigned t o molecular a u t o i o n i z a t i o n

3 2

l i n e s associated w i t h t h e L i z ( 1 r IT n + ) n e u t r a l e x c i t e d species

.'"

Autoioniza- t i o n l i n e s corresponding t o n @ = ll~,, 9

lo;,

3u and l-rr have been observed a t t h e

9 9

same k i n e t i c energies under e l e c t r o n impact. (Ref. 2)

F o l l o w i n g t h e a n a l y s i s o f L a r k i n s and ~ i c h a r d s , ~ we come t o t h e conclusion t h a t t h e l i n e s A, observed i n our experiment between 50 eV and 53 eV k i n e t i c energy, a r e the consequence o f ion-molecule c o l l is i o n processes. Among. several p o s s i b l e mecha-

(6)

nisms suggested t o account f o r t h e

observation^,^

we t h i n k t h a t t h e f o l l o w i n g se- quence o f processes e x p l a i n s reasonably we1 1 t h e experimental r e s u l t s , i n p a r t i c u l a r t h e f a c t t h a t t h e t h r e s h o l d f o r t h e A - l i n e s i s equal t o the atomic i n n e r - s h e l l t h r e s - hold.

1. Atomic p h o t o i o n i z a t i o n : ~i ( l s 2 2 s )

+

h J

-+

Li'(lsn1)

+

e-

*

2. on-mlecule c o l l i s i o n : ~ i + ( l m l ) + ~ i ~ ( 1 r ~ 2 ~ ~ ) + ~ i + ( l s ~ ) + ~ i ~ ( l 2 2 % ~ n +

*

3 2 4

3. Molecular a u t o i o n i z a t i o n : L i z ( l o - 2 v nf ) -4 Li; ( l o - 20- ) + e-

9 9

Since t h e molecular s t r u c t u r e has been found t o resonate a t some photon ener- g i e s corresponding t o t h e e x c i t a t i o n energies o f two-electron atomic t r a n s i t i o n s t o l s n l n ' l

'

e x c i t e d s t a t e s o f atomic l i t h i u m , c o l l i s i o n process 2 c o u l d a l s o i n v o l v e core-exci t e d atomic 1 i t h i um. 9

A q u a l i t a t i v e a n a l y s i s o f t h i s phenomenon would r e q u i r e accurate measurements of t h e t e a E r a t u r e i n t h e i n t e r a c t i o n volume. However, when one takes i n t o account t h e r e l a t i v s abundance o f L i + i o n s produced by p h o t o i o n i z a t i o n t o t h e r e l a t i v e abundance o f Li, molecule ( I t o 2%) and t h e d e n s i t y o f atomic L i i n t h e

KINETIC E N ~ R G Y ( e ~ ) 3

beam (1312 t o 1013 atomslcm ) , one

;en ends up w i t h c r o s s s e c t i o n f o r p r o -

cess 2 t h a t should have values i n t h e

boa 10-15to cm2 range t o e x p l a i n

t h e data. This does n o t seem t o be un-

zrr reasonable, s i n c e i t i s e s t a b l i s h e d

t h a t ion-atom cross s e c t i o n s f o r i n - n e r - s h e l l e x c i t a t i o n and i o n i z a t i o n can be g r e a t e r than photodonization ,, cross s e c t i o n s by several orders o f

magnitude. 1 0 , l l

W 2w

158

a 2w 1-

Fig.4- Electron spectra following

sr ionization of a Li vapor at 81 eV photon energy, for three different temperatures in the oven. The left colunm shows the intensity of the A and a electron lines. The right

2% column presents the intensity of the atomic photoionization lines to which all spectra have been normali-

I zed. The spectra are not corrected for the energy transmission of the

I I ' tw CMA.

I : I I , ' , I I so

I I C%.&,c:'i" 't' '111t%,,,

BINDING ENERGY (eV)

(7)

(39-724 JOURNAL DE PHYSIQUE

One should note t h a t tl.lis i n t e r p r e t a t i o n of the spectrun~ does not change much the values of t h e p a r t i a l photoionization cross sections t h a t have been measured f o r atomic l i t h i ~ m . ~ In t h e analysis of the d a t a , only t h e s p e c t r a have been kept t h a t shows a r e l a t i v e i n t e n s i t y f o r t h e i n t e n s i t y of the A-lines lower than l o % , i n com- parison t o the i n t e n s i t y of the atomic l i n e s . As f o r t h e Auger l i n e s , t h e i r i n t e n s i - ty under our experimental conditions,is probably t o weak t o allow t h e i r detection.

V . ACKOWLEDGEMENTS

The authors a r e extremely grateful t o F. Larkins f o r helpful discussion and suggestions in t h e i n t e r p r e t a t i o n of the data.

1. S . Krummacher, V . Schmidt, J.M. Bizau, D.L. Ederer, P. Dhez and F.J. Wuilleumier, J . Phys. B

-

15,4363(1982).

2. W.H.E. Schwarz, W. Butscher, D.L. Ederer, T.B. Lucatorto, B. Ziegenbein, W. Meh- lhorn and H . Prompeler, J . Phys. B - 11,591(1978;.

3. P. liem, R. Bruch and N . S t o l t e r f o h t , J . Phys. B

8,

L480(1975).

4. W.H.E. Schwarz and T.C. Chang, I n t . J . Quantum Chem. =,91(1976).

5. C. Moore, Table of Energy Levels, National Bureau of Standards, Washington,DC, 1971.

6. A.N. Nesmeyanov, in:"Vapor Pressure of t h e Chemical Elements", Elsevier, Amster- dam, 1963, p.122.

7 .P .Gerard,Thesis 3Sme Cycle, University Paris-Sud, Orsay, 1984 (unpublished).

8. G.B. Backsay, G. Bryant and N.S. Hush, 1 n t . J . Quant. Chem.,1987.

9. F.P. Larkins and J.A. Richards, Aust. J . Phys. 39,1(1987).

-

10. U. Fano and W . Lichten, Phys. Rev. L e t t . %,627(1965).

11. F.P. Larkins, J . Phys. B - 5,571(1972).

Références

Documents relatifs

- Total electron capture cross section by multi- charged ions from atomic hydrogen as a function of the. projectile charge at 3.5

mental results of reference [4] ; Our results using translation factors ; - - - - Our results without translation factors with origin of electronic coordinates at

The ions emitted from the stagnation layer, formed in the vicinity of the collision front between two colliding plasmas, were found to possess a narrower and more symmetric

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Conventional microanalytical techniques (Optical Microscopy OM, Scanning Electron Microscopy SEM, Electron Probe Micro Analysis EPMA) were used in combination with new

Fig.. Moreover, we are able to record atomic images of graphite in a VTR by taking one frame in less than 0.5sec. The probing tips are made of tungsten or platinum, by

On discute l a formation des rayons x quaisimoleculaires dans une collision lente, presque symmètrique, entre un ion et un atom, et la formation des rayons x dans la

Coincidence studies between energy selected electrons and the ions produced in the decay of a core hole excited state in free molecules reveal the individual pathways of