• Aucun résultat trouvé

A D.C. QUADRUPOLE 7T TEST FACILITY

N/A
N/A
Protected

Academic year: 2021

Partager "A D.C. QUADRUPOLE 7T TEST FACILITY"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223640

https://hal.archives-ouvertes.fr/jpa-00223640

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A D.C. QUADRUPOLE 7T TEST FACILITY

J. de Reuver, H. Steffens, L.J.M. van de Klundert

To cite this version:

J. de Reuver, H. Steffens, L.J.M. van de Klundert. A D.C. QUADRUPOLE 7T TEST FACILITY.

Journal de Physique Colloques, 1984, 45 (C1), pp.C1-813-C1-816. �10.1051/jphyscol:19841166�. �jpa-

00223640�

(2)

JOURNAL DE PHYSIQUE

Colloque C l , suppl6ment au no 1, Tome 45, janvier 1984 page CI-813

A D ,C a QUADRUPOLE 7T

TEST

F A C I L I T Y

J.L. de Reuver, H.A. Steffens and L.J.M. van de Klundert

Twente V n i o e r s i t y of TeehnoZogy, Department of Applied Physics, P.O. Box 217, 7500 AE Eizschede, !The NetherZands

%sum&

-

On presente des informations detaillees sur la conception et la rea- lisation d'un banc d'essais pour cdbles, avec des courants de 20 kA.

Abstract

-

Detailed information on the concept and construction concerning a new type of test facility for cables up to 20 k~ is presented.

INTRODUCTION

Recent development of superconducting high current cables needs a larger high field testfacilitydesign. Present facilities usually consist of a solenoid or a split pair magnet. In both cases ambivalentcies often arise, for an optimal combination of test space, magnet volume and interchangability of the testcable is hard to achieve. Con- sidering the above mentioned items a new type of testfacility has been developed at the Division of Industrial Application of Superconductivity at Twente University.

THE CONCEPT

The D.C. quadrupole 7T magnet consists of two coaxial solenoids carrying current in opposite direction. The available testvolume has the shape of a torus with a large diameter of 200 mm and a small diameter of 30 to 70 mm according to the gap between the two coils (see Fig. 1).

Fig. 1

-

Magnet configuration.

AS a take off the diameter of 200 mm is chosen providing us a testlength of 600 Calculations of the field show that the diameter where the maximal field occurs equals this mean diar2eter in a good approximation. A secondconstraint is the volume of superconducting wire which is at our disposal to wind the magnet. This limitation

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19841166

(3)

C1-814 JOURNAL

DE

PHYSIQUE

i s mainly a m a t t e r of budget. An-optimal geometry, concerning width and h e i g h t of t h e c o i l ' s c r o s s - s e c t i o n , c a n b e found, independent of t h e superconducting w i r e ' s q u a l i t y o r t h e wanted f i e l d magnitude, i f t h e r a t i o of t h e f i e l d i n t h e t e s t volume and t h e maximum f i e l d a t t h e windings h a s a maximumfora given g a p d i s t a n c e . I n c a s e of t h i s quadrupole geometry two maxima occur. These maxima and t h e o b t a i n e d t e s t f i e l d f o r a c e r t a i n combination of h e i g h t and width of t h e c r o s s - s e c t i o n a g a i n s t t h e g a p d i s t a n c e a r e given i n Fig. 2.

Together w i t h this minimum t h e f i e l d r a t i o a n d t h e g a p d i s t a n c e a t which i t o c c u r s a r e f i x e d . A combination of t h e s e g r a p h s o f f e r s u s equi-width and - h e i g h t l i n e s ( F i g . 3 ) . They can b e extended w i t h equivolume l i n e s . Every c r o s s i n g i n t h i s p l o t corresponds with a f i e l d r a t i o and homogenity. Table 1 can be deduced i n t h i s way.

Fig. 2

-

Determination of minimum magnetic f i e l d a t t h e windings and t h e corresponding t e s t f i e l d magni- t u d e f o r a c e r t a i n shape f o r t h e c r o s s - s e c t i o n .

1+2: maximum f i e l d s a t t h e windings.

3: f i e l d i n t h e testuolume.

c u r r e n t d e n s i t y 125 ~ / m m ~ . d: gap d i s t a n c e .

4 5 .

-

I-

-

7 4 . 0 .

3.5

3.0

25.

Fig. 3

-

Optima f o r a given width ( b )

Vz23 and h e i g h t ( h i n mm) o f t h e c r o s s -

. s e c t i o n of t h e c o i l . Equivolume ( v

i n dm3) l i n e s a r e given a s w e l l .

2 0 30 40 50 60

d Imml

(4)

width

-iio-- ---

hg-ight

--- voiu_rne_ ---

PCP

---

---homogen&:z

---- f l?ir!ra_t&o--

i n c r e a s e c o n s t a n t i n c r e a s e d e c r e a s e i n c r e a s e i n c r e a s e c o n s t a n t i n c r e a s e i n c r e a s e d e c r e a s e i n c r e a s e i n c r e a s e 3

1

i n c r e a s e d e c r e a s e c o n s t a n t i n c r e a s e d e c r e a s e d e c r e a s e 4 i n c r e a s e d e c r e a s e i n c r e a s e c o n s t a n t i n c r e a s e c o n s t a n t Table 1

-

I n f l u e n c e on homogenity and f i e l d r a t i o i f t h e t e s t f i e l d i s i n c r e a s e d by changing a r e l e v a n t parameter combination under o p t i m a l geometry c o n d i t i o n s .

No. 1 and 2 show t h a t any change i n a width o r h e i g h t t o i n c r e a s e t h e volume f o r h i g h e r f i e l d m a g n i t u d e s , r e f l e c t s i n a d e c r e a s e of t h e g a p d i s t a n c e under optimal geometry c o n d i t i o n s . No. 3 shows t h a t l e s s f a v o u r a b l e c o n d i t i o n s a r i s e i f t h e volume i s k e p t c o n s t a n t and t h e combination width-height i s v a r i e d i n favour of t h e width.

The optimum moves i n t h e d i r e c t i o n of l a r g e r gaps which can be c o n c i l i a t i n g . From no. 4 we can s e e t h a t while s c a l i n g up w i t h keeping t h e g a p d i s t a n c e c o n s t a n t t h e f i e l d r a t i o w i l l b e c o n s t a n t a s w e l l , i n good approximation however, a s h i f t o c c u r s concerning width and h e i g h t i n favour of t h e width.

I n most p r a c t i c a l c a s e s t h e homogenity demand i s l e s s s t r i n g e n t because t h e volume of superconductor i n t h e magnet exceeds t h e t e s t v o l u m e c o n s i d e r a b l y . The main d e t a i l s of t h e f i n a l concept a r e given i n Table 2.

Table 2. - Construction d e t a i l s . M u l t i f i l a m e n t a r y wire: NbTi/Cu

Diameter: .7 mm w i t h o u t - 7 5 mm with i n s u l a t i o n Number of f i l a m e n t s : 132

CN : S.C. : 2.5 : 1

S h o r t sample c u r r e n t s : 6T:120A, 7T:98A, 8T:80A Number o f windings: 25000

Impregnant: MY 740/MY906/~~ 062 100/80/.2 F i l l e r : 60 weight % Quartz c7 < 4 0 um T o t a l mass: 200 kg

Item 5 0 70 mm

... GSEI-~!? ...

T e s t fieldmaximum 7.0 5.3 4.4 T

F i e l d r a t i o .93 .68 .55

-

F i e l d - c u r r e n t r a t i o 7 5 55 45 mT/A

S e l f inductance (22.2 H p e r c o i l ) 31 34 36 H

Load energy 156 171 182 kJ

Mutual f o r c e 900 600 500 kN

Homogenity R = 10 m 2 2 2 ,

R = 2 0 m 8 8 8 %

THE CONSTRUCTION

Both c o i l s a r e made of m u l t i f i l a m e n t a r y wire. They a r e wound on aluminium c y l i n d e r s . T h i s c o n s t r u c t i o n m a t e r i a l i s used f o r t h e house t h a t surrounds t h e c o i l s a s w e l l . The w i r e i s wet-wound w i t h an e p o x y , f i l l e d w i t h q u a r t z . Good r e s u l t s with vacuum impregnation a r e n o t l i k e l y because t h e f i l l i n g f a c t o r wire-impregnant i s chosen t o be very high. The windings a r e i n c l o s e c o n t a c t and no p a t h f o r t h e f i l l e d epoxy w i l l be f r e e . Around t h e o u t e r w i n d i n g s g l a s s f i b e r , a s an i n essence redundant r e i n f o r c e m e n t , i s wound. To a v o i d e l e c t r i c a l c o n t a c t between house and w i r e an i n s u l a t o r of GI1 m a t e r i a l i s a p p l i e d . The aluminium house c o n s t r u c t i o n t h a t w i l l b a l a n c e t h e expanding f o r c e s of 900 k N a s w e l l a s t h e c o i l w i t h a maximum f o r c e i n a x i a l d i r e c t i o n of 1400 kN needs s p e c i a l c a r e . The l a t t e r f o r c e i s d i s t r i b u t e d

(5)

JOURNAL DE PHYSIQUE

r a t h e r homogeneous which i s a p r o p e r t y of t h e c o i l c o n f i g u r a t i o n . The f o r c e s i n t h e r a d i a l d i r e c t i o n a r e r e l a t i v e l y s m a l l compared with t h e s e azimuthal ones. T e s t s t o examine i f t h e c o i l can s t a n d t h e s e f o r c e s on a t e s t c o i l wound w i t h copper w i r e have ,been f i n i s h e d s u c c e s f u l l y .

THE QUENCH BEHAVIOUR

I n emergencies t h e e n t h a l p y of t h e copper m a t r i x i s s u f f i c i e n t t o keep a maximum h e a t r i s e b e l o w 100 K r e g a r d i n g a w o r s t c a s e . Some i n t e r e s t i n g f e a t u r e s a r e t h e propagation t h a t can b e c a l c u l a t e d t o be 1 m / s ( / I / ) and t h e matching o v e r a l l time c o n s t a n t o f 1 s e c . C a l c u l a t i o n s on t h e worst c a s e g i v e a t o p v o l t a g e of 4000 V r e s - p o n s i b l e f o r t h e d i s s i p a t i o n . F a s t propagat-ion g u a r a n t e e s t h e p r e v e n t i o n of high g r a d i e n t s i n t h e r e s i s t a n c e a l o n g t h e windings which would l e a d t o e l e c t r i c a l outburn damage. E v i d e n t l y good i n s u l a t i o n p r o v i s i o n i s taken c a r e f o r . A dump r e s i t o r of 20 D d e c r e a s e s t h e t o p v o l t a g e down t o 3000 V. A h i g h l y r e s i s t i v e p e r s i s t e n t mode s w i t c h i s r e q u i r e d . I t has t o d e a l w i t h a v o l t a g e o f 1000 V f o r a s h o r t time. The dumped energy w i l l o n l y b e 1/3 of t h e t o t a l l o a d energy. The tempe- r a t u r e r i s e w i l l be 75 K now. I n t h e s e c a l c u l a t i o n s no assumptions on t h e c o i l house behaviour have been included.

DISCUSSION

The manner t o o b t a i n an optimum i n t h e v o l u m e r a t i o testspace-magnet,combines t h e advantage of t h e i n t e r c h a n g a b i l i t y of a s p l i t p a i r magnet and t h e r e l a t i v i l y h i g h e r

fieldratio testspace-coilwindings o f a s i n g l e s o l e n o i d . I n t h e l a t e r c a s e f o r con- v e n t i o n a l s i t u a t i o n s t h i s r a t i o w i l l be h i g h e r .

The c o n s t r u c t i o n i s simple. Many a s p e c t s , l i k e manufacture o f t h e c o i l s , c o o l down a n d q u e n c h p r o t e c t i o n can be t r e a t e d i n t h e approved way.

A s p e c i a l item is t h e n e g a t i v e c o u p l i n g of t h e two c o i l s . This f a c t d i m i n i s h e s t h e s e l f i n d u c t a n c e a n d t h e r e l a t e d load energy. However, t h e c o n s t r u c t i o n s complexity i n c r e a s e s because of t h e induced expanding f o r c e s . Surveying t h i s , t h e good t r a i n i n g behaviour of s o l e n o i d s i s expected t o b e p r e s e r v e d .

The n e g a t i v e coupling, mentioned above, g u a r a n t e e s t h e absence of i n d u c t i v e coupling w i t h t h e t e s t s a m p l e . The magnet is t h e r e f o r e very a p p r o p r i a t e f o r t h e i n v e s t i g a t i o n of a . c . a p p l i c a t i o n s .

A f u t u r e o p t i o n i s an e x t e n s i o n w i t h a cryogenic 20 kA c u r r e n t source. The low f i e l d s c a t t e r background is t h e r e f o r e favourable. To complete t h e f a c i l i t y i n t h i s way i s s e t an aim f o r t h e n e a r f u t u r e . Of minor importance i s t h e p o s s i b i l i t y t o use t h e magnet f o r high g r a d i e n t f i e l d t e s t i n g a s w e l l .

CONCLUSION

Applying a simple quadrupole geometry, a t e s t f a c i l i t y can be developed having t h e b e n e f i t of a high r a t i o of t h e f i e l d i n t h e t e s t v o l u m e and t h e maximum f i e l d a t t h e windings. A s themagnetvolume compared w i t h t h e achieved t e s t v o l u m e c a n be k e p t small a low budget t e s t f a c i l i t y f o r high c u r r e n t c a b l e s can be a f f o r d e d . Other advantages of t h i s system, i f d e s i r e d , a r e t h e e a s y i n t e r c h a n g a b i l i t y of t h e samples and t h e non-inductive coupling between t h e sample and magnet. Summarizing t h e b e n e f i t s t h e f p t u r e a p p l i c a t i o n of t h i s t e s t f a c i l i t y l o o k s promising.

REFERENCE

1. Hagedorn, D . J . , T h e s i s Bochum (W.73).

Références

Documents relatifs

Are there development methodologies and simulation tools of Saturated Cores Fault Current Limiters, allowing analysing its performance in power grids with

(a) The square base image of the emitters from the hole mesh indicates that a short mean free path developed in the hole mesh (tilt angle 0 ' ).. (b) The entire emitter set from

On a étudié deux solu- tions : d'abord une bobine composée d'un supraconducteur de Nb-Ti stabilisé avec aluminium ensuite un solenoïde transformateur avec un bobinage primaire

Abstract - A pulsed superconducting magnet with a stored energy of 4 MJ has been constructed and successfully charged in dc operation.. The conductor for the magnet is stabi-

In particular, following the ’down’ market, when momentum effect appears weak, the profit of reversal strategy is significantly higher than following ’up’ market, when momentum

Dans la première étude (A), composée de trois expérimentations, nous présentons l’influence de la texture, en l’absence de contact tactile, sur l’attitude

The objectives of this study were to (i) compare the incidence of de novo solid organ cancers after LT in a single institution with regional data; (ii) identify risk factors

To illustrate this response specificity to visual object category information in the gamma-band, Figure 4 and Figure S2 in Supplementary Material depict examples of