• Aucun résultat trouvé

Representation theory of the Mantaci-Reutenauer algebra

N/A
N/A
Protected

Academic year: 2021

Partager "Representation theory of the Mantaci-Reutenauer algebra"

Copied!
85
0
0

Texte intégral

(1)

Representation theory of the Mantaci-Reutenauer algebra

C´ edric Bonnaf´ e

CNRS (UMR 6623) - Universit´ e de Franche-Comt´ e (Besan¸ con)

Groups in Galway, May 2006

(2)

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(3)

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(4)

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(5)

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(6)

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(7)

Solomon’s descent algebra

Let (W , S ) be a finite Coxeter group:

W =< S|∀ s, s 0 ∈ S, s 2 = (ss 0 ) m

ss0

= 1 >

Length function: ` : W → N

Parabolic subgroups: I ⊂ S, W I =< I >, (W I , I ) is a finite Coxeter group.

X I = {x ∈ W | ∀ w ∈ W I , `(xw ) > `(x )} X I − → W /W I

x 7→ xW I

(8)

Solomon’s descent algebra

Let (W , S ) be a finite Coxeter group:

W =< S|∀ s, s 0 ∈ S, s 2 = (ss 0 ) m

ss0

= 1 >

Length function: ` : W → N

Parabolic subgroups: I ⊂ S, W I =< I >, (W I , I ) is a finite Coxeter group.

X I = {x ∈ W | ∀ w ∈ W I , `(xw ) > `(x )} X I − → W /W I

x 7→ xW I

(9)

Solomon’s descent algebra

Let (W , S ) be a finite Coxeter group:

W =< S|∀ s, s 0 ∈ S, s 2 = (ss 0 ) m

ss0

= 1 >

Length function: ` : W → N

Parabolic subgroups: I ⊂ S, W I =< I >, (W I , I ) is a finite Coxeter group.

X I = {x ∈ W | ∀ w ∈ W I , `(xw ) > `(x )}

X I − → W /W I

x 7→ xW I

(10)

Solomon’s descent algebra

Let X IJ = (X I ) −1 ∩ X J

X IJ − → W I \W /W J d 7→ W I dW J

If d ∈ X IJ , then W Id W J = W I∩

d

J X J = a

d∈X

IJ

X I∩ I

d

J .d

Solomon (1976): x I = X

w∈X

I

w ∈ Z W

Σ(W ) := ⊕

I ⊂S Z x I ⊂ Z W θ : Σ(W ) −→ Z Irr W

x I 7−→ Ind W W

I

1 I x I x J = X

d∈X

IJ

x I x I I

d

J d = X

d∈X

IJ

x I∩

d

J d = X

d∈X

IJ

x

d−1

I∩J

(11)

Solomon’s descent algebra

Let X IJ = (X I ) −1 ∩ X J

X IJ − → W I \W /W J d 7→ W I dW J

If d ∈ X IJ , then W Id W J = W I∩

d

J X J = a

d∈X

IJ

X I∩ I

d

J .d

Solomon (1976): x I = X

w∈X

I

w ∈ Z W

Σ(W ) := ⊕

I⊂S Z x I ⊂ Z W θ : Σ(W ) −→ Z Irr W

x I 7−→ Ind W W

I

1 I

x I x J = X

d∈X

IJ

x I x I I

d

J d = X

d∈X

IJ

x I∩

d

J d = X

d∈X

IJ

x

d−1

I∩J

(12)

Solomon’s descent algebra

Let X IJ = (X I ) −1 ∩ X J

X IJ − → W I \W /W J d 7→ W I dW J

If d ∈ X IJ , then W Id W J = W I∩

d

J X J = a

d∈X

IJ

X I∩ I

d

J .d

Solomon (1976): x I = X

w∈X

I

w ∈ Z W

Σ(W ) := ⊕

I⊂S Z x I ⊂ Z W θ : Σ(W ) −→ Z Irr W

x I 7−→ Ind W W

I

1 I x I x J = X

d∈X

IJ

x I x I I

d

J d = X

d∈X

IJ

x I∩

d

J d = X

d∈X

IJ

x

d−1

I∩J

(13)

Solomon’s descent algebra

Theorem (Solomon).

Σ(W ) is a subalgebra of Z W . θ is a morphism of algebras.

Ker θ = X

I ≡J

Z (x I − x J ).

Q Ker θ is the radical of Q Σ(W ).

θ(w 0 ) = ε.

I ≡ J ⇔ W I ∼ W J .

w 0 is the longest element of W

(14)

Solomon’s descent algebra

Further works:

Idempotents (Bergeron-Bergeron-Howlett-Taylor) Cartan matrix unitriangular (?)

Modular representations (Atkinson-Pfeiffer-Van Willigenburg):

simples, radical...

Lie idempotents (Reutenauer, Erdmann-Schocker) Symmetry property (Blessenhohl-Hohlweg-Schocker):

θ(x I )(x J ) = θ(x J )(x I )

Complex reflection groups (Mathas)

Loewy length (B.-Pfeiffer): all cases except type D 2n+1 ...

(The Loewy length of an algebra A is the minimal natural number

k > 1 such that (Rad A) k = 0)

(15)

Solomon’s descent algebra

Further works:

Idempotents (Bergeron-Bergeron-Howlett-Taylor) Cartan matrix unitriangular (?)

Modular representations (Atkinson-Pfeiffer-Van Willigenburg):

simples, radical...

Lie idempotents (Reutenauer, Erdmann-Schocker) Symmetry property (Blessenhohl-Hohlweg-Schocker):

θ(x I )(x J ) = θ(x J )(x I )

Complex reflection groups (Mathas)

Loewy length (B.-Pfeiffer): all cases except type D 2n+1 ...

(The Loewy length of an algebra A is the minimal natural number

k > 1 such that (Rad A) k = 0)

(16)

Solomon’s descent algebra

Theorem (B.-Pfeiffer, 2005). Let σ denote the automorphism

of W induced by conjugacy by w 0 . Then the Loewy length of

Q Σ(W ) σ is d|S|/2e.

(17)

Solomon’s descent algebra

Problem: θ is surjective if and only if W is a product of symmetric

groups.

(18)

Mantaci-Reutenauer algebra Coxeter group of type B

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(19)

Mantaci-Reutenauer algebra Coxeter group of type B

Let (W n , S n ) be a Coxeter group of type B n .

i i i · · · i

t s 1 s 2 s n−1

t 1 = t , t i +1 = s i t i s i

I n = {1, 2, . . . , n} ∪ {−1, −2, . . . , −n} W n = {σ : I n − → I n | ∀ i ∈ I n , σ(−i ) = −σ(i )}

s i = (i , i + 1)(−i , −i − 1) t i = (i , −i)

Let T n : Z W n → Z : canonical symmetrizing form

(20)

Mantaci-Reutenauer algebra Coxeter group of type B

Let (W n , S n ) be a Coxeter group of type B n .

i i i · · · i

t s 1 s 2 s n−1

t 1 = t , t i +1 = s i t i s i

I n = {1, 2, . . . , n} ∪ {−1, −2, . . . , −n} W n = {σ : I n − → I n | ∀ i ∈ I n , σ(−i ) = −σ(i )}

s i = (i , i + 1)(−i , −i − 1) t i = (i , −i)

Let T n : Z W n → Z : canonical symmetrizing form

(21)

Mantaci-Reutenauer algebra Coxeter group of type B

Let (W n , S n ) be a Coxeter group of type B n .

i i i · · · i

t s 1 s 2 s n−1

t 1 = t , t i +1 = s i t i s i

I n = {1, 2, . . . , n} ∪ {−1, −2, . . . , −n} W n = {σ : I n − → I n | ∀ i ∈ I n , σ(−i ) = −σ(i )}

s i = (i , i + 1)(−i , −i − 1) t i = (i , −i)

Let T n : Z W n → Z : canonical symmetrizing form

(22)

Mantaci-Reutenauer algebra Coxeter group of type B

Let (W n , S n ) be a Coxeter group of type B n .

i i i · · · i

t s 1 s 2 s n−1

t 1 = t , t i +1 = s i t i s i

I n = {1, 2, . . . , n} ∪ {−1, −2, . . . , −n}

W n = {σ : I n − → I n | ∀ i ∈ I n , σ(−i ) = −σ(i )}

s i = (i , i + 1)(−i , −i − 1) t i = (i , −i)

Let T n : Z W n → Z : canonical symmetrizing form

(23)

Mantaci-Reutenauer algebra Coxeter group of type B

Let (W n , S n ) be a Coxeter group of type B n .

i i i · · · i

t s 1 s 2 s n−1

t 1 = t , t i +1 = s i t i s i

I n = {1, 2, . . . , n} ∪ {−1, −2, . . . , −n}

W n = {σ : I n − → I n | ∀ i ∈ I n , σ(−i ) = −σ(i )}

s i = (i , i + 1)(−i , −i − 1) t i = (i , −i)

Let T n : Z W n → Z : canonical symmetrizing form

(24)

Mantaci-Reutenauer algebra Some reflection subgroups

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(25)

Mantaci-Reutenauer algebra Some reflection subgroups

S −n = {s 1 , . . . , s n−1 }, W −n =< S −n >' S n

S n 0 = S n ∪ {t 1 , . . . , t n }

W n = S n n < t 1 , . . . , t n >

Comp(n) = {signed compositions of n}

| Comp(n)| = 2.3 n−1 C = (c 1 , . . . , c r ), |c 1 | + · · · + |c r | = n

W C ' W c

1

× · · · × W c

r

⊂ W n

S C 0 = S n 0 ∩ W C ⇒ W C =< S C 0 >

(26)

Mantaci-Reutenauer algebra Some reflection subgroups

S −n = {s 1 , . . . , s n−1 }, W −n =< S −n >' S n

S n 0 = S n ∪ {t 1 , . . . , t n }

W n = S n n < t 1 , . . . , t n >

Comp(n) = {signed compositions of n}

| Comp(n)| = 2.3 n−1 C = (c 1 , . . . , c r ), |c 1 | + · · · + |c r | = n

W C ' W c

1

× · · · × W c

r

⊂ W n

S C 0 = S n 0 ∩ W C ⇒ W C =< S C 0 >

(27)

Mantaci-Reutenauer algebra Some reflection subgroups

S −n = {s 1 , . . . , s n−1 }, W −n =< S −n >' S n

S n 0 = S n ∪ {t 1 , . . . , t n }

W n = S n n < t 1 , . . . , t n >

Comp(n) = {signed compositions of n}

| Comp(n)| = 2.3 n−1 C = (c 1 , . . . , c r ), |c 1 | + · · · + |c r | = n

W C ' W c

1

× · · · × W c

r

⊂ W n

S C 0 = S n 0 ∩ W C ⇒ W C =< S C 0 >

(28)

Mantaci-Reutenauer algebra Definition

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(29)

Mantaci-Reutenauer algebra Definition

X C = {x ∈ W n | ∀ w ∈ W C , `(xw ) > `(x )}

X C − → W n /W C x 7→ xW C

X CD = (X C ) −1 ∩ X D X CD

− → ∼ W C \W n /W D

d 7→ W C dW D

If d ∈ X CD , then W Cd W D = W C∩

d

D

BUT (in general)

X D 6= a

d∈X

CD

X C C

d

D .d

(30)

Mantaci-Reutenauer algebra Definition

X C = {x ∈ W n | ∀ w ∈ W C , `(xw ) > `(x )}

X C − → W n /W C x 7→ xW C X CD = (X C ) −1 ∩ X D

X CD

− → ∼ W C \W n /W D

d 7→ W C dW D

If d ∈ X CD , then W C ∩ d W D = W C∩

d

D

BUT (in general)

X D 6= a

d∈X

CD

X C C

d

D .d

(31)

Mantaci-Reutenauer algebra Definition

X C = {x ∈ W n | ∀ w ∈ W C , `(xw ) > `(x )}

X C − → W n /W C x 7→ xW C X CD = (X C ) −1 ∩ X D

X CD

− → ∼ W C \W n /W D

d 7→ W C dW D

If d ∈ X CD , then W C ∩ d W D = W C∩

d

D

BUT (in general)

X D 6= a

d∈X

CD

X C C

d

D .d

(32)

Mantaci-Reutenauer algebra Definition

Let x C = X

w∈X

C

w ∈ Z W n

Let Σ 0 (W n ) := ⊕

C ∈Comp(n) Z x C ⊂ Z W n

Let

θ 0 : Σ 0 (W n ) −→ Z Irr W n x C 7−→ Ind W W

n

C

1 C

Theorem (B.-Hohlweg, 2004). Σ 0 (W n ) is a subalgebra of Z W n . θ 0 is a surjective morphism of algebras. Ker θ 0 = X

C≡D

Z (x C − x D ).

Q Ker θ 0 is the radical of Q Σ 0 (W n ).

Σ 0 (W n ) ' Mantaci-Reutenauer algebra.

T n (xy ) = hθ 0 (x ), θ 0 (y )i.

(33)

Mantaci-Reutenauer algebra Definition

Let x C = X

w∈X

C

w ∈ Z W n

Let Σ 0 (W n ) := ⊕

C ∈Comp(n) Z x C ⊂ Z W n

Let

θ 0 : Σ 0 (W n ) −→ Z Irr W n x C 7−→ Ind W W

n

C

1 C

Theorem (B.-Hohlweg, 2004).

Σ 0 (W n ) is a subalgebra of Z W n . θ 0 is a surjective morphism of algebras.

Ker θ 0 = X

C≡D

Z (x C − x D ).

Q Ker θ 0 is the radical of Q Σ 0 (W n ).

Σ 0 (W n ) ' Mantaci-Reutenauer algebra.

T n (xy ) = hθ 0 (x ), θ 0 (y )i.

(34)

Mantaci-Reutenauer algebra Definition

x −1,1 x −2 = 2x −1,−1 + 2(x −1,1 − x 1,−1 )

If C is parabolic (i.e. c i < 0 if i > 2) or if D is almost positive (i.e. d i > −1), then

X D = a

d∈X

CD

X C C

d

D .d

Σ(W n ) ⊂ Σ 0 (W n ) Σ(S n ) ' ⊕

C ∈Comp

+

(n) Z x C ⊂ Σ 0 (W n ) Notation: C ⊂ D ⇔ W C ⊂ W D

Σ 0 (W D ) = ⊕

C⊂D Z x C D

If D = (d 1 , . . . , d r ), then Σ 0 (W D ) ' Σ 0 (W d

1

) ⊗ Z · · · ⊗ Z Σ 0 (W d

r

) , where Σ 0 (S n ) = Σ(S n ).

Remark: x D x C D = x C .

(35)

Mantaci-Reutenauer algebra Definition

x −1,1 x −2 = 2x −1,−1 + 2(x −1,1 − x 1,−1 )

If C is parabolic (i.e. c i < 0 if i > 2) or if D is almost positive (i.e. d i > −1), then

X D = a

d∈X

CD

X C C

d

D .d

Σ(W n ) ⊂ Σ 0 (W n ) Σ(S n ) ' ⊕

C ∈Comp

+

(n) Z x C ⊂ Σ 0 (W n ) Notation: C ⊂ D ⇔ W C ⊂ W D

Σ 0 (W D ) = ⊕

C⊂D Z x C D

If D = (d 1 , . . . , d r ), then Σ 0 (W D ) ' Σ 0 (W d

1

) ⊗ Z · · · ⊗ Z Σ 0 (W d

r

) , where Σ 0 (S n ) = Σ(S n ).

Remark: x D x C D = x C .

(36)

Mantaci-Reutenauer algebra Definition

x −1,1 x −2 = 2x −1,−1 + 2(x −1,1 − x 1,−1 )

If C is parabolic (i.e. c i < 0 if i > 2) or if D is almost positive (i.e. d i > −1), then

X D = a

d∈X

CD

X C C

d

D .d

Σ(W n ) ⊂ Σ 0 (W n ) Σ(S n ) ' ⊕

C ∈Comp

+

(n) Z x C ⊂ Σ 0 (W n )

Notation: C ⊂ D ⇔ W C ⊂ W D Σ 0 (W D ) = ⊕

C⊂D Z x C D

If D = (d 1 , . . . , d r ), then Σ 0 (W D ) ' Σ 0 (W d

1

) ⊗ Z · · · ⊗ Z Σ 0 (W d

r

) , where Σ 0 (S n ) = Σ(S n ).

Remark: x D x C D = x C .

(37)

Mantaci-Reutenauer algebra Definition

x −1,1 x −2 = 2x −1,−1 + 2(x −1,1 − x 1,−1 )

If C is parabolic (i.e. c i < 0 if i > 2) or if D is almost positive (i.e. d i > −1), then

X D = a

d∈X

CD

X C C

d

D .d

Σ(W n ) ⊂ Σ 0 (W n ) Σ(S n ) ' ⊕

C ∈Comp

+

(n) Z x C ⊂ Σ 0 (W n ) Notation: C ⊂ D ⇔ W C ⊂ W D

Σ 0 (W D ) = ⊕

C⊂D Z x C D

If D = (d 1 , . . . , d r ), then Σ 0 (W D ) ' Σ 0 (W d

1

) ⊗ Z · · · ⊗ Z Σ 0 (W d

r

) , where Σ 0 (S n ) = Σ(S n ).

Remark: x D x C D = x C .

(38)

Mantaci-Reutenauer algebra Definition

x −1,1 x −2 = 2x −1,−1 + 2(x −1,1 − x 1,−1 )

If C is parabolic (i.e. c i < 0 if i > 2) or if D is almost positive (i.e. d i > −1), then

X D = a

d∈X

CD

X C C

d

D .d

Σ(W n ) ⊂ Σ 0 (W n ) Σ(S n ) ' ⊕

C ∈Comp

+

(n) Z x C ⊂ Σ 0 (W n ) Notation: C ⊂ D ⇔ W C ⊂ W D

Σ 0 (W D ) = ⊕

C⊂D Z x C D

If D = (d 1 , . . . , d r ), then Σ 0 (W D ) ' Σ 0 (W d

1

) ⊗ Z · · · ⊗ Z Σ 0 (W d

r

) , where Σ 0 (S n ) = Σ(S n ).

Remark: x D x C D = x C .

(39)

Mantaci-Reutenauer algebra Definition

x −1,1 x −2 = 2x −1,−1 + 2(x −1,1 − x 1,−1 )

If C is parabolic (i.e. c i < 0 if i > 2) or if D is almost positive (i.e. d i > −1), then

X D = a

d∈X

CD

X C C

d

D .d

Σ(W n ) ⊂ Σ 0 (W n ) Σ(S n ) ' ⊕

C ∈Comp

+

(n) Z x C ⊂ Σ 0 (W n ) Notation: C ⊂ D ⇔ W C ⊂ W D

Σ 0 (W D ) = ⊕

C⊂D Z x C D

If D = (d 1 , . . . , d r ), then Σ 0 (W D ) ' Σ 0 (W d

1

) ⊗ Z · · · ⊗ Z Σ 0 (W d

r

) , where Σ 0 (S n ) = Σ(S n ).

Remark: x D x C D = x C .

(40)

Representation theory in characteristic zero Simples

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(41)

Representation theory in characteristic zero Simples

cox C : Coxeter element of W C

λ : Comp(n) −→ Bip(n) (Example: λ(3, −1, −3, 1, −2, −2, 4) = (431; 3221))

cox C ∼ cox D ⇔ W C ' W D ⇔ C ≡ D ⇔ λ(C ) = λ(D) C λ : conjugacy class of cox C if λ(C ) = λ; cox λ ∈ C λ .

Bip(n) − → W n / ∼

λ 7→ C λ

w =

4 5 11 12

−11 12 −5 −4

(42)

Representation theory in characteristic zero Simples

cox C : Coxeter element of W C λ : Comp(n) −→ Bip(n)

(Example: λ(3, −1, −3, 1, −2, −2, 4) = (431; 3221))

cox C ∼ cox D ⇔ W C ' W D ⇔ C ≡ D ⇔ λ(C ) = λ(D) C λ : conjugacy class of cox C if λ(C ) = λ; cox λ ∈ C λ .

Bip(n) − → W n / ∼

λ 7→ C λ

w =

4 5 11 12

−11 12 −5 −4

(43)

Representation theory in characteristic zero Simples

cox C : Coxeter element of W C λ : Comp(n) −→ Bip(n) (Example:

λ(3, −1, −3, 1, −2, −2, 4) = (431; 3221))

cox C ∼ cox D ⇔ W C ' W D ⇔ C ≡ D ⇔ λ(C ) = λ(D) C λ : conjugacy class of cox C if λ(C ) = λ; cox λ ∈ C λ .

Bip(n) − → W n / ∼

λ 7→ C λ

w =

4 5 11 12

−11 12 −5 −4

(44)

Representation theory in characteristic zero Simples

cox C : Coxeter element of W C λ : Comp(n) −→ Bip(n) (Example:

λ(3, −1, −3, 1, −2, −2, 4) = (431; 3221))

cox C ∼ cox D ⇔ W C ' W D ⇔ C ≡ D ⇔ λ(C ) = λ(D) C λ : conjugacy class of cox C if λ(C ) = λ; cox λ ∈ C λ .

Bip(n) − → W n / ∼

λ 7→ C λ

w =

4 5 11 12

−11 12 −5 −4

(45)

Representation theory in characteristic zero Simples

cox C : Coxeter element of W C λ : Comp(n) −→ Bip(n) (Example:

λ(3, −1, −3, 1, −2, −2, 4) = (431; 3221))

cox C ∼ cox D ⇔ W C ' W D ⇔ C ≡ D ⇔ λ(C ) = λ(D) C λ : conjugacy class of cox C if λ(C ) = λ; cox λ ∈ C λ .

Bip(n) − → W n / ∼

λ 7→ C λ

w =

4 5 11 12

−11 12 −5 −4

(46)

Representation theory in characteristic zero Simples

cox C : Coxeter element of W C

λ : Comp(n) −→ Bip(n) (Example:

λ(3, −1, −3, 1, −2, −2, 4) = (431; 3221))

cox C ∼ cox D ⇔ W C ' W D ⇔ C ≡ D ⇔ λ(C ) = λ(D) C λ : conjugacy class of cox C if λ(C ) = λ; cox λ ∈ C λ .

Bip(n) − → W n / ∼

λ 7→ C λ

w =

1 2 3 4 5 6 7 8 9 10 11 12 3 − 8 6 −11 12 − 7 − 1 9 2 − 10 −5 −4

(47)

Representation theory in characteristic zero Simples

cox C : Coxeter element of W C

λ : Comp(n) −→ Bip(n) (Example:

λ(3, −1, −3, 1, −2, −2, 4) = (431; 3221))

cox C ∼ cox D ⇔ W C ' W D ⇔ C ≡ D ⇔ λ(C ) = λ(D) C λ : conjugacy class of cox C if λ(C ) = λ; cox λ ∈ C λ .

Bip(n) − → W n / ∼

λ 7→ C λ

w =

1 2 3 4 5 6 7 8 9 10 11 12 3 −8 6 −11 12 −7 −1 9 2 −10 −5 −4

(48)

Representation theory in characteristic zero Simples

cox C : Coxeter element of W C

λ : Comp(n) −→ Bip(n) (Example:

λ(3, −1, −3, 1, −2, −2, 4) = (431; 3221))

cox C ∼ cox D ⇔ W C ' W D ⇔ C ≡ D ⇔ λ(C ) = λ(D) C λ : conjugacy class of cox C if λ(C ) = λ; cox λ ∈ C λ .

Bip(n) − → W n / ∼

λ 7→ C λ

w =

1 2 3 4 5 6 7 8 9 10 11 12 3 −8 6 −11 12 −7 −1 9 2 −10 −5 −4

w ∈ C 431;4

(49)

Representation theory in characteristic zero Simples

Let

π λ : Σ 0 (W n ) −→ Z

x 7−→ θ 0 (x)(cox λ ) This is a morphism of algebras.

If R is a commutative ring, π λ R : RΣ 0 (W n ) → R and D R λ is the R Σ 0 (W n )-module which is R -free of rank 1 and on which R Σ 0 (W n ) acts through π R λ .

Irr Q Σ 0 (W n ) = {π Q λ | λ ∈ Bip(n)}

Example: character table of Q Σ 0 (W 2 )

x 2 x ¯ 2 x 1,1 x 1, ¯ 1 x ¯ 1, ¯ 1

π 2;∅ Q 1 . . . .

π Q ;2 1 2 . . .

π 11; Q

∅ 1 . 2 . .

π 1;1 Q 1 . 2 2 .

π ∅;11 Q 1 4 2 4 8

(50)

Representation theory in characteristic zero Simples

Let

π λ : Σ 0 (W n ) −→ Z

x 7−→ θ 0 (x)(cox λ ) This is a morphism of algebras.

If R is a commutative ring, π λ R : RΣ 0 (W n ) → R and D R λ is the RΣ 0 (W n )-module which is R -free of rank 1 and on which RΣ 0 (W n ) acts through π R λ .

Irr Q Σ 0 (W n ) = {π Q λ | λ ∈ Bip(n)}

Example: character table of Q Σ 0 (W 2 )

x 2 x ¯ 2 x 1,1 x 1, ¯ 1 x ¯ 1, ¯ 1

π 2;∅ Q 1 . . . .

π Q ;2 1 2 . . .

π 11; Q

∅ 1 . 2 . .

π 1;1 Q 1 . 2 2 .

π ∅;11 Q 1 4 2 4 8

(51)

Representation theory in characteristic zero Simples

Let

π λ : Σ 0 (W n ) −→ Z

x 7−→ θ 0 (x)(cox λ ) This is a morphism of algebras.

If R is a commutative ring, π λ R : RΣ 0 (W n ) → R and D R λ is the RΣ 0 (W n )-module which is R -free of rank 1 and on which RΣ 0 (W n ) acts through π R λ .

Irr Q Σ 0 (W n ) = {π Q λ | λ ∈ Bip(n)}

Example: character table of Q Σ 0 (W 2 )

x 2 x ¯ 2 x 1,1 x 1, ¯ 1 x ¯ 1, ¯ 1

π 2;∅ Q 1 . . . .

π Q ;2 1 2 . . .

π 11; Q

∅ 1 . 2 . .

π 1;1 Q 1 . 2 2 .

π ∅;11 Q 1 4 2 4 8

(52)

Representation theory in characteristic zero Simples

Let

π λ : Σ 0 (W n ) −→ Z

x 7−→ θ 0 (x)(cox λ ) This is a morphism of algebras.

If R is a commutative ring, π λ R : RΣ 0 (W n ) → R and D R λ is the RΣ 0 (W n )-module which is R -free of rank 1 and on which RΣ 0 (W n ) acts through π R λ .

Irr Q Σ 0 (W n ) = {π Q λ | λ ∈ Bip(n)}

Example: character table of Q Σ 0 (W 2 )

x 2 x ¯ 2 x 1,1 x 1, ¯ 1 x ¯ 1, ¯ 1

π 2;∅ Q 1 . . . .

π Q ;2 1 2 . . .

π 11; Q

∅ 1 . 2 . .

π 1;1 Q 1 . 2 2 .

π ∅;11 Q 1 4 2 4 8

(53)

Representation theory in characteristic zero Simples

Let

π λ : Σ 0 (W n ) −→ Z

x 7−→ θ 0 (x)(cox λ ) This is a morphism of algebras.

If R is a commutative ring, π λ R : RΣ 0 (W n ) → R and D R λ is the RΣ 0 (W n )-module which is R -free of rank 1 and on which RΣ 0 (W n ) acts through π R λ .

Irr Q Σ 0 (W n ) = {π Q λ | λ ∈ Bip(n)}

Example: character table of Q Σ 0 (W 2 )

x 2 x ¯ 2 x 1,1 x 1, ¯ 1 x ¯ 1, ¯ 1

π 2;∅ Q 1 . . . .

π Q ;2 1 2 . . .

π 11; Q

∅ 1 . 2 . .

π 1;1 Q 1 . 2 2 .

π ∅;11 Q 1 4 2 4 8

(54)

Representation theory in characteristic zero Projectives, Cartan matrix

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(55)

Representation theory in characteristic zero Projectives, Cartan matrix

x n = 1 = X

λ∈Bip(n)

E λ

(E λ E µ = δ λµ E λ )

such that P λ Q := Q Σ 0 (W n )E λ is the projective cover of D Q λ

Note that

θ 0 (E λ ) is the characteristic function of C λ Moreover,

dim Q Q W n E λ = |C λ |

(Indeed, dim Q Q W n E λ = |W n |T n (E λ ) = |W n |hθ 0 (E λ ), θ 0 (1)i) Question: Q W n E λ ' Ind W C

n

Wn

(cox

λ

) ξ λ for some linear character ξ λ of

C W

n

(cox λ )? (true for n 6 5)

(56)

Representation theory in characteristic zero Projectives, Cartan matrix

x n = 1 = X

λ∈Bip(n)

E λ

(E λ E µ = δ λµ E λ )

such that P λ Q := Q Σ 0 (W n )E λ is the projective cover of D Q λ Note that

θ 0 (E λ ) is the characteristic function of C λ

Moreover,

dim Q Q W n E λ = |C λ |

(Indeed, dim Q Q W n E λ = |W n |T n (E λ ) = |W n |hθ 0 (E λ ), θ 0 (1)i) Question: Q W n E λ ' Ind W C

n

Wn

(cox

λ

) ξ λ for some linear character ξ λ of

C W

n

(cox λ )? (true for n 6 5)

(57)

Representation theory in characteristic zero Projectives, Cartan matrix

x n = 1 = X

λ∈Bip(n)

E λ

(E λ E µ = δ λµ E λ )

such that P λ Q := Q Σ 0 (W n )E λ is the projective cover of D Q λ Note that

θ 0 (E λ ) is the characteristic function of C λ Moreover,

dim Q Q W n E λ = |C λ |

(Indeed, dim Q Q W n E λ = |W n |T n (E λ ) = |W n |hθ 0 (E λ ), θ 0 (1)i)

Question: Q W n E λ ' Ind W C

n

Wn

(cox

λ

) ξ λ for some linear character ξ λ of

C W

n

(cox λ )? (true for n 6 5)

(58)

Representation theory in characteristic zero Projectives, Cartan matrix

x n = 1 = X

λ∈Bip(n)

E λ

(E λ E µ = δ λµ E λ )

such that P λ Q := Q Σ 0 (W n )E λ is the projective cover of D Q λ Note that

θ 0 (E λ ) is the characteristic function of C λ Moreover,

dim Q Q W n E λ = |C λ |

(Indeed, dim Q Q W n E λ = |W n |T n (E λ ) = |W n |hθ 0 (E λ ), θ 0 (1)i) Question: Q W n E λ ' Ind W C

n

Wn

(cox

λ

) ξ λ for some linear character ξ λ of

C W

n

(cox λ )? (true for n 6 5)

(59)

Representation theory in characteristic zero Projectives, Cartan matrix

D 3; Q

∅ D 21; Q

∅ D Q

∅ ;21 D 1;1 Q

2

D Q

∅ ;3 D 2;1 Q D 1;2 Q D 1 Q

2

;1 D 1 Q

3

; ∅ D Q

∅ ;1

3

P 3; Q 1 1 1 1 . . . . . . P 21; Q

∅ . 1 . . . . . . . .

P ∅;21 Q . . 1 1 . . . . . . P 1;1 Q

2

. . . 1 . . . . . . P Q

∅ ;3 . . . . 1 1 1 1 . .

P 2;1 Q . . . . . 1 . . . .

P 1;2 Q . . . . . . 1 1 . .

P 1 Q

2

;1 . . . . . . . 1 . .

P 1 Q

3

; ∅ . . . . . . . . 1 .

P ∅;1 Q

3

. . . . . . . . . 1

(60)

Representation theory in characteristic zero Projectives, Cartan matrix

4 31 ∅ ∅ 212 2 1 12 ∅ 3 1 2 21 12 ∅ 1 13 22 14

∅ ∅ 31 22 ∅ 12 21 12 4 1 3 2 1 2 212 13 1 ∅ ∅ 14

4;∅ 1 1 1 . 1 1 2 1 . . . .

31;∅ . 1 . . 1 . 1 1 . . . .

∅; 31 . . 1 . . 1 1 1 . . . .

∅; 22 . . . 1 . . 1 1 . . . .

212;∅ . . . . 1 . . . .

2; 12 . . . 1 . . . .

1; 21 . . . 1 1 . . . .

12; 12 . . . 1 . . . .

∅; 4 . . . 1 1 1 1 2 1 1 1 1 . . .

3; 1 . . . 1 . . 1 . 1 1 . . . .

1; 3 . . . 1 . 1 1 . . 1 . . .

2; 2 . . . 1 1 . . . .

21; 1 . . . 1 . . . .

12; 2 . . . 1 . . 1 . . .

∅; 212 . . . 1 1 . . . .

1; 13 . . . 1 . . . .

13; 1 . . . 1 . . .

22;∅ . . . 1 . .

14;∅ . . . 1 .

∅; 14 . . . 1

(61)

Representation theory in characteristic zero Projectives, Cartan matrix

Theorem (B., 2005). Let λ, µ ∈ Bip(n).

[P λ Q : D Q λ ] = 1

If λ 6= µ and [P λ Q : D µ Q ] 6= 0, then

I

lg(λ) > lg(µ)

I

lg(λ ) ≡ lg(µ ) mod 2

(Note that π λ (w 0 ) = (−1) n−lg(λ

) )

(62)

Representation theory in characteristic zero Projectives, Cartan matrix

Theorem (B., 2005). Let λ, µ ∈ Bip(n).

[P λ Q : D Q λ ] = 1

If λ 6= µ and [P λ Q : D µ Q ] 6= 0, then

I

lg(λ) > lg(µ)

I

lg(λ ) ≡ lg(µ ) mod 2

(Note that π λ (w 0 ) = (−1) n−lg(λ

) )

(63)

Representation theory in characteristic zero Restriction morphisms

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(64)

Representation theory in characteristic zero Restriction morphisms

Let D be almost positive and let Res D x C := X

d∈X

CD

x

d

D

−1

C ∩D ∈ Σ 0 (W D ) = ⊕

C ⊂D Z x C D

Then xx D = x D Res D (x ).

(Note that the map Z W D → Z W n , a 7→ x D a is injective)

Theorem (B., 2005).

Res D is a morphism of algebras. θ 0 D ◦ Res D = Res W W

n

D

◦θ 0

Q Σ 0 (W n ) = Ker(Res Q D ) ⊕ Q Σ 0 (W n )x D

(65)

Representation theory in characteristic zero Restriction morphisms

Let D be almost positive and let Res D x C := X

d∈X

CD

x

d

D

−1

C ∩D ∈ Σ 0 (W D ) = ⊕

C ⊂D Z x C D Then xx D = x D Res D (x).

(Note that the map Z W D → Z W n , a 7→ x D a is injective)

Theorem (B., 2005).

Res D is a morphism of algebras. θ 0 D ◦ Res D = Res W W

n

D

◦θ 0

Q Σ 0 (W n ) = Ker(Res Q D ) ⊕ Q Σ 0 (W n )x D

(66)

Representation theory in characteristic zero Restriction morphisms

Let D be almost positive and let Res D x C := X

d∈X

CD

x

d

D

−1

C ∩D ∈ Σ 0 (W D ) = ⊕

C ⊂D Z x C D Then xx D = x D Res D (x).

(Note that the map Z W D → Z W n , a 7→ x D a is injective)

Theorem (B., 2005).

Res D is a morphism of algebras.

θ 0 D ◦ Res D = Res W W

n

D

◦θ 0

Q Σ 0 (W n ) = Ker(Res Q D ) ⊕ Q Σ 0 (W n )x D

(67)

Representation theory in characteristic zero Restriction morphisms

4 31 ∅ ∅ 212 2 1 12 ∅ 3 1 2 21 12 ∅ 1 13 22 14

∅ ∅ 31 22 ∅ 12 21 12 4 1 3 2 1 2 212 13 1 ∅ ∅ 14

4;∅ 1 1 1 . 1 1 2 1 . . . .

31;∅ . 1 . . 1 . 1 1 . . . .

∅; 31 . . 1 . . 1 1 1 . . . .

∅; 22 . . . 1 . . 1 1 . . . .

212;∅ . . . . 1 . . . .

2; 12 . . . 1 . . . .

1; 21 . . . 1 1 . . . . 12; 12 . . . 1 . . . .

∅; 4 . . . 1 1 1 1 2 1 1 1 1 . . . 3; 1 . . . 1 . . 1 . 1 1 . . . . 1; 3 . . . 1 . 1 1 . . 1 . . .

2; 2 . . . 1 1 . . . . 21; 1 . . . 1 . . . .

12; 2 . . . 1 . . 1 . . .

∅; 212 . . . 1 1 . . . . 1; 13 . . . 1 . . . .

13; 1 . . . 1 . . .

22;∅ . . . 1 . .

14;∅ . . . 1 .

∅; 14 . . . 1

(68)

Representation theory in characteristic zero Restriction morphisms

4 31 ∅ ∅ 212 2 1 12 ∅ 3 1 2 21 12 ∅ 1 13 22 14

∅ ∅ 31 22 ∅ 12 21 12 4 1 3 2 1 2 212 13 1 ∅ ∅ 14

4;∅ 1 1 1 . 1 1 2 1 . . . .

31;∅ . 1 . . 1 . 1 1 . . . .

∅; 31 . . 1 . . 1 1 1 . . . .

∅; 22 . . . 1 . . 1 1 . . . .

212;∅ . . . . 1 . . . .

2; 12 . . . 1 . . . .

1; 21 . . . 1 1 . . . . 12; 12 . . . 1 . . . .

∅; 4 . . . 1 1 1 1 2 1 1 1 1 . . . 3; 1 . . . 1 . . 1 . 1 1 . . . . 1; 3 . . . 1 . 1 1 . . 1 . . .

2; 2 . . . 1 1 . . . . 21; 1 . . . 1 . . . .

12; 2 . . . 1 . . 1 . . .

∅; 212 . . . 1 1 . . . . 1; 13 . . . 1 . . . .

13; 1 . . . 1 . . .

22;∅ . . . 1 . .

14;∅ . . . 1 .

∅; 14 . . . 1

(69)

Representation theory in characteristic zero Restriction morphisms

D 3; Q

∅ D 21; Q

∅ D Q

∅ ;21 D 1;1 Q

2

D Q

∅ ;3 D 2;1 Q D 1;2 Q D 1 Q

2

;1 D 1 Q

3

; ∅ D Q

∅ ;1

3

P 3; Q 1 1 1 1 . . . . . . P 21; Q

∅ . 1 . . . . . . . .

P ∅;21 Q . . 1 1 . . . . . . P 1;1 Q

2

. . . 1 . . . . . . P Q

∅ ;3 . . . . 1 1 1 1 . .

P 2;1 Q . . . . . 1 . . . .

P 1;2 Q . . . . . . 1 1 . .

P 1 Q

2

;1 . . . . . . . 1 . .

P 1 Q

3

; ∅ . . . . . . . . 1 .

P ∅;1 Q

3

. . . . . . . . . 1

(70)

Representation theory in characteristic zero Restriction morphisms

The natural map W n−1 , → W n induces an injective map τ n : Bip(n − 1) → Bip(n). In fact:

τ n ((λ + 1 , . . . , λ + r ), (λ 1 , . . . , λ s )) = ((λ + 1 , . . . , λ + r ), (λ 1 , . . . , λ s , 1)).

Theorem (B., 2006).

Res n−1,−1 : Q Σ 0 (W n ) → Q Σ 0 (W n−1 ) is surjective.

It is probable that Res n−1,−1 : Σ 0 (W n ) → Σ 0 (W n−1 ) is also surjective (this is true for n 6 5). Note that Res W W

nn−1

: Z Irr W n → Z Irr W n−1

is surjective.

”Corollary”. If λ, µ ∈ Bip(n − 1), then [P λ Q , D Q µ ] = [P τ

n

(λ) , D Q τ

n

(µ) ].

(71)

Representation theory in characteristic zero Restriction morphisms

The natural map W n−1 , → W n induces an injective map τ n : Bip(n − 1) → Bip(n). In fact:

τ n ((λ + 1 , . . . , λ + r ), (λ 1 , . . . , λ s )) = ((λ + 1 , . . . , λ + r ), (λ 1 , . . . , λ s , 1)).

Theorem (B., 2006).

Res n−1,−1 : Q Σ 0 (W n ) → Q Σ 0 (W n−1 ) is surjective.

It is probable that Res n−1,−1 : Σ 0 (W n ) → Σ 0 (W n−1 ) is also surjective (this is true for n 6 5). Note that Res W W

nn−1

: Z Irr W n → Z Irr W n−1

is surjective.

”Corollary”. If λ, µ ∈ Bip(n − 1), then [P λ Q , D Q µ ] = [P τ

n

(λ) , D Q τ

n

(µ) ].

(72)

Representation theory in characteristic zero Restriction morphisms

The natural map W n−1 , → W n induces an injective map τ n : Bip(n − 1) → Bip(n). In fact:

τ n ((λ + 1 , . . . , λ + r ), (λ 1 , . . . , λ s )) = ((λ + 1 , . . . , λ + r ), (λ 1 , . . . , λ s , 1)).

Theorem (B., 2006).

Res n−1,−1 : Q Σ 0 (W n ) → Q Σ 0 (W n−1 ) is surjective.

It is probable that Res n−1,−1 : Σ 0 (W n ) → Σ 0 (W n−1 ) is also surjective (this is true for n 6 5). Note that Res W W

nn−1

: Z Irr W n → Z Irr W n−1

is surjective.

”Corollary”. If λ, µ ∈ Bip(n − 1), then [P λ Q , D Q µ ] = [P τ

n

(λ) , D Q τ

n

(µ) ].

(73)

Representation theory in characteristic zero Restriction morphisms

The natural map W n−1 , → W n induces an injective map τ n : Bip(n − 1) → Bip(n). In fact:

τ n ((λ + 1 , . . . , λ + r ), (λ 1 , . . . , λ s )) = ((λ + 1 , . . . , λ + r ), (λ 1 , . . . , λ s , 1)).

Theorem (B., 2006).

Res n−1,−1 : Q Σ 0 (W n ) → Q Σ 0 (W n−1 ) is surjective.

It is probable that Res n−1,−1 : Σ 0 (W n ) → Σ 0 (W n−1 ) is also surjective (this is true for n 6 5). Note that Res W W

nn−1

: Z Irr W n → Z Irr W n−1

is surjective.

”Corollary”. If λ, µ ∈ Bip(n − 1), then [P λ Q , D Q µ ] = [P τ

n

(λ) , D Q τ

n

(µ) ].

(74)

Modular representation theory Simples, radical

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(75)

Modular representation theory Simples, radical

Let Bip p

0

(n) be the set of bipartitions λ such that cox λ is p-regular.

If λ ∈ Bip(n), let λ p

0

denote the unique bipartition in Bip p

0

(n) such that cox λ

p0

is conjugate to the p 0 -part of cox λ .

Let Comp p (n) := {C ∈ Comp(n) | p divides |N W

n

(W C )/W C |}.

Theorem (B., 2005). π F λ

p

= π µ F

p

⇔ λ p

0

= µ p

0

Irr F p Σ 0 (W n ) = {π λ F

p

| λ ∈ Bip p

0

(n)} Rad F p Σ 0 (W n ) = X

C≡D

F p (x C − x D ) + X

C ∈Comp

p

(n)

F p x C

(76)

Modular representation theory Simples, radical

Let Bip p

0

(n) be the set of bipartitions λ such that cox λ is p-regular.

If λ ∈ Bip(n), let λ p

0

denote the unique bipartition in Bip p

0

(n) such that cox λ

p0

is conjugate to the p 0 -part of cox λ .

Let Comp p (n) := {C ∈ Comp(n) | p divides |N W

n

(W C )/W C |}.

Theorem (B., 2005). π F λ

p

= π µ F

p

⇔ λ p

0

= µ p

0

Irr F p Σ 0 (W n ) = {π λ F

p

| λ ∈ Bip p

0

(n)} Rad F p Σ 0 (W n ) = X

C≡D

F p (x C − x D ) + X

C ∈Comp

p

(n)

F p x C

(77)

Modular representation theory Simples, radical

Let Bip p

0

(n) be the set of bipartitions λ such that cox λ is p-regular.

If λ ∈ Bip(n), let λ p

0

denote the unique bipartition in Bip p

0

(n) such that cox λ

p0

is conjugate to the p 0 -part of cox λ .

Let Comp p (n) := {C ∈ Comp(n) | p divides |N W

n

(W C )/W C |}.

Theorem (B., 2005). π F λ

p

= π µ F

p

⇔ λ p

0

= µ p

0

Irr F p Σ 0 (W n ) = {π λ F

p

| λ ∈ Bip p

0

(n)} Rad F p Σ 0 (W n ) = X

C≡D

F p (x C − x D ) + X

C ∈Comp

p

(n)

F p x C

(78)

Modular representation theory Simples, radical

Let Bip p

0

(n) be the set of bipartitions λ such that cox λ is p-regular.

If λ ∈ Bip(n), let λ p

0

denote the unique bipartition in Bip p

0

(n) such that cox λ

p0

is conjugate to the p 0 -part of cox λ .

Let Comp p (n) := {C ∈ Comp(n) | p divides |N W

n

(W C )/W C |}.

Theorem (B., 2005).

π F λ

p

= π µ F

p

⇔ λ p

0

= µ p

0

Irr F p Σ 0 (W n ) = {π λ F

p

| λ ∈ Bip p

0

(n)}

Rad F p Σ 0 (W n ) = X

C≡D

F p (x C − x D ) + X

C ∈Comp

p

(n)

F p x C

(79)

Modular representation theory Cartan matrix

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(80)

Modular representation theory Cartan matrix

Let ∆ n (p) denote the matrix (δ λ

p0

,µ ) λ∈Bip(n),µ∈Bip

p0

(n) . This is the decomposition matrix from Q Σ 0 (W n ) to F p Σ 0 (W n ).

By a general result of Geck and Rouquier, we have

Cartan( F p Σ 0 (W n )) = tn (p) × Cartan( Q Σ 0 (W n )) × ∆ n (p)

(81)

Modular representation theory Cartan matrix

Let ∆ n (p) denote the matrix (δ λ

p0

,µ ) λ∈Bip(n),µ∈Bip

p0

(n) . This is the decomposition matrix from Q Σ 0 (W n ) to F p Σ 0 (W n ).

By a general result of Geck and Rouquier, we have

Cartan( F p Σ 0 (W n )) = tn (p) × Cartan( Q Σ 0 (W n )) × ∆ n (p)

(82)

Loewy length Character ring

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(83)

Loewy length Character ring

Theorem (B., 2006). Let K be a field of characteristic p > 0.

Then the Loewy length of K Irr W n is equal to

 

 

1, if p = 0;

n + 1, if p = 2;

[n/p] + 1, if p > 2.

(84)

Loewy length Mantaci-Reutenauer algebra

Contents

1 Solomon’s descent algebra

2 Mantaci-Reutenauer algebra Coxeter group of type B Some reflection subgroups Definition

3 Representation theory in characteristic zero Simples

Projectives, Cartan matrix Restriction morphisms

4 Modular representation theory Simples, radical

Cartan matrix

5 Loewy length Character ring

Mantaci-Reutenauer algebra

(85)

Loewy length Mantaci-Reutenauer algebra

Theorem (B., 2006). Let K be a field of characteristic p > 0.

Then the Loewy length of K Σ 0 (W n ) is equal to

 

 

n, if p 6= 2;

2, if p = 2 and n = 1;

2n − 1 ?, if p = 2 and n > 2.

Références

Documents relatifs

Grace à cet état des recherches existantes, nous avons adopté un nouveau point de vue pour notre recherche, celui de nous intéresser au travail de l’enseignant quand il met en place

However, in the case of an odd exponent the first condition is not sufficient: a group generated by reflections in the sides of a hyperbolic triangle with angles (π/2, π/5, π/5) has

In this paper, we study the representation theory of KΣ ′ (W n ) whenever R = K is a field of any characteristic: simple modules, radical, projective modules, Cartan matrix.... We

In the context of connections between algebras coming from quantum integrable systems and algebras associated to the orthogonal polynomials of the Askey scheme, we prove that

First we describe in detail the general setting in which we represent the mathematics of Kenzo: dependent type theory with universes, essentially the system [11], with a

Most Lie algebras and groups that will constitute our object of study in this article appear to be closely related to the Newton-Cartan geometry. That is why - although we shall

From a more theoretical point of view, the WRa of a finite or compact group can be defined to be the infinite-dimensional Lie algebra spanned by the Wigner unit operators (i.e.,

From the knowledge of the representation theory of G 4 , it is easy to determine from the infinites- imal data whether the corresponding monodromy representation factorize through