• Aucun résultat trouvé

MICROSCOPIC EVALUATION OF THE TRANSPORT PARAMETERS OF SUPERFLUID 3He B

N/A
N/A
Protected

Academic year: 2021

Partager "MICROSCOPIC EVALUATION OF THE TRANSPORT PARAMETERS OF SUPERFLUID 3He B"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00217546

https://hal.archives-ouvertes.fr/jpa-00217546

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

MICROSCOPIC EVALUATION OF THE

TRANSPORT PARAMETERS OF SUPERFLUID 3He

B

Michael Dörfle

To cite this version:

Michael Dörfle.

MICROSCOPIC EVALUATION OF THE TRANSPORT PARAMETERS

(2)

JOURNAL DE PHYSIQUE Colloque C6, supplément au n" 8, Tome 39, août 1978, page C6-28

MICROSCOPIC EVALUATION OF THE TRANSPORT PARAMETERS OF SUPERFLUID 3He B

Michael Dorfle

Universitàt Essen, FB 7, D 45 Essen 1, W. Germany

Résumé.- Les formules de Kubo pour les coefficients de transport de l'hydrodynamique phénoménologi-que de l'He superfluide ont été récemment données. Ici nous calculons ces paramètres dans l'appro-ximation BCS en tenant compte des effets de couplage fort par une fonction de renormalisation Z(u). En particulier, nous discutons la viscosité et la largeur de la raie RMN. Nous comparons nos résul-tats aux résulrésul-tats expérimentaux.

Abstract.- The Kubo formulas of the transport parameters of the phenomenological hydrodynamics of superfluid 3He, which hâve recently been given, are evaluated in the BCS approximation. Strong cou-pling effects are taken into account by renormalization function Z(u). In particular the shear vis-cosity and the NMR line width are discussed and compared with exp e riment s.

We begin with the Kubo relations, which con-nect the dynamic response functions with the trans-port parameters. They bridge the phenomenological théories l\l with the microscopic évaluations of the transport parameters. Shazamanian /2/ used the same procédure to obtain one part of the spin diffusion coefficient. However, the contribution of the order parameter fluctuations to this coefficient was omit-ted in his work.

The superfluid phase is marked by the broken gauge symmetry and the broken rotation invariance of spin space with respect to real space. This requires as additional variables the phase 5$ and a rotation vector in spin space. SQ.. Thèse variables are not conserved, whereas the other hydrodynamic variables (density p, momentum g., energy density e and magne-tization density m.) are conserved.

The example of the viscosity is used to ex-plain the procédure. The momentum is a conserved quantity, therefore

g. + 3. T.. = 0

1 î IJ

T.. is the momentum current density, which follows from the Heisenberg équation of motion. The visco-sity tensor n. .' is obtained from the absorptive part of the dynamic response function of the momentum density by

r, lim lim w x„ ( } ( }

ij a •+• 0 K -*• o k2 • g i . g i

Using the fluctuation dissipation theorem the dyna-mic response function is expressed by the

corréla-tion funccorréla-tion of the currents

-2- X". . (K.to) = ^ - t a n h ^ K . 2 K.„ . (k.oo) k2 g i . g i 2)4(0 2 il m i £ , j mv ' ' (2) Hère, we define ,, /v \ J J » iKr-iu)t KU , j m < K'W ) = d r d t e -< [ TU (r,t), x .m( o , o ) ]+> (3)

We obtain the Kubo formula

3 lim lim „ ,„ . * ^ ,,. \ j = 4 co - o K - o KU , j m "(K'W> K* Km <4>

for the transport parameter. It is useful to define a current-current corrélation function for imagina-ry times

*i*.j»(T> " < TT C TU( 0 , Tj m( f ) ]+> | X = t - f (5) where T is the time ordering operator. The connec-tion between the corrélaconnec-tion funcconnec-tion for real ti-mes and for imaginary titi-mes in the hydrodynamic li-mit takes the form /2/

lim lim Im K.. . (K, ias •*• w + iri) =

ÙJ*O W+o i*,jm

lim lim Ï B w k . , . (K,w) (6) ur*o k-»-o 1 '-|m

Therefore, we hâve to evaluate the following ex-pression

1 lim lim 1 ^ij 4)1 u + o K + o a)

Im K.. . (K, ici) •* w + in) K„ K (7)

îx.,jm J!, m v

T.„ is obtained from the Heisenberg équation of

(3)

motion. Then the current-current correlation func- tion will be evaluated for imaginary times and the limites will be taken.

We have the following Hamiltonian

We neglect the weak magnetic dipole-dipole inter- action (%

lo-'

K) which has little influcence on the transport parameters. The Hamiltonian is appro- ximated by the pairing Hamiltonian. The essential strong coupling effects are taken care of by a re- normalization function

Then the renormalized BCS Greens functions read as follows

A is the isotropic gap of the Balian Werthamer sta- te. As third approximation we keep only terms ofthe

A

order 0 (-)

.

E~

Starting with the Hamiltonian we get for the momentum current

We factorize the current-current correlation func- tion into one particle Greens functions and get af- ter performing a Fourier transformation with res- pect to the imaginary times

x { ~ r ~+(w,+w~,q) F(wn,q) + Tr ~+(~+w,,q) ~(w,,q)} (1 2) After evaluating the sum over the frequencies and the transition ot the real axis we filially get the viscosity of the momentum. (V(o) is the density of states at the Fermi surface).

Now we want to compare the results with shear vis- cosity measurements. The function Z2(u) is expres-

sed by the function Z (w) in relaxation time appro-

ximation. Then we get

It is interesting to examine the behaviour of

q(T)/r)(Tc) near the critical point. The two fluid

Tc-T

2

lo-b,

hydrodynamics is estimated to hold for -5;- and we restrict ourselves to this case. weeobtain

n(~)/q(~~) = 1 + A A2 + B

A2

LnA (15)

For T + Tc, the function has a sharp cusp, the

steepness of which is determined by the parameter B.

T -T

For < 1

o - ~

the

A2

term with the coefficient A

Tc

-

is negligible. This result is in contradiction with the results of Pethick, Smith and Bhattacharyya /3/ who predicted (q

-

q

)Inc

% -A.Our result is in good agreement with recent and very precise measu-

rements of the shear viscosity 141 near T

.

For a

larger temperature interval below T we obtain a very good fit to the experimental curve by assuming

Z

a linear dependence of -2 on f3E in the interval

E T

0

5

@- 5 1. The numerical evaluation is also in 2

good agreement with the results of a kinetic theory of Einzel und WElfle 151. Besides the shear viscosi-

ty the transport coefficient of the order parameter

-

68. in spin space is accessible to experiment. From

the hydrodynamic theory /I/ follows that the line

1

width of the longitudinal NMR is Aw//=X *2~(~)

Y

where

x

is the -magnetic susceptibility, y the gyro-

magnetic ratio and R the shift of the longitudinal

NMR. From our theory follows that V(T) is proportio-

nal to tw

As R2 % A2, we get in the same approximation as

(4)

The analogy of this integral to that of the shear viscosity shows that according to our theory the longitudinal line width of the spin resonance must

strongly increase near T

.

Up to now we have no mea-

surements of the line width in the B phase in hand which are near to the precision of the viscosity measurements. However, the longitudinal line width of the A phase shows a strong increase near T 1 6 1 .

Similar measurements in the B phase would be very desirable in order to be able to determine the tem- perature dependence of the transport coefficient of the order parameter in spin space.

References

/ I / Brand, H., ~Grfle, M., Graham, R., to be pu-

blished

/ 2 / Shazamanian, M.A., J. Low Temp. Phys.

22

(1976)

2 7

/ 3 / Bhattacharyya, P., Pethick, C.J., Smith, H.,

Phys. Rev. B

15

(1977) 3367

/ 4 / Reppy, J.D., Phys. Rev. Lett.

40

(1978) 565 /5/ Einzel, D., W&lfle, P., to be published

/ 6 / Gully, W.J., J. Low Temp. Phys.

26

(1976) 563

Références

Documents relatifs

amplitude modes in the biaxial phase mix the components of biaxiality and birefringence of the order parameter, the critical (quasi-biaxial) mode presenting

2014 We present results concerning sample dependence of not only the modulation wave vector, but also of the amplitude of the order parameter describing the N

Blue Phases I and II, occurring ina small temperature range between an isotropic and a cholesteric phase, have cubic structures with lattice constants of the order of wavelength

In this Appendix, we briefly review the theory of the de SQUID in so far as it concems the effects of trie intrinsic phase shift in YBCO-Pb SQUIDS. We wiii assume that in zero

Using the separator algebra inside a paver will allow us to get an inner and an outer approximation of the solution set in a much simpler way than using any other interval approach..

M. THERMAL TRANSPORT IN 3He- 4He MIXTURES IN THE REGION OF THE TRICRITICAL POINT.. RLsum6.- Des mesures du quotient de thermodiffusion KT et de la conductibilit6 thermique eeff

Ces deux mdthodes sont en d6saccord frappant avec d'autres rdsultats exp6ri- mentaux obtenus prdcedement et avec la theorie actuelle.. Nous avons observd une

H. ORDER PARAMETER IN THE GLASS TRANSITION OF VITREOUS S-Ge.. It Was found that a side peak at 440 cm is skronger for the slowly quenched glass than for the rapidly quenched