• Aucun résultat trouvé

Adapting to change: ABSTRACTS

N/A
N/A
Protected

Academic year: 2021

Partager "Adapting to change: ABSTRACTS"

Copied!
2
0
0

Texte intégral

(1)

20th International Congress on Modelling and Simulation

Adapting to change:

the multiple roles of modelling

1– 6 December 2013 ADELAIDE, Australia

www.mssanz.org.au/modsim2013

22nd National Conference of the Australian Society for Operations Research — ASOR 2013 DSTO led Defence Operations Research Symposium — DORS 2013

ABSTRACTS

EDITORS

(2)

The benefits of sensitivity analysis in an interdisciplinary

environment, a case study: the Ecomeristem model

J.-C. Souli´ea, D. Luqueta, L. Rouana

aCIRAD, UMR AGAP, F-34398 Montpellier, France

Email: jean-christophe.soulie@cirad.fr)

Abstract: The models developed by scientists are more and more complex. Indeed, these models are com-posed of a large number of sub-models than can interact with other models and sub-models. These processes and interactions define non linear and non derivable outputs. This is why we need to analyze the properties of such models if we want to qualitatively validate them, infer new knowledge or evaluate the impact of an event on the system. In this context, the use of sensitivity analysis seems fundamental and is a tool that allows having a better understanding of our models. This paper presents why and how we use sensitivity analysis on the Ecomeristem model. Ecomeristem is a whole-plant, deterministic, dynamic, radiation and temperature-driven crop model within the category of Functional Structural Plant Modeling. It includes also soil and plant water balance (to study, for instance, drought stress) modules. The main distinguishing mark of this model is its capability to simulate competition for assimilates (supply) among growing organs (demand). The plant is simulated as an average individual of a population forming a canopy. Plant organogenetic and morphogenetic processes are driven by incremental carbon assimilate source and sink depending on genotypic parameters and environmental conditions. This model has been developed in an interdisciplinary environment and is a result of collaborations and works between scientists involved in ecophysiology, genetics, computer science, and ap-plied mathematics. For this study, we used the extended Fourier Amplitude Sensitivity Test (calledfast99 and comes from thesensitivity R package). This method allows the estimation of first order and total Sobol’ indices for all the factors. One of the main advantage of this method is that ifn is the sample size and

p the number of factors, the number of simulations needed to produce the sensitivity indices is: n × p. Using

fast99 we carried out a large number of sensitivity analysis. These results help us to build and improve the ecomeristem model. They help to have a better understanding of the biological processes we modeled and allow to note that they processes behave properly (e.g the variation of input parameters implies the variation of the observed output variable). Moreover, in a computer science point of view, by performing a large number of simulation, and consequently, a large number of simulation trajectory, the combination of input parameters values proposed byfast99 allows to exhibit remaining bugs within the model. Due to the large number of interactions between the models, this work would be very hard to do so if scientists have to imagine these combinations of parameters.

For instance, we carried out a sensitivity analysis of shoot dry weight simulations to model plant parameters under drought. Plasto, defining the constitutive leaf appearance rate, showed the highest sensitivity indices, prior to other constitutive sink related and drought response parameters. However, Epsib, light conversion efficiency, showed sensitivity indices similar to Plasto (around 0.55) with even a slightly higher main effect. The impact of drought response parameters was generally low excepted powerFTSW (sensitivity of carbon as-similation to drought) showing sensitivity index of almost 0.2 and being thus the third most influent parameter.

Keywords:FunctionalStructuralPlantModels,Plantbiology,Ecophysiology,SensitivityAnalysis,Modeling,

Simulation

EXTENDED ABSTRACT ONLY

H4. Sensitivity, uncertainty and analysis of error in process-based agricultural and ecosystem simulation models

Références

Documents relatifs

Horizontal cross-sections on 23 July 2009 at 1500 UTC: (a) envelop of the fire front (in black) at the ground superimposed on the 10-m wind vectors (arrows) of the “coupled”

Figure 5 shows the flow in the central tumble plane during intake at 250 ° CA bTDC where the velocity distribution is characterized by a high velocity annular flow induced from the

Number of Singletons in Involutions of large size: a central range and a large deviation analysis..

We propose here the study of the asymptotic behavior of the system when the number n of Markov chains goes to infinity, for an arbitrary probability mass function γ(n) governing

‫ اﻟﻤﺨﺎﻃﺮ اﻟﻤﻜﻮﻧﺔ‪ :‬ﻟﻤﻮاﺟﮭﺔ أي ﻣﺨﺎﻃﺮ ﻋﺎﻣﺔ ﻏﯿﺮ ﻣﺤﺪدة ‪ :‬ﺗﻌﺘﺒﺮ‬‫اﻟﻤﺨﺼﺼﺎت اﻟﻤﻜﻮﻧﺔ ﻟﻤﻮاﺟﮭﺔ أي ﻣﺨﺎﻃﺮ ﻋﺎﻣﺔ ﻏﯿﺮ ﻣﺤﺪدة ﺑﻤﺜﺎﺑﺔ‬ ‫اﺣﺘﯿﺎﻃﺎت ‪ ،‬ﺣﯿﺚ ﻻ ﺗﻮاﺟﮫ

As another example which favors theoretical quality over per- formance, a DPRNG could be based on compressing the pedigree with a SHA-1 [38] hash, providing a cryptographically

C8 Jaune Circulaire Régulier Moyenne 2mm Lisse bactéries en amas Coques isolés, C9 Transparente Circulaire Régulier 0,8mm Petite Lisse chainettes en cocci Diplocoques, C10