• Aucun résultat trouvé

Understanding of radiation effects and damage in nuclear reactors materials using JANNuS ion beams

N/A
N/A
Protected

Academic year: 2021

Partager "Understanding of radiation effects and damage in nuclear reactors materials using JANNuS ion beams"

Copied!
26
0
0

Texte intégral

(1)

HAL Id: cea-02434523

https://hal-cea.archives-ouvertes.fr/cea-02434523 Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Understanding of radiation effects and damage in

nuclear reactors materials using JANNuS ion beams

C. Cabet, A. Gentils

To cite this version:

C. Cabet, A. Gentils. Understanding of radiation effects and damage in nuclear reactors materials using JANNuS ion beams. EUROMAT 2017 / Symposium D9, Sep 2017, Thessalonique, Greece. �cea-02434523�

(2)

http://jannus.in2p3.fr

Céline Cabet, Aurélie Gentils,

Université Paris-Saclay, France

EUROMAT 2017/ Symposium D9

Thessaloniki, Greece, September 17-22, 2017

Understanding radiation effects and damages in

nuclear reactor materials using JANNuS ion beams

(3)

JANNuS Saclay

triple beam irradiation facility with high damage rate

JANNuS: 1 platform, 2 facilities

Irradiat ARAMIS

2 MV

IRMA 190 kV

Ion Beam Analysis

TEM 200 kV

Joint Accelerators for Nanoscience and Nuclear Simulation

GIS JANNuS (scientific interest grouping since 2004)

2 MV Japet 2,5 MV Pandore 3 MV Epiméthée Ion beam Analysis Single Beam Irradiation | PAGE 2 JANNuS Orsay

on line TEM coupled to one or two beams

 Founding partner of the French accelerator network

http://emir.in2p3.fr

(4)

IRMA

190 kV ion implanter 10-570 keV

up to 20 mA

> 40 elements

* limited to 1 MeV per charge state inside the TEM

almost every element

TRANSMISSIONELECTRONMICROSCOPE 200 kV FEI Tecnai G2 F20 Twin Resolution: 0.25 nm Magnification range: 70-700 000 ARAMIS 2MV Tandem - VdG 0.5 – 11 MeV * 10 nA – 10µA

Ion Beam Analysis RBS, RBS/C, ERDA,

PIXE, mPIXE, PIGE

in situ RBS/C

and implantation

in situ dual

ion beam TEM

implantation / irradiation LN2–> 1000°C

LN2–> 600°C high resolution camera

EDX, GIF (EELS, EFTEM…), STEM -170°C up to 1300°C

The in situ dual ion beam TEM at CSNSM :

(5)

ARAMIS ion accelerator

> 40 elements

Typical irradiation conditions:

 Rastered beam

(80 Hz vertical and 400 Hz horizontal)

 Average flux range

1.10

10

– 5.10

11

cm

-2

.s

-1

(depending on ions and energies)

 Temperature LN

2

->1000°C

(thermocouple control) HOME BUILT IN1987

2MV Tandem – VdG

Ion beam analysis

(RBS, RBS/C, ERDA, PIXE, mPIXE, PIGE)

Ion irr./impl.

Connection with TEM Connection with IRMA ion implantor

VAN DE GRAAFF MODE

Mainly H, He (also noble gaz) 200 keV – 1.8 MeV (H), 3.6 MeV (He)

Positive Penning ion source > 20 mA

* limited to 1 MeV per charge state inside the TEM

SNICS source (Source of Negative Ions by Cesium Sputtering)

TANDEM MODE

0.5-11* MeV, 10 nA – 10μA

(6)

IRMA 190 kV ion implanter

HOME BUILT IN1979

> 65 elements

H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rb Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Ce Pr Nd Pm Sm Eu Gd Td Dy Ho Er Tm Yb Lu

Typical irradiation conditions:

 Rastered beam

(400 Hz vertical and 80 Hz horizontal)

 Average flux range

1.10

10

– 5.10

12

cm

-2

.s

-1

(depending on ions and energies)

 Temperature LN

2

->1000°C

(thermocouple control)

2 MV ARAMIS accelerator

Bernas-Nier ion source

10-570 keV

up to 20 mA

In situ TEM

Ion

implantation

In situ RBS/C

(7)

http://www.csnsm.in2p3.fr/Equipements http://jannus.in2p3.fr http://emir.in2p3.fr • LaB6filament • 0.27 nm resolution • x70 – x 700 000 magnification range • High resolution camera 30 frames/sec • Analytical techniques (EDX, EELS, STEM, HAADF) 1stTEM (120 kV EM400) connected to IRMA ion implanter in 1980

3rdTEM (200 kV FEI Tecnai G2 F20 Twin, shown below) since 2009 for external users

• Samples holders (-170 -> 1300°C),

including ultra-thin one for dynamical observations (shadow effect)

• Modified polar pieces -> dose measurement less than 3 cm from the specimen, accuracy < 5 %

• Presence of an experienced microscopist must be

planned by the user

In situ dual ion beam Transmission

Electron Microscope

(8)

New and future

developments

 EDX update

Chemical analysis => Brucker Flash 6 detector

and Esprit software -> hyper-maps

 New ultra-fast high resolution camera

High quality image (4K)

+ high-speed video capture (25 fps at 4K up to 300 fps at 512x512)

+ ultra fast shutter = great tool for in situ imaging !

 Environmental sample holder

Liquid and/or gas under irradiation

with heating control (+ options)

 Straining heating holder (1000°C)

The in situ dual ion beam TEM at CSNSM :

(9)

JANNuS-Saclay

: 3 complementary accelerators

| PAGE 8 Heavy ion damage Hydrogen implantation Helium and hydrogen implantation

Heavy ion damage Helium and

hydrogen implantation

(10)

| PAGE 9

JANNuS-Saclay

: 3 MV Pelletron

Épiméthée

 Positive multi-charged ions

1 < m < 209

400 keV < E < 40 MeV

 Accelerator: 3 MV Pelletron NEC (National Electrostatics Corporation) with a ECR (Electron Cyclotron Resonance) source from Pantechnik

1.E+09 1.E+10 1.E+11 1.E+12 1.E+13 1.E+14 1.E+15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Charge state Flux (ion s/s ) Hydrogen Helium Carbon Oxygen Neon Argon Iron Nickel Xenon Tungsten

(11)

JANNuS-SACLAY

:

2 MV Tandem

Japet

and 2.5 MV Pelletron

Pandore

JAPET 2 MV Tandem with Source of Negative Ions

by Cesium Sputtering (SNICS II)

PANDORE 2.5 MV Pelletron with Radio Frequence source

 Single-charged gasses: H, He, D, N, Ar  Negative single-charged ions are converted into

positive multi-charged ions through the stripper

(12)

JANNuS-SACLAY

: Irradiation chambers

Target: diameter of 2 cm with raster scanning

Current/dose rate:Multi-pin Faraday cup device

Vacuum:10-7to 10-9mbar using a cold trap

Temperature:Liquid nitrogen to 800 ° C

Instrumentation: thermocouples, IR-camera or pyrometer and CCD camera

More than 20 modular sample holders

CDD camera

IR camera Raman glassfiber

Single beam chamber

Beam incidence:0 °

Instrum.:ERDA, RBS

Triple beam chamber

Beam incidence:15 °

Energy degraders: on each beam (series of carbon or Al foils)

(13)

JANNuS-SACLAY

: new and future developments

Complementary laser in the Raman spectrometer

new laser with 633 nm in addition to the 532 nm

| PAGE 12

Retrofit of the IBA chamber

New detectors

Specimen deck with 2 to 6 degrees of freedom allowing for canalization

High temperature chamber

Extension of the single beam chamber for irradiation at homogenous temperature up to 1200°C

Cryogenic chamber with resistivity

recovery measurement

Cryogenic irradiation at 30K

Controlled step by step annealing

On line measurement of sample resistivity (defect population and mobility)

(14)

In situ TEM at JANNuS-Orsay

Nano particle evolution

| PAGE 13

Radiation stability of nano-oxides in ODS steels

Example 1: M.-L. Lescoat, J. Ribis, Y. de Carlan et al.

Fe

+

150 keV, 500°C

 3.7 10

12

ion.cm

-2

.s

-1

max

1.6 10

12

ion.cm

-2

.s

-1

(~45 dpa)

examination

~23 dpa

(15)

In situ TEM at JANNuS-Orsay

Nano particle evolution

| PAGE 14

Fe

+

150 keV, 500°C

 3.7 10

12

ion.cm

-2

.s

-1

max

1.6 10

16

ion.cm

-2

.s

-1

(~45 dpa)

Nanoparticles are still visible after irradiation at ~45 dpa

~45 dpa

M-L. Lescoat, J. Ribis, A. Gentils, O. Kaïtasov, Y. de Carlan, A. Legris, JNM 428 (2012) 176

Radiation stability of nano-oxides in ODS steels

(16)

High dose irradiation at JANNuS-Saclay

Nanoparticle study | PAGE 15

Fe

+

0.5 MeV, 500°C

 2.7 10

12

ion.cm

-2

.s

-1

max

8.9 10

16

ion.cm

-2

.s

-1

(~220 dpa)

Nanoparticles are still dispersed after irradiation

at high dose

FFT and HRTEM

3-D APT chemical reconstruction

M-L. Lescoat, J. Ribis, Y. de Carlan et al., Acta Materialia 78 (2014) 328

Radiation stability of nano-oxides in ODS steels

(17)

High dose irradiation at JANNuS-Saclay

Nanoparticle study | PAGE 16

Fe

+

0.5 MeV, 500°C

 2.7 10

12

ion.cm

-2

.s

-1

max

8.9 10

16

ion.cm

-2

.s

-1

(~220 dpa)

Size increases and density decreases with increasing dose consistent with a Oswald ripening process

Statistics on nanoparticles distribution and size

~74 dpa

~150 dpa

M-L. Lescoat, J. Ribis, Y. de Carlan et al., Acta Materialia 78 (2014) 328

Radiation stability of nano-oxides in ODS steels

(18)

| PAGE 17

1013i/cm2 3 × 1013i/cm2 1014 i/cm2

3 × 1014i/cm2 ions

I- Nuclear energy loss effect

0,0E+00 5,0E+10 1,0E+11 1,5E+11 2,0E+11 2,5E+11 3,0E+11 1E+14 1E+15 1E+16 1E+17 1E+18

1E+12 1E+13 1E+14 1E+15

Line densi ty (c m -2 ) Loop densi ty (c m -3 ) Fluence (i/cm2) Loops Lines 390 keV Xe at -180 °C

Defect clusters → Future

dislocation loops Damage (dpa) 0.6 1.8 0.06 0.18 0 2 4 6 8 10

1E+12 1E+13 1E+14 1E+15

Diam èt re m oy en (nm) Fluence (i/cm2) A v erage loop diam et er (nm )

Small loop nucleation stage (< 10 nm)

0 0,5 1 1,5 2 2,5 3 3,5 4 0 20 40 60 80 En er g y l o ss (keV/ n m ) Depth (nm)

Xe 390 keV : dE/dx Elec Xe 390 keV : dE/dx Nucl

390 keV Xe

Evolution of extended defects in UO

2

under irradiation

Example 2: C. Onofri, C. Sabathier, M. Legros et al.

(19)

| PAGE 18

3 × 1014 i/cm2 4 × 1014i/cm2 5 × 1014i/cm2

0,0E+00 5,0E+10 1,0E+11 1,5E+11 2,0E+11 2,5E+11 3,0E+11 1E+14 1E+15 1E+16 1E+17 1E+18

1E+12 1E+13 1E+14 1E+15

Line densi ty (c m -2 ) Loop densi ty (c m -3 ) Fluence (i/cm2) Loops Lines 0 2 4 6 8 10

1E+12 1E+13 1E+14 1E+15

Diam èt re m oy en (nm) Fluence (i/cm2) A v erage loop diam et er (nm )

I- Nuclear energy loss effect

Damage (dpa) 3

1.8 2.4

Loops overlapping for geometric reasons Transformation into lines

Steady state equilibrium

Lines and small loops (< 10 nm)

I- Nuclear energy loss effect

390 keV Xe at -180 °C

Evolution of extended defects in UO

2

under irradiation

Example 2: C. Onofri, C. Sabathier, M. Legros et al.

In situ TEM at JANNuS-Orsay

(20)

T2g Massif de défauts U2 4 MeV Kr at -160 °C | PAGE 19 Defects band Defects band Decrease of T2g intensity – Loss of symmetry

Increase of defects band intensity – Production of

irradiation defects

Shrinking of defects band No evolution

I- Nuclear energy loss effect

I- Nuclear energy loss effect

Evolution of extended defects in UO

2

under irradiation

Example 2: C. Onofri, C. Sabathier, M. Legros et al.

(21)

I- Nuclear energy loss effect

1E+14 1E+15 1E+16 1E+17 1E+18 0 1 2 3 4 5 6 7 0,001 0,01 0,1 1 10 Loop densi ty (c m -3 ) Int egral area rat io (def ec ts band)/ (T 2g ) Damage (dpa) Raman - Kr 4 MeV MET - Xe 390 keV

Small loops nucleation stage (< 10 nm)

Loops transformation into lines by overlapping

Steady state equilibrium : Lines and continuous nucleation of small loops (< 10 nm)

Good correlation between Raman and TEM characterizations Extended defects could contribute to the defects band

Evolution of extended defects in UO

2

under irradiation

Example 2: C. Onofri, C. Sabathier, M. Legros et al.

C. O n o fri e t a l., E M IRUM 2 0 1 6 , 2 0 -2 1 /1 0 /1 6 , S a clay , Fr a n ce

(22)

High energy irradiation at JANNuS-Saclay

Chemical evolution at the interface (EDS)

I- Nuclear energy loss effect

Radiation stability of a Cr-coating/Zr-alloy interface

Example 3: A. Wu, J. Ribis, J.C. Brachet et al.

Kr

8+

20 MeV, 400°C

 2.8 10

11

ion.cm

-2

.s

-1

max

6 10

15

ion.cm

-2

.s

-1 (~10-12 dpa at interface)  No Zr and Cr interdiffusion at ~10 dpa

 Slight Fe diffusion toward

the interface

Cr

Zr

Fe

A . W u e t a l., E M IRUM 2 0 1 6 , 2 0 -2 1 /1 0 /1 6 , S a clay , Fr a n ce

(23)

High energy irradiation at JANNuS-Saclay

Structural evolution at the interface (HR-TEM)

I- Nuclear energy loss effect

Radiation stability of a Cr-coating/Zr-alloy interface

Example 3: A. Wu, J. Ribis, J.C. Brachet et al.

Kr

8+

20 MeV, 400°C

 2.8 10

11

ion.cm

-2

.s

-1

max

6 10

15

ion.cm

-2

.s

-1

(~10-12 dpa at interface)

 interface still crystalline and

coherent at ~10 dpa

 Only the Laves phase C14

remains (no more the C15)

| PAGE 22 A. Wu et al., EMIRUM2016, 20-21/10/16, Saclay, France

(24)

Interface evolution with in situ TEM

EDS and EF-TEM

I- Nuclear energy loss effect

Radiation stability of a Cr-coating/Zr-alloy interface

Example 3: A. Wu, J. Ribis, J.C. Brachet et al.

Au

2+

4 MeV, 400°C

 2.8 10

11

ion.cm

-2

.s

-1

max

4,8 10

15

ion.cm

-2

.s

-1

(~21dpa in Cr, ~36dpa in Zr)

 Defects density increases but the interface remains well visible  Chemical stability with increasing irradiation dose

1 0 0 n m 1 0 0 n m 1 0 0 n m1 0 0 n m 100 nm 100 nm Cr Zr Cr ~ 3,5 dpa Zr ~ 6 dpa 100 nm Cr ~ 10,5 dpa Zr ~18 dpa 100 nm Cr ~ 21 dpa Zr ~36 dpa A . W u e t a l., E M IRUM 2 0 1 6 , 2 0 -2 1 /1 0 /1 6 , S a clay , Fr a n ce

(25)

0 5 10 15 20 0 100 200 300 400 Co n ce n tr atio n ( w eigh t p er ce n tage ) Distance (nm) 0 20 40 60 80 100 0 100 200 300 400 Co n ce n tr atio n ( w eigh t p er ce n tage ) Distance (nm) Unirradiated Cr Unirradiated Zr 1,6E15 Cr 1,6E15 Zr 2,4E15 Cr 2,4E15 Zr 3,2E15 Cr 3,2E15 Zr 4E15 Cr 4E15 Zr

Cr

Zr

Fe

Chromium Interface Zirconium Alloy

In situ examination of the interface

EDS up to 24dpa

I- Nuclear energy loss effect

Radiation stability of a Cr-coating/Zr-alloy interface

Example 3: A. Wu, J. Ribis, J.C. Brachet et al.

Au

2+

4 MeV, 400°C

 2.8 10

11

ion.cm

-2

.s

-1

max

4,8 10

15

ion.cm

-2

.s

-1

(~21dpa in Cr, ~36dpa in Zr)

 Chemical profile Zr/Cr remains stable

 Fe diffusion toward interface increases with dose

| PAGE 24 A. Wu et al., EMIRUM2016, 20-21/10/16, Saclay, France

(26)

National and international beam time access

EMIR: French accelerator network for Materials Study under Irradiation

call for proposal 2018 has been issued with

deadline on October 21st, visit http://emir.in2p3.fr/

projects are evaluated by a Scientific Committee a financial contribution with reduced fee for EMIR accepted proposals is requested

European projects in the frame of H2020 or Eurofusion

With charges upon request | PAGE 25

JANNuS: two complementary facilities

JANNuS = 5 coupled accelerators for cutting-edge researches on irradiation resistance of innovative materials

JANNuS-Orsay = dual ion beam with in situ TEM JANNuS-Saclay = triple ion beam and high dose rate under the auspices of the new Université Paris-Saclay

Among many studies, examples detailed in this presentation address

Radiation stability of nano-oxides in ODS steels for advanced reactors Extended defects build-up in fuel under irradiation

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

This finding suggests another interpretation for the 0.8% volume expansion observed in monazite irradiated by ions He at the highest fluence (Fig. 7), which could

In previous sections it was shown that nuclear collisions induced by slow heavy ions can lead to the amorphization of irradiated layers in crystals for which electronic excitation

At CEA Paris-Saclay, the unique triple beam facility in Europe allows the simultaneous irradiation with heavy ions (like Fe, W) for nuclear recoil damage and

europium implanted pellets (compact and porous zirconia) were analysed by classical RBS. The europium concentration profiles deduced from these spectra are given in figure 1. From.

The fact that the angular distribution peaks for the laser polarization along the ion beam direction identifies the transition as parallel, l3 and thus the dissociative state as

- At low temperatures (around room temperature) a high density of unresol- vable strain centers are produced by electron irradia- tion. As the irradiation temperature

laser radiation (excimer lasers) is of patliculiar interest for several applications because well chosen experimental conditions can lead to low thermal-induced phenomena